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Abstract. Spatial logics have been introduced to reason about distributed com-
putation in models for concurrency. We first define a spatial logic for a gen-
eral class of infinite-state transition systems, the Spatial Transition Systems (sts),
where a monoidal structure on states accounts for the spatial dimension. We then
show that the model checking problem for this logic is undecidable already when
interpreted over Petri nets. Next, building on work by Finkel and Schnöbelen,
we introduce a subclass of sts, the Well-Structured sts (ws-sts), which is gen-
eral enough to include such models as Petri nets, Broadcast Protocols, ccs and
Weighted Automata. Over ws-sts, an interesting fragment of spatial logic - the
monotone fragment - turns out to be decidable under reasonable effectiveness
assumptions. For this class of systems, we also offer a Hennessy-Milner theo-
rem, characterizing the logical preorder induced by the monotone fragment as
the largest spatial-behavioural simulation. We finally prove that, differently from
the corresponding logic, this preorder is in general not decidable, even when con-
fining to effective ws-sts.

1 Introduction

Spatial logics [7,6] are modal logics for describing the behavior and spatial structure of
concurrent systems. Beside propositional and temporal operators, they include spatial
operators, the most prominent of which is _ |_, having the following meaning: the for-
mula φ1|φ2 is satisfied by any process that can be decomposed into two processes that
satisfy respectively φ1 and φ2. Spatial logics have been applied to several models, such
as the pi-calculus [7] and the Ambient Calculus [9].

Starting from the well-known correspondence between the Hennessy-Milner logic
and bisimulation [19], a rich literature has been dedicated to the study of the relationship
between modal logics and behavioural equivalences or preorders. In the realm of spatial
logics, this study has been undertaken in [24,20], in the case of the Ambient Calculus,
and in [5,8], in the case of the ccs and pi-calculus. A discussion on these works, which
are strongly related to our study, is deferred to the concluding section. The objective of
the present paper is to start such an investigation in a general setting. To this aim, we in-
troduce the notion of spatial transition system (sts): a possibly infinite-state transition
system, endowed with a monoidal structure on states representing the spatial dimen-
sion. We introduce a very simple spatial logic L, consisting of atomic predicates, the
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and/or/not logical operators, a behavioral modality indicating the possibility to reach a
state with a given property, and the spatial operator described above. We then interpret
L over sts’s, relating the spatial operator to the monoidal structure. On the one hand, sts
are general enough to include models such as the Calculus of Communicating Systems
(ccs, [22]), Petri nets (and variants thereof, such as reset nets, transfer nets and broad-
cast protocols), and weighted automata. On the other hand, even if L is very simple, it
is enough expressive to describe interesting properties, such as the impossibility for a
ccs process to reach a state where a race condition on a channel arises, or one-safety on
Petri nets (i.e. all places in all reachable markings contain at most one token).

Our first result is that model checking of L is indeed in general undecidable in infi-
nite state systems, even for quite simple sts like Petri nets. This leads us to considering
the negation-free fragment of L, written L0 and introduce the class of Well-Structured
Spatial Transition Systems (ws-sts). The latter builds on the class of Well-Structured
Transition Systems introduced by Finkel and Schnöbelen [17]; in particular, the exis-
tence of a well-quasi order on states that is compatible with both the transition and the
monoidal structure of the system plays a crucial role. The class of ws-sts is still general
enough to include all the models mentioned above. We prove that L0 is decidable for
the class of ws-sts, subject to some reasonable effectiveness conditions.

Next, we characterize the logical preorder induced by L0, that is, the preorder that
relates s to t whenever t satisfies all the L0-formulae satisfied by s. We present a coin-
ductive characterization of the logical preorder in terms of a (weak) simulation, enriched
with constraints on the spatial properties of s and t and the basic predicates they satisfy
(a Hennessy-Milner theorem for L0). This simulation, that we call spatial-behavioral
preorder (sbs), is, in fact, the largest well-quasi order that is compatible with the spatial
and transition structure of the system.

Finally, we show that, differently from L0, this preorder is in general not decidable,
even restricting to effective ws-sts.

Structure of the paper. In Section 2 we define sts and sbs and introduce some con-
crete instances that will be used throughout the paper. In Section 3 we introduce L and
its fragment L0, the considered spatial logics, and we prove the undecidability of L in
Petri nets and ccs. Section 4, after introducing some background material and defining
the class of effective ws-sts, discusses the decidability ofL0. In Section 5 we prove that
the preorder induced by L0 coincides with the largest sbs, and in Section 6 we prove
that the latter is not decidable inws-sts in general. A few remarks on further and related
work conclude the paper in Section 7. Due to lack of space, some proofs have been left
out of this short version (they can be found in [1]).

2 Spatial Transition Systems

In this section we introduce spatial transition systems, we provide some instances that
will be used as running examples throughout the paper, and we introduce a natural
extension of weak simulation for spatial transition systems.
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2.1 Basic definitions

Recall that a transition system (ts) is a structure (S ,→) where S , ranged over s, t, . . ., is a
set of states and→⊆ S ×S is a set of transitions. We let→∗ be the reflexive and transitive
closure of →. The set of immediate predecessors and predecessors of a state s ∈ S
are defined respectively as Pred(s) =

{
t | t→ s, t ∈ S

}
and Pred∗(s) =

{
t | t→∗ s, t ∈ S

}
.

The definitions of Pred and Pred∗ are extended to sets of states as expected. In the
following, we let At be a finite set of atomic predicates ranged over p,p′, . . .. We let
P(At) denote the powerset of At. Recall that a monoid (M,⊕,0M) is a semigroup with
0M as an identity element.

Definition 1 (spatial transition system). A spatial transition system (sts) is a tuple
S = (S ,→,⊕,O) where: (1) (S ,→) is a transition system, (2) (S ,⊕,0S ) is a monoid for
some 0S ∈ S , and (3) O : S →P(At) is an observation function.

The relationship among the transition system, the monoid and the observation func-
tion is given by the following spatial-behavioral simulation.

Definition 2 (spatial-behavioral simulation). A spatial-behavioral simulation (sbs) over
a sts S = (S ,→,⊕,O) is a binary relation R ⊆ S ×S such that whenever sR t then:

1. whenever s→ s′ then there exists t′ ∈ S such that t→∗ t′ and s′R t′;
2. whenever s = s1⊕ s2 then there are t1, t2 ∈ S such that t = t1⊕ t2 and siR ti, i = 1,2;
3. O(s) ⊆ O(t).

The largest sbs, denoted v, is a preorder over S , called spatial-behavioral preorder.

2.2 Concrete instances of sts

Calculus of Communicating Systems. The fragment of ccs with input guarded replica-
tion3 instead of recursion can be turned into a sts as detailed in [4], that is, working
modulo structural congruence and identifying ⊕ and its identity with parallel compo-
sition | and 0, respectively. Moreover, the relation � introduced in Definition 14 of [4]
can be easily proved to be a spatial-behavioral simulation w.r.t. this sts.

Affine Well-Structured Nets. We consider a generalization of Petri nets (pn) introduced
by Finkel et al.: as discussed in Section 7.2 of [16], pn, Double pn, Generalized Transfer
pn (thus also Broadcast Protocols [12]) and Reset pn are all instances of affine wsn. Let
Np, for p ≥ 1, be ranged over by n,m, . . .. Let m(i) denote the ith component of m. The
preorder �⊆ Np ×Np is defined point-wise as expected: n � m if and only if for each
i = 1, ..., p, n(i) ≤ m(i). A well-structured net (wsn) is a triple N = (Np,F, �), where Np

is the set of states (in the pn terminology, markings on the places 1, ..., p) and F is a
finite set of partial functions f , f ′, . . . : Np → Np, whose domain is an upward-closed
subset of Np – that is, whenever m � n and m ∈ dom( f ) then n ∈ dom( f ), for each f ∈ F.
An affine wsn is a wsn where for each function f ∈ F there is a square matrix A ∈ Np×p

3 Intuitively, the replicated process !a.P corresponds to an infinite number of copies of a.P in
parallel: a.P| · · · |a.P| · · · .
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and a vector B ∈ Zp such that for each m ∈ dom( f ), f (m) = A ·m + B with m,B seen as
column vectors. Let us fix an affinewsn N. Clearly, (Np,+,0p), with + indicating sum of
vectors, is a monoid. Define At to be {1, . . . , p} and, for any n ∈ Np, O(n) =

{
i
∣∣∣ n(i) , 0

}
.

Finally, define the transition relation: n→F m iff f (n) = m for some f ∈ F (see [16]).
Clearly, (Np,→F ,+,O) is a sts for which � is a sbs (due to the fact that each f ∈ F is
monotone). Moreover, � is also the spatial-behavioral preorder (i.e. the largest sbs).

There are interesting variations of this construction, corresponding to choosing dif-
ferent observation functions O. For instance, one can leave the set At unspecified, fix
a labelling function from places to sets of atomic predicates, l : {1, ..., p} → P(At), and
then let O(m) =

⋃
i∈1..p :m(i)>0 l(i). Yet another possibility is observing enabled transi-

tions in the current state: assuming F = { fi | i ∈ I}, this is obtained by letting At = I and
O(m) = {i ∈ I |m ∈ dom( fi)}. These variations too give rise to sts for which � is a sbs,
but in general not the largest one.

Weighted Automata. Recall that a semiring K is a structure (K,+,×,0,1) such that
(K,+,0) is a commutative monoid, (K,×,1) is a (not necessarily commutative) monoid,
× distributes over + both to the left and to the right and 0 annihilates both to the left
and to the right (i.e., 0× a = a× 0 = 0 for each a ∈ K). Now let us fix a semiring K
and consider the following preorder over K: a � b iff there is c ∈ K s.t. a + c = b. With
these definitions, the construction illustrated above for Affine Nets carries over formally
unchanged when replacing both N and Z by K. Doing so, we cast (a generalization
of) Weighted Automata (wa, [21]) into the framework of sts4. Concrete instances are:
K = N, K = Q+ (positive rationals) and K = R+ (positive reals, hence e.g. finite-state
Markov chains). Another instance is the (max,+) (a.k.a. tropical semiring [25]) used in
quantitative evaluation of discrete-time systems [3]. The latter is defined over N∪{∞},
by letting “+” to be max and “×” to be +.

3 The logics L and L0

3.1 Definitions and examples

Definition 3. The set L of logic formulae φ,ψ, . . . is given by the following syntax,
where p ∈ At: φ ::= p

∣∣∣ φ|φ ∣∣∣ ♦∗φ ∣∣∣ ¬φ ∣∣∣ φ∧φ ∣∣∣ φ∨φ.

The set of logical operators includes spatial modalities (atomic predicates p ∈At, the
composition operator “|”), dynamic connectives (the eventuality modality ♦∗), and the
usual boolean connectives (¬,∧,∨). The interpretation of L over a sts is given below.

[[p]] =
{
s ∈ S |p ∈ O(s)

}
[[♦∗φ]] = Pred∗([[φ]]) [[¬φ]] = S \ [[φ]]

[[φ1∨φ2]] = [[φ1]]∪ [[φ2]] [[φ1∧φ2]] = [[φ1]]∩ [[φ2]]

[[φ1|φ2]] =
{
s1 ⊕ s2 | s j ∈ [[φ j]] for j = 1,2

}
Connectives are interpreted as expected. In particular, satisfiability of the basic pred-

icates is given by O while satisfiability of the composition operator relies on the possi-
bility of decomposing states via ⊕. In what follows we usually write s |= φ if s ∈ [[φ]].

4 Concretely, states s, t, ... of the wa are elements of Kp×1, and s→ t iff t = A · s, where A ∈Kp×p

is the transition matrix of the wa.
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Following [2], we say that a formula is monotone if it does not contain any occurrence
of ¬. We let L0 denote the subset of monotone formulae. A formula is anti-monotone
if it is of the form ¬φ with φ monotone.

Example 1. The following formulae for ccs depends on generic names a and b. The
anti-monotone formula φ = ¬♦∗(a∧ b) says that the output on a and b are forever mu-
tually exclusive; e.g. a + b 6|= φ. This is different from ψ = ¬♦∗(a|b), still anti-monotone,
saying that it will never be the case that there are two independent threads in the system
offering an output on a and one on b; e.g. a + b |= ψ, while a|b 6|= ψ.

Similar properties can be defined in the case of wsn. Let i, j ∈ {1, . . . , p}. The formula
¬♦∗(i∧ j) says that no marking is reachable where place i and place j are non-empty.
This is equivalent to ¬♦∗(i | j) if i , j, while ¬♦∗

∨p
l=1(l | l) says that the net is one-

safe. Switching the alternative interpretation where enabled transitions are observed,
the formula ¬♦∗(i∧ j) would say that no marking is reachable where both fi and f j are
enabled. This is now stronger than ¬♦∗(i | j), saying that no marking is reachable where
fi and f j can both fire simultaneously. The logic can also be used to define properties
that go beyond pure coverability, such as (♦∗a)|(♦∗b), saying that, from the current state,
two non conflicting transitions on a and b can be reached. These formulae also make
sense in the case of wa. As an example, in a Markov chain, ¬♦∗(i | j) says that it is
not possible to reach a state where both transition i and transition j have non-zero
probability.

3.2 Undecidability of L

We now prove that the logic L turns out to be undecidable already for Petri nets pn, one
of the simplest instantiations of affine wsn in which the matrix A, used in the definitions
of the functions f , always corresponds with the identity matrix.

The proof is by reduction from the containment problem for pn. An instance of the
containment problem consists of two pn Σ1, Σ2 with the same number of places, and a
bijection g between the sets of places of Σ1 and Σ2 (g, called renaming in the following,
is extended to a bijection between markings in the obvious way). The problem consists
of checking whether for every reachable marking m of Σ1, g(m) is reachable in Σ2. Rabin
showed that this problem is undecidable (the proof is in [18]). Following the approach
used in [13] to prove the undecidability of the modal µ-calculus for pn, we reduce the
containment problem to the problem of model checking a given formula in a pn.

Assume that the number of places of Σ1 and Σ2 is p. We now define a pn [[Σ1,Σ2]] =

(N2p+4,F,�) where � is the usual ordering on naturals extended to vectors. The states
of [[Σ1,Σ2]] are vectors of length 2p+4: the first p elements are used to represent states
of Σ1, the subsequent p elements are used to represent states of Σ2, while the last 4
elements are used to divide the computations in four distinct phases. The first phase is
a simulation of a computation of Σ1, the second phase is the passage through a specific
observable state, the third phase is a simulation of Σ2, and the last phase is used to
check whether the markings reached by the simulations of Σ1 and Σ2 correspond up-to
renaming.

Formally, the computations of [[Σ1,Σ2]] are controlled by F containing the three
classes of functions defined below, where we use x ·y to denote the juxtapositions of the
vectors x and y:

5



– F contains the functions f1(x) = x + 02p · (−1,1,0,0), f2(x) = x + 02p · (0,−1,1,0),
and f3(x) = x + 02p · (0,0,−1,1);

– for each f (x) = x+ B in Σ1 (resp. Σ2), F contains a corresponding f (x) = x+ B ·0p+4

(resp. f (x) = x + 0p ·B ·04) defined only if x(2p + 1) > 0 (resp. if x(2p + 3) > 0);
– for each place s in {1, · · · , p}, F contains a function f (x) = x + Bs, defined only if

x(2p+4)> 0, where Bs contains −1 in the positions s and p+g(s), and 0 elsewhere.

Assuming that the initial states of Σ1 and Σ2 are respectively m1 and m2, we will con-
sider for [[Σ1,Σ2]] the state m1 ·m2 · (1,0,0,0).

We now discuss the meaning of the three classes of functions defined above. The
first three functions dictate the passage from one phase to the subsequent one. In the
second class of functions, those of the form f (x) = x+ B ·0p+4 (resp. f (x) = x+0p ·B ·04)
are used to mimic the computations of Σ1 (resp. Σ2) during the first (resp. the third)
phase. The third class of functions reduces in a synchronized manner the values in the
places s and p + g(s). In this way, if a state with all the first 2p elements equal to 0
is reached, we can conclude that the markings reached during the simulations of the
computations of Σ1 and Σ2 correspond up-to renaming. We now prove a proposition
that formalizes the correctness of the reduction: in the statement of the proposition we
exploit the fact that every state x reachable in [[Σ1,Σ2]] such that x(2p + 2) > 0 is an
intermediary state between the simulation of a computation of Σ1 (performed while the
element in position 2p + 1 is 1) and the subsequent simulation of a computation of Σ2
(performed while the element in position 2p + 3 is 1).

Proposition 1. Given two Petri nets Σ1, Σ2 with initial markings m1 and m2, respec-
tively, we have that they satisfy the containment problem iff for every computation of
[[Σ1,Σ2]] starting from m1 ·m2 ·(1,0,0,0) and leading to a state x such that x(2p+2)> 0,
then the computation can be extended in order to reach a state in which the first 2p el-
ements are all equal to 0.

In the light of this theorem we conclude that two Petri nets Σ1 and Σ2, with initial
markings m1 and m2, satisfy the containment problem iff for the pn [[Σ1,Σ2]] we have

m1 ·m2 · (1,0,0,0) |= ¬♦∗¬
(
¬(2p + 2)∨ (♦∗

∧
i∈{1,··· ,2p}¬i)

)
from which we get the following result.

Theorem 1. The model checking of L is undecidable for pn.

It is worth noting that the logic L is undecidable also for the fragment of ccs in-
troduced in Section 2.2. This can be proved as a corollary of an undecidability result
in [4]. In that paper (see Section 3) weak bisimulation is proved to be undecidable,
for this fragment of ccs, presenting a nondeterministic modeling of Random Access
Machines (RAMs) [23], a well known register based Turing complete formalism. The
encoding is nondeterministic because it can give rise to computations that do not cor-
respond to the computation of the modeled RAM. Nevertheless, those computations
generate subprocesses that performs infinite computations presenting the barb w′ in-
finitely often. So we have that a RAM R terminates iff the corresponding encoding [[R]]
in ccs has a computation leading to a halt instruction – in the encoding in [4] halt in-
structions present the barb w – but without subprocesses left by wrong computations,
that is, iff [[R]] |= ♦∗

(
w∧ (¬♦∗w′)

)
.
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4 Decidability of L0

In this section we show the existence of a significant sub-class of Spatial Transition
Systems, that we call effective Well-Structured Spatial Transition Systems (ws-sts), for
which the monotone fragment L0 turns out to be decidable. Basically, ws-sts enhance
classical wsts [17] by taking into account the spatial structure given by the monoid
(S ,⊕,0).

4.1 Well-Structured Spatial Transition Systems

Recall that a quasi-ordering (qo) (aka preorder) over S is a reflexive and transitive
relation over S . A well-quasi-ordering (wqo) is a qo � over S such that for any infinite
sequence s1, s2, . . . in S there exists indexes i < j such that si � s j; in other words, S
does not have infinite antichains. For any qo � over S and T ⊆ S , we say s ∈ T is a
minimal element of T if for each t ∈ T , s � t; we let Min(T ) denote the set of minimal
elements of T . A well-structured spatial transition system is a sts equipped with a qo
that is compatible with→, ⊕ and O.

Definition 4 (well-structured spatial transition system). A well-structured spatial
transition system (ws-sts) is a sts S = (S ,→,⊕,O) equipped with a wqo � over S
satisfying the following conditions: (1) � is a sbs, (2) whenever s � s′ then for each
t s⊕ t � s′⊕ t and t⊕ s � t⊕ s′, and (3) 0S ∈Min(S ).

Example 2. The concrete instances of sts provided in Section 2.2 are ws-sts. Theo-
rem 6 of [4] proves that � is a wqo over ccs, while clauses (1), (2) and (3) can be easily
checked.For what concerns affine wsn, clearly � is a wqo because it is defined as the
pointwise extension of ≤ over N, which is a wqo (Dickson’s Lemma [10]). Clause (1)
of Definition 4 has been discussed in Section 2.2 and clauses (2) and (3) can be easily
checked. Hence, (Np,F,+,O) is a ws-sts for any variation of O. Essentially the same
reasoning applies to weighted automata. Concrete instances where � is a wqo, hence
the construction yields a ws-sts, are K = N, K = R+ and K =(max,+).

4.2 Decidability of L0 for effective ws-sts

Before presenting the technical machinery needed to define effective ws-sts and to
prove the decidability of L0 for this particular class of ws-sts, we present the following
lemma stating that |= on monotone formulae is compatible with both sbs and ⊕.

Lemma 1. Let (S ,→,⊕,O) be a ws-sts and s, t ∈ S . Let φ be a monotone formula. (1)
If s v t and s |= φ then t |= φ. (2) If s |= φ then, for each t also s⊕ t |= φ.

Let us introduce some auxiliary notations and results first. Given any s in a set
X preordered by �, we let its upward-closure to be ↑ s =

{
t | s � t

}
. This notation is

extended to any set I ⊆ X as expected. A set I is upward-closed if ↑ I = I. A finite
basis of an upward-closed set I is a finite set B ⊆ X such that ↑ B = I. If X is a wqo,
any upward-closed set I has a finite basis. Indeed, it is enough to choose from Min(I)
one representative of each equivalence class induced by �: there must be finitely many
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such classes, otherwise one could form an antichain. Now, in any ws-sts and for any
monotone φ, [[φ]] is upward closed w.r.t. � (Lemma 1(1)). Hence the existence of a
finite basis of [[φ]] is guaranteed. Now we have to show how to build one such basis.

For the rest of the section, let us fix a ws-sts S. We assume three functions b, pb∗

and mub, yielding finite bases for certain upward closed sets. Specifically: for each
atomic predicate p, b(p) yields a finite basis of [[p]], that is ↑ b(p) = [[p]]; for each finite
I ⊆ S , pb∗(I) yields a finite basis of Pred∗(↑ I); and for each s1, s2 ∈ S , mub(s1, s2)
yields a finite basis of ↑ s1∩ ↑ s2, in other words a set of minimal upper bounds for
s1 and s2. For the time being, we make no assumption about the effectiveness of these
functions. Building on them, a finite basis of [[φ]], written Fb(φ), is defined below by
induction on φ.

Fb(p) = b(p) Fb(♦∗φ) = pb∗(Fb(φ)) Fb(φ1∨φ2) = Fb(φ1)∪Fb(φ2)
Fb(φ1∧φ2) =

⋃
s1∈Fb(φ1), s2∈Fb(φ2) mub(s1, s2) Fb(φ1|φ2) =

⋃
s1∈Fb(φ1), s2∈Fb(φ2){s1 ⊕ s2}

Proposition 2. Let φ be monotone. Then Fb(φ) is a finite basis of [[φ]].

In order to prove decidability, we need to argue now about effectiveness of b, pb∗

and mub. In particular, we shall rely on Finkel and Schnöbelen’s result below that es-
tablishes effectiveness of pb∗ under certain conditions. Let us define the pred-basis of a
state s, pb(s), as the finite basis of ↑ Pred(↑ s):

↑ pb(s) =↑ Pred(↑ s) = {t | t �→� s}.

Let us say that aws-sts has an effective pred-basis if pb(·) is computable. We say awsts
S is effective if it has effective pred-basis and � is decidable.

Proposition 3 (Proposition 3.5 [17]). If S is an effective wsts, then it is possible to
effectively compute a finite basis of Pred∗(↑ I), for any finite I ⊆ S . That is, there exists
a computable pb∗ function for S.

We say a ws-sts S is effective if it is effective as a wsts and ⊕, b(·) and mub(·, ·) are
computable. By the above proposition and the definition of Fb, we have the following
result. The wanted result follows as a corollary.

Proposition 4. Let S be an effective ws-sts. Then Fb(φ) can be effectively computed,
for any monotone φ.

Corollary 1 (decidability). LetS be an effectivews-sts. For any s and (anti-)monotone
φ, it is decidable whether s |= φ.

4.3 Decidability in concrete instances

Let us discuss effectiveness of the ws-sts introduced in Section 2. In each case, the non-
trivial part is actually defining effective pred-basis pb and mub functions. Effectiveness
of ccs as a ws-sts can be proved along the lines of [2] (note that the definition of mub
turns out to be nontrivial).

Let us now briefly consider affine wsn. Each affine function is recursive, hence
effectiveness of the pred-basis follows from Theorem 4.2 of [16]. Next, for any m,n ∈
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Np, mub(m,n) = l ∈Np is defined thus: l(i) = max{n(i),m(i)}, for each i = 1, . . . , p. Indeed
l is computable and n,m ≤ l. Moreover, by definition, whenever n ≤ k and m ≤ k then
l ≤ k, hence ↑ l =↑ n∩ ↑ m. These definitions of course apply also to the alternative
version of ws-sts with enabled transitions as atomic predicates.

In the case of wa, one must ensure in the first place the effectiveness of the pred-
basis, that strictly depends on the specific semiring; we leave this problem for future
investigations. As an example, the results in [26] seem to indicate that an effective
pred-basis exists in the case of tropical semirings.

5 A Hennessy-Milner theorem for L0

In this section we prove that, under certain conditions, the logical preorder induced by
the monotone fragmentL0 coincides with the largest sbs. The proof goes along the lines
of the classical theorem for bisimulation and the Hennessy-Milner logic [22]. However,
the proof requires extra care, as it has to work also for non-image-finite processes. In-
deed, the condition of image-finiteness, customary in process calculi when dealing with
“weak” relations, makes little sense in our setting. When building distinguishing for-
mulas for sbs-unrelated states, this fact will lead us to considering an in general infinite
number of derivatives. A similar issue is raised by the monoidal structure of the sys-
tem. In the end, we will be able to prove the result for a rather general class of ws-sts
that enjoy certain monotonicity conditions. In the actual proof, though, we will have to
resort to certain continuity arguments in order to cope with the issues outlined above.
The technical device to do this is the notion of complete wsts of [14,15]. Intuitively, in
a complete ws-sts, ascending chains of states always converge to limit points, and the
limit operation commutes with transitions, sum and observation.

A few preliminary definitions are in order. Let (X,�) be a poset. Recall that a set
D ⊆ X is directed if any two elements in D have an upper-bound in D. A dcpo is a poset
(X,�) where any directed set D ⊆ X has a least upper bound (lub) in X, denoted

∨
D.

A dcpo is algebraic if any element x ∈ X is the lub of the set of finite elements � x
(recall that y ∈ X is finite if for every directed D, whenever y �

∨
D then y � d for some

d ∈ D). The set of finite elements of any poset X is denoted by fin(X). Let X,Y be two
preordered sets. A partial function f : X→ Y is monotone if dom( f ) is upward closed
in X and whenever x � x′ in dom( f ) then f (x) � f (x′) in Y . When X and Y are dcpo, we
say f is continuous if f is monotone, its domain is Scott-closed (that is, upward-closed,
and such that for any directed D ⊆ X,

∨
D ∈ dom( f ) implies D∩ dom( f ) , ∅) and, for

any directed D, f (
∨

D) =
∨

f (D). Finally, we say f is finitary if f (fin(X)) ⊆ fin(Y).
Following [14], we say a ws-sts is functional if its transition relation → can be

decomposed as the union of finitely many transitions functions:→= ∪n
i=1δi, where for

i = 1, ...,n, δi : S → S is a partial monotone function. Note that in a functional ws-sts,
monotonicity of ⊕ and O (the latter w.r.t. set inclusion in P(At)) follows by definition.
Complete ws-sts however require something more than monotonicity. Let us record
that for any finite set I, P(I), partially ordered by set inclusion, is trivially an (algebraic)
dcpo.
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Definition 5 (completews-sts). A completews-sts is a functionalws-sts (S ,∪n
i=1δi,⊕,O)

such that (S ,�) is an algebraic dcpo, each δi : S → S is a finitary continuous partial
function and ⊕ : S ×S → S and O : S →P(At) are finitary continuous total functions.

For each state s in a transition system, define Post∗(s) to be the set of states reach-
able from s: Post∗(s) 4= {s′|s→∗ s′}. Note that a complete ws-sts in our sense is also a
complete wsts in the sense of [14]. Hence we have the following result from [14] about
the cover of s, that is, the downward closure of Post∗(s).

Lemma 2 ([14], Proposition 6.1). In any complete wsts, hence in any complete ws-
sts, for any state s there is a finite set F ⊆ Post∗(s) such that ↓ Post∗(s) =↓ F.

The following result is a generalization of the previous one to the spatial component.

Lemma 3. Let S be a complete ws-sts. For any state s, consider the set Ds = {(t, t′)| s =

t⊕ t′}. Then there is a finite F ⊆ Ds s.t. ↓ Ds =↓ F in S ×S .

We also need inductively defined approximants of the spatial-behavioral similarity.

Definition 6 (approximants of similarity). Let S be a ws-sts. We let (vi)i∈N be the
sequence of preorders on S defined by induction on i as follows:

a) s v0 t always;
b) s vi+1 t if: (1) whenever s → s′ then there exists t′ s.t. t →∗ t′ and s′ vi t′; (2)

whenever s = s1⊕ s2 then there exist t1, t2 s.t. t = t1⊕ t2 and s j vi t j for j = 1,2; (3)
O(s) ⊆ O(t).

We let vω be ∩i∈N vi.

The preorder vω can be proved to coincide with v; the proof relies on arguments
similar to those used in the proof of Theorem 2 below.

Proposition 5. On a complete ws-sts, v and vω coincide.

Let S be a spatial transition system. The logical preorder vL over states is defined
as: s vL0 t if and only if for each formula φ ∈ L0, s |= φ implies t |= φ. Here is the first
version of the result we are after.

Theorem 2 (Hennessy-Milner type theorem for complete ws-sts). On a complete
ws-sts, v and vL0 concide.

Proof: The inclusion v ⊆ vL0 holds for any ws-sts (Lemma 1(1)). As for the opposite
inclusion, it is convenient to work with vω (Proposition 5). The proof then is a variant of
the one in [22]. In particular, we prove the contrapositive statement, that s 6vω t implies
s 6vL t. Assume that there is an index i s.t. s 6vi t: we show the existence of a formula φ
s.t. s |= φ and t 6|= φ. The proof is by induction on i. Assume i > 0. Now, s 6vi t means that
one of the clauses (1–3) of Definition 2 is violated.

Let us examine (1) first: there is s′ s.t. s→ s′ and for no t′ ∈ Post∗(t) it holds that
s′ vi−1 t′. Consider the cover of t, ↓ Post∗(t) =↓ F for some finite set F ⊆ Post∗(t)
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(Lemma 2). It is not difficult to show that for any u ∈ F, s′ 6vi−1 u. By induction hypoth-
esis, there exists then φu s.t. s′ |= φu and u 6|= φu. Moreover, for each t′ ∈↓ u, t′ 6|= φu either
(a consequence of Lemma 1). Consider now φ = ♦∗ (

∧
u∈F φu). By construction s |= φ,

but t 6|= φ.
The case where (2) is violated is handled similarly relying on Lemma 3. In par-

ticular, s = s1 ⊕ s2 for some s1 and s2 s.t. for each pair (t1, t2) satisfying t = t1 ⊕ t2,
either s1 6vi−1 t1 or s2 6vi−1 t2. Let us write as {(t j

1, t
j
2)| j ∈ J} (J finite) the set F given

by Lemma 3. By induction, for each j ∈ J there exists either φ j
1 satisfied by s1 but not

by t j
1, or φ j

2 satisfied by s2 but not by t j
2. In the former case let φ j

2
4
= true, in the latter

case φ j
1
4
= true. Consider now φ= (

∧
j∈J φ

j
1) | (

∧
j∈J φ

j
2). By construction, s |= φ, but t 6|= φ.

Finally, the case (3) is obvious. 2

Next, we extend the above result to the class of functional (not necessarily com-
plete) ws-sts’s. Let us introduce some terminology first. For any complete ws-sts S =

(S ,∪n
i=1δi,⊕,O), let us denote by fin(S) the functional wsts (fin(S ),∪n

i=1δi,fin,⊕fin,Ofin),
where fin(S ) inherits the wqo of S and δi,fin, ⊕fin, Ofin are the restrictions of δi, ⊕ and
O, respectively, to fin(S ). Let us denote by vfin the spatial-behavioral similarity defined
over fin(S) (the subscript fin will be omitted when no ambiguity arises).

Two functional ws-sts’s are isomorphic if there is an embedding between them that
is a bijection and commutes with the functions δi (i = 1, ...,n, for one and the same n), ⊕
and O, as expected. Clearly, any isomorphism preserves, in both directions, both v and
|=, hence vL0 . Now, given a functional ws-sts S there is a canonical way of building a
complete ws-sts Ŝ such that fin(Ŝ) is isomorphic to S: one takes the ideal completion
of S, where the set of states, Ŝ , is the set of all ideals (that is, directed, downward
closed subsets) of S ordered by set inclusion, and δ̂i, ⊕̂, Ô are the unique continuous
extensions of the corresponding (monotone) functions of S. The isomorphism between
S and fin(Ŝ) is given by the function ·̂ : S → fin(Ŝ ) that sends each s ∈ S into ↓ s ∈ fin(Ŝ ).
A further technical ingredient is needed so as to ensure that Ŝ is well-ordered: the wqo
S we start with must be a ω2-wqo. Intuitively, ω2-wqo strengthens the condition of wqo
in the sense that one can always extract an infinite ascending chain xi, j < x j,k < xk,l < · · · ,
with i< j< k < l, out of any family of elements {xm,n}m∈I,n∈J . We refer the reader to [14]
for the formal definition of this concept and further details of this construction; here,
we just stress that only pathological instances of non-ω2-wqo exist, and they have no
computational relevance. With these definitions and facts at hand, the main result of the
section is an easy consequence of Theorem 2.

Theorem 3 (Hennessy-Milner type theorem, functional case). Let S be a functional
ws-sts equipped with a ω2-wqo. Then v and vL0 coincide over S.

Example 3. Both wsn (not necessarily affine) and wa are functional by definition. As
mentioned in Section 2.2, v coincides with � in the interpretation of the observation
function given by O(m) = {i|m(i) , 0}. In the other two cases discussed in Section 2, the
result is more interesting, as v, hence vL0 , is a much coarser relation.
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6 Undecidability of the spatial-behavioral preorder

The spatial-behavioral preorder v is in general undecidable in (effective) ws-sts even
if it is the preorder induced by the decidable logic L0. The proof is by reduction from
the boundedness problem for reset nets (rn) [11]. rn correspond to the subset of affine
well-structured nets in which the matrix A, used in the definitions of the functions f ,
contains only the value 0 excluding some value equal to 1 in the main diagonal. This
model can be seen as an extension of pn in which transitions can remove all the tokens
in some given places. Given a rn and an initial state, the boundedness problem consists
of checking whether the set of reachable states is finite. This problem is proved to be
undecidable for rn in [11].

Consider a reset net Σ with p places and initial marking m. It is not restrictive to
assume that there is no function f (x) = Ax + B defined for x = 0p. We define an affine
wsn [[Σ]] = (Np+4,F,�) (where � is the usual ordering on naturals extended to vectors)
such that there exist two states s1 = 0p · (0,0,1,0) and s2 = m · (1,0,0,0) of [[Σ]] such that
s1 v s2 iff Σ is unbounded. In the constructedwsnwe will consider a very simple atomic
predicate notEmpty and the interpretation exploiting the following labelling function
l : {1, ..., p + 4} → P(At), such that l(i) = {notEmpty}, for i = p + 2 and i = p + 4, and
l(i) = ∅, otherwise. The idea that we follow in the definition of [[Σ]] is as follows:

– The state s1 = 0p · (0,0,1,0) can give rise to computations of length n, for every n,
that first increment by one the value in position p + 3 until the value n is reached,
and then such value is moved in position p + 4 yielding the state 0p · (0,0,0,n).

– The state s2 = m · (1,0,0,0) can mimic every computation m→∗ m′ in Σ. Every time
a transition is performed, the value in position p + 1 is increased by one, thus the
state m′ · (k,0,0,0) is reached assuming that k− 1 steps have been simulated. An
additional transition can move all the tokens in the marking m′ in position p+2 and
set to 0 the value in position p + 1, thus yielding the state 0p · (0,#m′,0,0) where
#m′ denotes the total number of tokens in the marking m′ .

The final states 0p · (0,0,0,n), for every n, and 0p · (0,#m′,0,0), for every marking m′

reachable in Σ, of the computations starting from s1 and s2 are related by the atomic
predicate notEmpty (able to observe the values in positions p + 2 and p + 4). We will
prove that this relationship guarantees that s1 v s2 iff Σ is unbounded.

We formally introduce [[Σ]] defining its set F that contains the following functions:

– f1 is a function that increments by one the value in position p + 3 if it is greater
than 1. Namely, f1(x) = Ax + B, defined only if x(p+3) > 0, where A is the identity
matrix and B = 0p · (0,0,1,0).

– f2 is a function that moves the value in position p + 3 to position p + 4. Namely,
f2(x) = Ax+ B where A(i, j) = 0 for every i and j, excluding A(p+4, p+3) = 1, and
B = 0p+4.

– A set of functions that simulate the computation steps of Σ (when the value in
position p + 1 is greater than 1) and increment the value in position p + 1. Namely,
for every function f (x) = Ax + B in the definition of Σ, we consider a function
f ′(x′) = A′x′ + B′, defined only if x′ = x · (1,0,0,0) and f is defined for x, where
A′(i, j) = A(i, j) for every 1 ≤ i, j ≤ p and A′(i, j) = 0 for every p + 1 ≤ i, j ≤ p + 4,
and B′ = B · (1,0,0,0).
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– f3 is a function that moves all the tokens in the marking reached after the simulated
computation of Σ in position p + 2. Namely, f3(x) = Ax + B where A(i, j) = 0 for
every i and j, excluding A(p + 2, j) = 1 for 1 ≤ j ≤ p, and B = 0p+4.

– f4 is a function that permits to restart the simulation of Σ if the value in position
p+1 is not 0. Namely, f4(x) = Ax+ B, defined only if x(p+1) > 0, where A(i, j) = 0
for every i and j, and B = m · (1,0,0,0).

We now prove the correctness of the reduction.

Theorem 4. Let Σ be a reset net with inital marking m. Consider the affine wsn system
[[Σ]], and the states s1 = 0p · (0,0,1,0) and s2 = m · (1,0,0,0). We have that s1 v s2 iff Σ
is unbounded.

Proof: We first consider the if part. Assume that s1 v s2. Given a natural number n, we
will prove that Σ has a computation starting from m and leading to a marking with at
least n tokens, from which the unboundedness of Σ follows. Consider a computation of
[[Σ]] of length n starting from s1 and leading to 0p · (0,0,0,n). As s1 v s2 we have that
[[Σ]] has a computation starting from s2 and leading to a state 0p · (0,n′,0,0) with n′ ≥ n.
As the computations starting from the state s2 mimic computations of Σ before moving
all the tokens in the reached marking in position p + 2, we have that also in Σ there is a
computation from m leading to a marking with n′ tokens.

We now consider the only-if part. Assume that Σ is unbounded. In this case we have
that Σ has an infinite computation m = m1 → m2 → ·· · → mi → ·· · with the following
property: there exists an infinite increasing sequence of indexes 1 = l1, l2, . . . , l j, . . . such
that if j < j′ then #ml j < #ml j′ . We now prove that s1 v s2 showing the existence of a
spatial-behavioral simulation R between states of [[Σ]] such that (s1, s2) ∈ R. Let R be
the relation including the following pairs:

1.
(
0p · (0,0,k,0), ml j · (k

′,0,0,0)
)
∈ R for every 0 < k ≤ k′ ≤ l j, where ml j is taken

from the computation of Σ, ml1 →
+ ml2 →

+ · · · →+ ml j →
+ · · · , with #ml j < #ml j′

for every j < j′, described above,
2.

(
0p · (0,0,0,k), 0p · (0,k′,0,0)

)
∈ R for every k ≤ k′,

3.
(
0p+4, 0p+4) ∈ R,

4.
(
0p · (0,0,k,0), 0p · (k,0,0,0)

)
∈ R for every k > 0.

The relation R is a spatial-behavioural simulation as it satisfies the three conditions
in the Definition 2. There are only two non-trivial conditions to be checked. The first
one is that the pairs

(
0p · (0,0,k,0), 0p · (k,0,0,0)

)
satisfy condition (1). This holds be-

cause of the function f4 that allows the second state 0p · (k,0,0,0) to restart the sim-
ulation of the computation m1 → m2 → ·· · → mi → ·· · . The second one is that the
pairs

(
0p · (0,0,k,0), ml j · (k

′,0,0,0)
)

satisfy condition (2). In this case we observe that
0p · (0,0,k,0) = t1 + t2 iff t1 = 0p · (0,0,k1,0) and t2 = 0p · (0,0,k2,0) with k = k1 + k2.
If k1 = k and k2 = 0 we simply observe that ml j · (k

′,0,0,0) = ml j · (k
′,0,0,0) + 0p+4. If

k1 < k we observe that ml j · (k
′,0,0,0) = 0p · (k1,0,0,0) + ml j · (k

′ − k1,0,0,0) and that(
0p · (0,0,k1,0), 0p · (k1,0,0,0)

)
∈ R and

(
0p · (0,0,k2,0), ml j · (k

′ − k1,0,0,0)
)
∈ R. We

complete the proof observing that (s1, s2) ∈ R as
(
0p · (0,0,1,0), m · (1,0,0,0)

)
∈ R due

to the first item of the definition of R and because m = m1. 2
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In the light of this theorem and knowing from [11] that the boundedness problem
in reset nets is undecidable, we can conclude that the spatial-behavioral simulation v is
undecidable for affine wsn.

7 Conclusion

We have investigated connections between spatial logic and simulation relations, and
related decidability issues, in a general setting of spatial transition systems. One of our
results states the coincidence, under certain assumptions, of the logical preorder and
of the largest sbs. In the setting of the Ambient Calculus and Ambient Logic, sim-
ilar results have been achieved by Sangiorgi & al. in [24,20]. On the one hand, the
clauses of our sbs are reminiscent of their intensional bisimilarity. On the other hand,
their completeness proof relies on techniques very different from ours; in particular, the
presence in the logic of an adjunct of | helps them in defining characteristic formulae
for processes in a syntax-driven way, which can have no counterpart in our framework.
(Un)decidability of the Ambient Logic is also investigated in [20]. Caires and Lozes
study the power of the adjunct in [8]; they too offer Hennessy-Milner theorems based
on characteristic formulae and undecidability results relatively to a small fragment of
ccs, but they consider a strong, rather than a weak next-step modality as we do. In the
setting of the pi-calculus, Caires [5] offers a Hennessy-Milner theorem and decidabil-
ity results for a Spatial Logic without adjunct, again considering strong modalities and
relying on characteristic formulae.

The reader may observe that, while decidability of the monotone spatial logic L0
holds of course for all instances of the framework, the undecidability results are proved
in the setting of Affine Well-Structured Nets (wsn). As for future work, we plan to
investigate this issue further, so as to obtain new decidability results, or even abstract
undecidability results that holds for a whole sub-class of models. Concerning the first
direction, we observe that the decidability of sbs seems connected to the problem of
effective computation of the finite clover set (see [15]) for ↓ Post∗(s), and this turns out
to be effective if we move from reset/transfer Petri nets to Petri nets. Another issue left
open by our study is, in the case of wa, the characterization of semirings for which a
pred-basis is effectively computable.
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