
A Theory of “May” Testing
for Asynchronous Languages

Michele Boreale1 Rocco De Nicola2 Rosario Pugliese2

1Dipartimento di Scienze dell’Informazione, Università di Roma “La Sapienza”
2Dipartimento di Sistemi e Informatica, Università di Firenze

Abstract. Asynchronous communication mechanisms are usually at the
basis of real distributed systems and protocols. For these systems, asyn-
chronous may-based testing seems to be exactly what is needed to cap-
ture safety and certain security properties.
We study may testing equivalence focusing on the asynchronous versions
of CCS and π-calculus. We start from an operational testing preorder
and provide finitary and fully abstract trace-based models for it, together
with complete inequational axiomatizations. The results throw light on
the differences between synchronous and asynchronous systems and on
the weaker testing power of asynchronous observations.

1 Introduction

Distributed systems often rely on asynchronous communication primitives for
exchanging information. Many properties of these systems can be conveniently
expressed and verified by means of behavioural equivalences. In particular, may
testing [11] seems to be exactly what is needed for reasoning about safety prop-
erties because it permits characterizing the suitable behaviours of a system as
those with no “bad” actions; in this respect, an assumption of asynchrony can
often play a crucial role.

As an example, consider a trivial communication protocol in which two users
A and B share a private channel c. The protocol requires that A uses c to send
a bit of information m to B, after which B receives two messages from channels
a and b, and then sends on channel d the message received on a. The ordering
of the inputs on a and b depends on the message received on c. In π-calculus we
can formulate this protocol as follows (the meaning of the various operators is
the usual one; in particular, (ν c) stands for creation of a local channel c):

A = cm

B = c(x).([x = 0]a(y).b(z).dy + [x = 1]b(z).a(y).dy)
S = (ν c)(A |B)

Secrecy, i.e. the ability to keep a datum secret, is an important property which
one might want to check of this protocol: externally, it should not be possible to
guess message m from the behaviour of the whole system S. Following [2], this
property can be formalized by requiring that the behaviour of the protocol should

not depend on the bit that A sends to B: in other words, processes S[0/m] and
S[1/m] should be equivalent. The intended equivalence is here may semantics,
which means that no external observer can ever notice any difference between
the two. Now, it is easy to see that an observer could tell S[0/m] and S[1/m]
apart via synchronous communication on a and b (traffic analysis). However,
S[0/m] and S[1/m] are equivalent in a truly asynchronous scenario, in which no
ordering on the arrival of outgoing messages is guaranteed.

It is therefore important to have a full understanding of may-semantics in
asynchronous settings and to have manageable reasoning techniques for it. In [7],
we have investigated the impact of the testing framework as proposed in [11, 14],
on the asynchronous variants of CCS and π-calculus. In particular, we have given
an observers-independent characterization of the asynchronous testing preorders.
Here, we use this characterization as a starting point for defining a “finitary”
trace-based model and a complete axiomatization for the may testing preorder.

The main source of complications arising when (operationally or denota-
tionally) modelling asynchronous processes is the non-blocking nature of output
primitives. In the absence of explicit structures for buffering messages, this de-
mands that processes be able to take into account all messages sent by the en-
vironment at any time, i.e. it is demanded that processes be receptive. A simple
approach to this problem leads to models where all possible inputs (i.e. outputs
from the environment) at any stage are explicitly described. As a result, in-
finitary descriptions are obtained even for simple, non–recursive, processes. For
example, according to [15], the operational description of the null process 0 is
the same as that of recX.a.(a |X), where a stands for any input action, a is its
complementary output and rec is the recursion operator. Similarly, [5] presents
a trace-based model that permits arbitrary “gaps” in traces to take into account
any external influence on processes behaviour.

In view of the above considerations, the task of providing finitary models of
asynchronous processes is certainly of interest. We provide a fully abstract trace–
based model by “minimizing” the set of traces of a process w.r.t. a preorder
between traces. The intuition behind the preorder is that whenever a trace s
leads to a successful interaction with the environment, then any s′ “smaller”
than s leads to success as well. It turns out that, when comparing two processes,
only their “minimal” traces need to be taken into account. This leads to a model
that assigns finite denotations to finite processes. The interpretation of the may
preorder (<∼

m
) suggested by the model is as follows: we have P <∼

m
Q if, by

consuming the same multisets of messages (output actions), Q can produce at
least the same multisets of messages as P .

Building on the above metioned preorder between traces, we provide a com-
plete (in-)equational axiomatization for asynchronous CCS. The axiomatization
relies on the two laws below, which are specific to asynchronous testing (and not
sound for the synchronous may preorder [11]):

(A1) a.b.P v b.a.P and (A2) a.(a | P) v P .

These laws can be understood as stating that processes are insensitive to the
generation ordering of messages from the environment (A1) and that an execution
of P depending on the availability (consumption) of a is worse than P itself, even
if a is immediately re–issued (A2). The completeness proof relies on the existence
of canonical forms directly inspired by the finitary trace–based model.

We develop both the model and the axiomatization first for asynchronous
CCS, and then for asynchronous π-calculus. The simpler calculus is sufficient to
isolate the key issues of asynchrony. Indeed, both the trace interpretation and
the axiomatization for π-calculus are dictated by those for CCS.

The rest of the paper is organized as follows. Section 2 introduces asynchro-
nous CCS and the may–testing preorder. Section 3 and 4 present a fully abstract
trace–based interpretation of processes and a complete proof system for finite
processes, respectively. In Section 5 the results of the previous sections are ex-
tended to π-calculus. The final section contains a few concluding remarks and
discussion of related work.

2 Asynchronous CCS

In this section we present syntax, operational and testing semantics of asyn-
chronous CCS (ACCS, for short) [7]. It differs from standard CCS because only
guarded choices are used and output guards are not allowed. The absence of
output guards “forces” asynchrony; it is not possible to define processes that
causally depend on output actions.

2.1 Syntax

We let N , ranged over by a, b, . . ., be an infinite set of names used to model
input actions and N = {a | a ∈ N}, ranged over by a, b, . . ., be the set of co–
names that model outputs. N and N are disjoint and are in bijection via the
complementation function (·); we define: (a) = a. We let L = N ∪N be the set
of visible actions, and let l, l′, . . . range over it. We let Lτ = L ∪ {τ}, where τ is
a distinct action, for the set of all actions or labels, ranged over by µ. We shall
use A,B,L, . . ., to range over subsets of L. We let X , ranged over by X, Y, . . .,
be a countable set of process variables.

Definition 1. The set of ACCS terms is generated by the grammar:

E ::= a
∣∣ G

∣∣ E1 | E2

∣∣ E\L
∣∣ E{f}

∣∣ X
∣∣ recX.E

G ::= 0
∣∣ g.E

∣∣ G1 + G2

where g ∈ N ∪ {τ}, and f : N → N , called relabelling function, is injective and
such that {l | f(l) 6= l} is finite. We extend f to L by letting f(a) = f(a). We
let P, ranged over by P , Q, etc., denote the set of closed and guarded terms or
processes (i.e. those terms where every occurrence of any agent variable X lies
within the scope of some recX. and

∑
operators).

In the sequel, we will write g for g.0. As usual, we write E[F/X] for the
term obtained by replacing each free occurrence of X in E by F (with possible
renaming of bound process variables). We write n(P) to denote the set of visible
actions occurring in P .

2.2 Operational Semantics

The labelled transition system (P,Lτ ,
µ−→) in Figure 1 defines the operational

semantics of the language.

AR1
∑

i∈I
gi.Pi

gj−→ Pj j ∈ I AR2 a
a−→ 0

AR3 P
µ−→ P ′

P{f} f(µ)−→ P ′{f}
AR4 P

µ−→ P ′

P\L µ−→ P ′\L
if µ 6∈ L ∪ L

AR5 P
µ−→ P ′

P |Q µ−→ P ′ |Q
AR6

P [recX.P/X]
µ−→ P ′

recX.P
µ−→ P ′

AR7
P

l−→ P ′, Q
l−→ Q

P |Q τ−→ P ′ |Q′

Fig. 1. Operational semantics of ACCS (symmetric of rule AR5 omitted)

As usual, we use =⇒ or ε=⇒ to denote the reflexive and transitive closure

of τ−→ and use s=⇒ (resp. s−→) for =⇒ l−→ s′=⇒ (resp. l−→ s′−→) when
s = ls′. Moreover, we write P

s=⇒ for ∃P ′ : P
s=⇒ P ′ (P s−→ and P

τ−→ will
be used similarly). We will call language generated by P the set L(P) = {s ∈
L∗ | P s=⇒}. We say that a process P is stable if P 6 τ−→ .

2.3 May Semantics

We are now ready to instantiate the general framework of testing equivalences
[11, 14] on ACCS. In this paper we only consider the may preorder and equiva-
lence.

Definition 2. Let Observers be ACCS processes that can also perform a distinct
success action ω. A computation from a process P and an observer O is a sequence
of transitions P |O = P0 |O0

τ−→ P1 |O1
τ−→ P2 |O2 · · ·Pk |Ok

τ−→ · · · which is
either infinite or such that the last Pk |Ok is stable. The computation is successful
iff there exists some n ≥ 0 such that On

ω−→ .

Definition 3. For every process P and observer O, we say P may O iff there
exists a successful computation from P |O.

Definition 4. We define the following preorder over processes:

P <∼
m

Q iff for every observer O ∈ O, P may O implies Qmay O .

We will use '
m

to denote the equivalence obtained as the kernel of the pre-
order <∼

m
(i.e. 'm = <∼

m
∩ <∼

m

−1
). Universal quantification on observers makes

it difficult to work with the operational definition of the may preorder; this calls
for an alternative characterization. In the synchronous case, this characteriza-
tion is simply trace inclusion (see, e.g., [11, 14]). In [7], by taking advantage of
a preorder over single traces, we proved that in case of asynchronous communi-
cation a weaker condition will be required; we summarize here (some of) that
theory.

Definition 5. Let � be the least preorder over L∗ preserved under trace com-
position and satisfying the laws in Figure 2.

TO1 ε � a (deletion)
TO2 la � al (postponement)
TO3 ε � aa (annihilation)

Fig. 2. Trace Ordering Laws

The intuition behind the three laws in Figure 2 is that, whenever a process
interacts with its environment by performing a sequence of actions s, an inter-
action is possible also if the process performs any s′ � s. To put it differently, if
the environment offers s, then it also offers any s′ s.t. s′ � s.

More specifically, law TO1 (deletion) says that process inputs cannot be forced
to take place. For example, we have bc � abc: if the environment offers the
sequence abc, then it also offers bc, as there can be no causal dependence of bc
upon the output a. Law TO2 (postponement) says that observations of process
inputs can be delayed. For example, we have that bac � abc. Indeed, if the
environment offers abc then it also offers bac. Finally, law TO3 (annihilation)
allows the environment to internally consume pairs of complementary actions,
e.g. b � aab. Indeed, if the environment offers aab it can internally consume a
and a and offer b.

Definition 6 (alternative preorder). For processes P and Q, we write P �m

Q iff whenever P
s=⇒ then there exists s′ such that s′ � s and Q

s′=⇒ .

Theorem 1 ([7]). For all processes P and Q, P <∼
m

Q iff P �
m

Q.

One can easily prove that <∼m
is a pre–congruence; as usual, the proof

proceeds by case analysis on the composition operators of the language and, in
all cases except for the parallel operator “ | ”, relies on the coincidence between
<∼

m
and �

m
.

3 A Finitary Trace-based Model

A fully abstract set-theoretic interpretation for <∼m
can be obtained by inter-

preting each P as the set of traces [[P]]
m

= {s | ∃s′ ∈ L(P) : s′ � s} and ordering
interpretations by set inclusion. However, this naive interpretation is not satis-
factory, because it includes infinitely many traces even for finite processes; for
instance, [[0]]m = {ε, a, aa, aaa, . . . , b, bb, . . .}. A more informative set-theoretic
interpretation should assign finite sets to finite processes.

To obtain such an interpretation, we shall “minimize” the language of a
process P , L(P), w.r.t. the trace preorder �. In the sequel, we use [s] to denote
the �-equivalence class of s, i.e. the set {s′ : s′ � s and s � s′}. We shall first
define the partial order of denotations.

Definition 7 (denotations).

– Consider a set D of �-equivalence classes. We say that D is a denotation
if whenever [s], [s′] ∈ D and s � s′ then [s] = [s′]. We call D the set of all
denotations.

– D is ordered by setting: D1 ≤ D2 iff for each [s] ∈ D1 there is [s′] ∈ D2

such that s′ � s.

In words, a denotation D is a set of �-equivalence classes which are minimal
in D. The next lemma follows by applying standard arguments; in particular,
the anti-symmetry property follows by minimality.

Lemma 1. (D,≤) is a partial order.

Definition 8. For each P , we interpret P as the denotation

[[P]]
m

def= {[s] : s ∈ L(P) and for each s′ ∈ L(P) : s′ � s implies [s] = [s′] } .

Example 1.

1. Let P
def= a.(a | b). We have L(P) = {ε, a, aa, ab, aab, aba}; laws TO1–TO3 are

sufficient to conclude that ε is minimal in L(P), hence [[a.(a | b)]]m = [[0]]m
= { [ε] }.

2. Let P
def= a | b.c. We have L(P) = {ε, a, ab, abc, b, ba, bac, bc, bca } The set of

�-minimal traces of L(P) is { ε, a, bc, abc, bca}, thus we can conclude that
[[P]]m = {[ε], [a], [bc], [abc], [bca]}.

3. Let Q
def= a.P . With few calculations we find that [[Q]]m =

{ [ε], [abc], [aabc], [abca] }. This implies [[Q]]m ≤ [[P]]m .

Lemma 2. Let C be a set of �-equivalence classes. Then C has minimal ele-
ments (w.r.t. the obvious ordering [s′] ≤ [s] iff s′ � s).

Theorem 2 (full abstraction). P <∼
m

Q if and only if [[P]]
m
≤ [[Q]]

m
in D.

Proof: We use the alternative characterization �
m

of <∼
m

. Suppose that

P �
m

Q; we show that [[P]]
m
≤ [[Q]]

m
in D. Let [s] ∈ [[P]]

m
, with P

s=⇒ .

Then there is s′ s.t. Q
s′=⇒ and s′ � s. Choose now [s0] which is minimal for the

set {[s′′] : s′′ ∈ L(Q) and s′′ � s′ }, and which exists by virtue of Lemma 2. By
definition of [[·]]

m
, [s0] ∈ [[Q]]

m
, and moreover s0 � s. The converse implication

can be proven similarly. 2

It is possible to give a “concrete” representation of the equivalence classes
[s].

Proposition 1. Let s1 = m1M1 · · ·mnMn, n ≥ 0, be any trace, where, for
1 ≤ i ≤ n, mi (resp Mi) is a trace containing only inputs (resp. outputs).
Suppose that s2 � s1 and s1 � s2. Then s2 is of the form m′

1M1 · · ·m′
nMn,

where, for 1 ≤ i ≤ n, m′
i is a permutation of mi.

In essence, the above proposition allows one to treat equivalence classes of
traces as sequences where multisets of input actions alternate with sequences
of output actions. This model can be further optimized. For example, when
defining [[·]]m it is possible to enrich the theory of � with a commutativity law
for outputs (ab � ba), which would permit to view sequences of outputs as
multisets, thus leading to smaller denotations of processes. For instance, the
denotation of process P in Example 1 would reduce to {[ε], [a], [bc], [abc]}. A
similar optimization will be used in the definition of canonical traces, in the
next section.

4 A Proof System for ACCS

In this section we define a proof system for finite ACCS and prove that it is
sound and complete with respect to <∼

m
for finite processes. In the rest of this

section we shall confine ourselves to the sub-language without recursion (rec).
The proof system, that we callA, is based on the in-equational laws in Table 1

plus the usual inference rules for reflexivity, transitivity and substitutivity in any
context. Recall that P , Q and R range over processes while G stands for inaction
or a process whose top–level operator is input (or silent) prefix or guarded sum.
Each equation P = Q is an abbreviation for the pair of inequations P v Q
and Q v P . We write P vA Q (P =A Q) to indicate that P v Q (P =
Q) can be derived within the proof system A. We define

∑
i∈{1,...,n} gi.Pi as

g1.P1+. . .+gn.Pn, up to the laws C2 and C3. By convention, an empty summation
denotes 0.

Laws A1 and A2 differentiate asynchronous from synchronous may testing:
they are not sound for the synchronous may preorder [11]. Both these laws can be
understood as corresponding to the following intuition of P <∼

m
Q: by consuming

the same messages (output actions) from the environment, Q can produce at
least the same messages that P can produce. In particular, law A1 states that
processes are insensitive to arrival ordering of messages from the environment,

C1 G + 0 = G
C2 G + G′ = G′ + G
C3 G + (G′ + G′′) = (G + G′) + G′′

C4 G + G = G

P1 P | 0 = P
P2 P |Q = Q | P
P3 P | (Q |R) = (P |Q) |R

EXP Let G =
∑

i∈I
gi.Pi and G′ =

∑
j∈J

g′j .P
′
j ; then:

G |G′ =
∑

i∈I
gi.(Pi |G′) +

∑
j∈J

g′j .(G | P ′
j)

R1 (
∑

i∈I
gi.Pi){f} =

∑
i∈I

f(gi).Pi{f}
R2 (P |Q){f} = P{f} |Q{f}
R3 a{f} = f(a)

H1 (
∑

i∈I
gi.Pi)\L =

∑
i∈I∧gi 6∈L∪L

gi.Pi\L
H2 (P |Q)\L = P |Q\L L ∩ n(P) = ∅
H3 (P\L1)\L2 = P\L1 ∪ L2

H4 (a | g.P)\a = g.(a | P)\a g 6= a
H5 (a | g.P)\a = P\a g = a

T1 a |
∑

i∈I
gi.Pi =

∑
i∈I

τ.(a | gi.Pi)

T2 g.
∑

i∈I
gi.Pi =

∑
i∈I

g.gi.Pi

T3 P = τ.P
T4 G v G + G′

T5 a.(b | P) v b | a.P
T6 P v a | a.P

A1 a.b.P v b.a.P
A2 a.(a | P) v P

Table 1. Laws for ACCS

while law A2 says that any execution of P that depends on the availability of a
message a is worse than P itself, even if a is immediately re-issued. The other
laws in Table 1 are sound also for the synchronous may testing [11]. The laws in
Table 1 can be easily proven sound relying on the preorder �m .

Let us now consider some derived laws, among which (D1) a.P vA P and
(D2) 0 vA a. Law D2 follows immediately from law T4. The inequality D1 can
be derived by first noting that from D2 it follows P vA a | P , which implies
a.P vA a.(a | P); now apply A2. In particular, we have that a vA 0. ¿From
0 vA P , for any P (a consequence of T4), and a.a =A a.(a | 0) vA 0 (law A2),
we get a.a =A 0.

Now we discuss the completeness of the proof system. We shall rely on the
existence of certain canonical forms for processes, which are unique up to asso-
ciativity and commutativity of summation and parallel composition and up to

permutation of consecutive input actions. This is a result of independent interest,
because it leads to unique (and rather compact) representatives for equivalence
classes of processes. The canonical form of a process will be obtained by minimiz-
ing its set of traces via a trace preorder, that extends � with a commutativity
law for output actions.

Definition 9. Let �| be the least preorder over traces induced by the laws
TO1–TO3 plus law: (TO4) ab � ba.

Of course, � is included in �|.

Definition 10 (canonical forms).

– Given s ∈ Act∗, the process t(s) is defined by induction on s as follows:
t(ε) def= 0, t(as′) def= a.t(s′) and t(as′) def= a | t(s′).

– Consider A ⊆fin L∗. We say that A is:
• complete if whenever t(r) s=⇒ , for r ∈ A, then there is s′ ∈ A s.t. s′ �| s;
• minimal if whenever s, s′ ∈ A and s′ �| s then s′ = s.

– A canonical form is a process of the form
∑

s∈A−{ε} τ.t(s), for some A ⊆fin L∗

which is both complete and minimal.

Note that a complete set always contain the empty trace ε. We now prove
uniqueness of our canonical forms. The proof can be decomposed into three
simple lemmas (the first two will also be needed in the completeness proof).

Lemma 3. If t(s) s′=⇒ then t(s′) vA t(s).

Proof: The proof proceeds by induction on the length of s. The most interesting
case is when s = as0, for some s0, hence t(s) = a | t(s0). Then there are two

cases for s′: either t(s0)
s′=⇒ , and then the thesis follows from the fact that

P vA a | P (a direct consequence of law D2) and induction hypothesis, or s′ =
σaρ, where t(s0)

σρ
=⇒ , for some traces σ and ρ. In this case, we get by induction

hypothesis that t(σρ) vA t(s0); hence a | t(σρ) vA a | t(s0) = t(s); applying
repeatedly commutativity of parallel composition (law P2) and law T5, we get
t(s′) = t(σaρ) vA a | t(σρ), and hence the thesis. 2

Lemma 4. Let C1
def=

∑
s∈A−{ε} τ.t(s) and C2

def=
∑

r∈B−{ε} τ.t(r) be canonical
forms such that C1

<∼m
C2. Then for each s ∈ A there is r ∈ B such that r �| s.

Proof: Let s ∈ A. Then C1
s=⇒ , thus, since C1 �m

C2, there is s′ s.t. C2
s′=⇒

and s′ � s. This implies, by completeness of B, that there is r ∈ B such that
r �| s′. Since s′ � s, we obtain that r �| s. 2

We write P1 =AC P2 if P1 =A P2 can be derived using only the laws C2–C3,
P2–P3 and A1. For the proof of the following lemma, just note that whenever
s1 and s2 are �|-equivalent, then only laws T02 and TO4 can be used to derive
s1 �| s2 and s2 �| s1.

Lemma 5. If s1 �| s2 and s2 �| s1 then t(s1) =AC t(s2).

Theorem 3 (uniqueness). Let C1 and C2 be canonical forms such that C1 'm

C2. Then C1 =AC C2.

Proof: Suppose C1 =
∑

s∈A−{ε} τ.t(s) and C2 =
∑

r∈B−{ε} τ.t(r). We prove
that for each s ∈ A there is r ∈ B s.t. s �| r and r �| s, by which the result will
follow by Lemma 5 and by symmetry. Suppose that s ∈ A. Since C1

<∼m
C2, by

Lemma 4, we deduce that there is r ∈ B s.t. r �| s. But since C2
<∼

m
C1 as well,

we deduce the existence of s′ ∈ A with s′ �| r, hence s′ �| r �| s. By minimality
of A we deduce that s = s′ �| r. 2

Example 2. Consider P
def= τ.(a | b.b) + τ.b.(a | b). To get the canonical form

of P , we first compute the language of P and obtain the complete set
{ε, a, b, ab, ba, bb, abb, bab, bba}. Then we minimize, thus finding the minimal set
{ε, a}, which is also complete. Thus τ.a is the canonical form of P .

We proceed now to prove completeness of the proof system. The following
result is crucial to prove existence of canonical forms for all finite processes.

Lemma 6 (absorption). If s′ �| s then t(s) vA t(s′).

Proof: We prove the thesis by induction on the number n of times the laws
TO1–TO4 are used to derive s′ �| s. The proof relies on the laws D1, D2, A2 and
P2. As an example, we analyze the base case (n = 1), when s′ �| s is derived with
one application of T03. This means that s′ = σaaρ and s = σρ, for some a and
some traces σ and ρ. Now, note that whenever s = s1s2 then t(s) = t(s1)[t(s2)],
where the latter term is obtained by replacing the single occurrence of 0 in t(s1)
with t(s2). Therefore, by congruence of vA and law A2, we get:

t(s) = t(σ)[a.(a | t(ρ))] vA t(σ)[t(ρ)] = t(s′) . 2

Existence of canonical form is guaranteed by the following lemma.

Lemma 7. For each P there exists a canonical form C s.t. P =A C.

Proof: By induction on P and using the laws in Table 1 it is easy to show that
P is provably equivalent to some process C1 =

∑
s∈A1−{ε} τ.t(s), for some set

A1. Consider now the following two facts:

1. Whenever t(s) s′=⇒ then t(s) =A τ.t(s) + τ.t(s′).
2. Let A be a complete set. Suppose that there are s, s′ ∈ A s.t. s �| s′

and s 6= s′. Then: (a) A − {s′} is complete, and (b)
∑

r∈A−{ε} τ.t(r) =A∑
r∈A−{ε,s′} τ.t(r).

Fact 1 is a consequence of Lemma 3; fact 2 is a consequence of the definition of
complete set and (for part (b)) of Lemma 6 plus idempotence of summation.

Now, applying repeatdly fact 1, we can first ‘saturate’ A1, thus proving C1

equivalent to a summation C2 over a complete set A2. Then, applying repeatdly
fact 2, we can get rid of redundant traces in A2, thus proving C2 equivalent to
a summation over a complete and minimal set of traces. 2

Theorem 4 (completeness). For finite ACCS processes P and Q, P <∼
m

Q

implies P vA Q.

Proof: Thanks to Lemma 7, we can assume that both P and Q are in canonical
form, say P

def=
∑

s∈A−{ε} τ.t(s) and Q
def=

∑
r∈B−{ε} τ.t(r). It is sufficient to show

that for each s ∈ A there is r ∈ B s.t. t(s) vA t(r), by which the thesis will
follows thanks to the law G v G + G′. But this fact follows by Lemma 4 and
absorption Lemma 6. 2

5 The π-calculus

In this section we discuss the extensions of our theory to the asynchronous
variant of π-calculus [15, 8, 13, 1].

5.1 Syntax and semantics

We assume existence of a countable setN of names ranged over by a, b, . . . , x,
Processes are ranged over by P , Q and R. The syntax of asynchronous π–calculus
contains the operators of inaction, output action, guarded summation, restric-
tion, parallel composition, matching and replication:

P ::= ab | G | ν aP | P1 | P2 | [a = b]P | !P
G ::= 0 | α.P | G1 + G2

where α is an input action a(b) or a silent action τ . Free names and bound
names of a process P , written fn(P), and bn(P) respectively, arise as expected;
the names of P , written n(P) are fn(P) ∪ bn(P). As usual, we shall consider
processes up to α-equivalence. This means that α-equivalent processes have the
same transitions and that bound names are always assumed not to clash with
free names. We shall use the tilde ·̃ to denote tuples of names; when convenient,
we shall regard a tuple simply as a set. We omit the definition of operational
semantics (see e.g. [1]), but remind that labels on transitions (actions), ranged
over by µ, can be of four forms: τ (interaction), ab (input at a of b), ab (output
at a of b) or a(b) (bound output at a of b). Functions bn(·), fn(·) and n(·)
are extended to actions as expected: in particular, bn(µ) = b if µ = a(b) and
bn(µ) = ∅ otherwise.

The definition of the may preorder over the π-calculus, <∼
m

, is formally the

same as for ACCS. Note that, as usual, <∼m
is not preserved by input prefix,

due to the presence of matching (see e.g. [1]).

5.2 The trace preorder

We extend the operational semantics of the π-calculus with the following rule: if

P
ab−→ P ′ and b /∈ fn(P) then P

a(b)−→ P ′. The new kind of action a(b) is called
bound input; we extend bn(·) to bound inputs by letting bn(a(b)) = {b}. Below,
we shall use Lπ to denote the set of all visible (non-τ) actions, including bound
inputs, and let θ range over it. Given a trace s ∈ L∗

π, we say that s is normal if,
whenever s = s′.θ.s′′ (the dot . stands for trace composition), for some s′, θ and
s′′, then bn(θ) does not occur in s′ and bn(θ) is different from any other bound
name occurring in s′′. Functions bn(·) and fn(·) are extended to normal traces
as expected. We consider normal traces up to α-equivalence. The set of normal
traces over Lπ is denoted by T and ranged over by s. From now on, we shall
work with normal traces only. A complementation function on T is defined by
setting a(b) def= a(b), ab

def= ab, ab
def= ab and a(b) def= a(b); note that s = s.

P1 s.s′ � s.θ.s′ if θ is an input action and bn(θ) ∩ n(s′) = ∅
P2 s.θ′.θ.s′ � s.θ.θ′s′ if θ is an input action and bn(θ) ∩ n(θ′) = ∅
P3 s.s′ � s.θ.ab.s′ if θ = ab or (θ = a(b) and b /∈ n(s′))
P4 s.ac.(s′{c/b}) � s.a(b).s′

Fig. 3. Trace ordering laws over T .

The presence of bound names requires a slightly different definition of the
trace preorder �, which is given below.

Definition 11. Let �0 the binary relation containing all the pairs (s1, s2) that
satisfy one of the laws in Figure 3: we define � as the reflexive and transitive
closure of �0.

Rules P1, P2, P3 are the natural extensions to asynchronous π-calculus of
the rules for ACCS. Here, some extra attention has to be paid to bound names:
in no execution of the environment an output declaring a new name (bound
output) can be postponed after those actions that use that name. As an example,
action a(b) cannot be postponed after b(c), in any execution of the observer
ν b (ab | b(c).O). Accordingly, in the observed process, an input action receiving
the new name, a(b), cannot be postponed after those output actions at b.

Rule P4 is specific to π-calculus, and is linked to the impossibility for ob-
servers to fully discriminate between free and bound outputs. Informally, rule
P4 states that if a bound (hence new) name is “acceptable” for an observer, then
any public name is acceptable as well. Rule P4 would disappear if we extended
the language with the mismatch ([a 6= b]P) operator, considered e.g. in [6], which
permits a full discrimination between free and bound outputs.

The definition of �
m

for the π-calculus relies on the trace preorder � and re-
mains formally unchanged w.r.t. ACCS (with the usual proviso regarding ‘fresh-
ness’ of bound names). In [7], we prove that �

m
and <∼

m
coincide for the π-

calculus. All the results obtained for ACCS about the trace–based model carry
over smoothly to the π-calculus.

5.3 The proof system

A sound and complete proof system for <∼
m

over the finite (without replication)
part of the language can be obtained by “translating” the proof system for ACCS
into π-calculus, and then adding a few new laws, as done in Figure 2. There are
four new laws: one (I1) replaces the substitutivity rule for input prefix, two are
concerned with matching (M1 and M2), and the last one (S1) is related to the law
P4 for �.

We write P v
π

Q if the inequality P v Q is derivable within the system of
Table 2. Soundness of the system is straightforward. Completeness requires an
appropriate definition of canonical form. This implies extending � via commu-
tativity for output actions.

Definition 12 (�|-preorder). Let �| be the trace preorder over T induced by
laws P1–P4 plus the laws:

– (P5) s.θ.θ′.s′ � s.θ′.θ.s′if bn(θ) ∩ fn(θ′) = ∅ and bn(θ′) ∩ fn(θ) = ∅ ;
– (P6) s.a(b).cb.s′ � s′.c(b).ab.sif c 6= b.

Definition 13 (canonical forms). Let s be a normal trace. The process t(s)
is defined by induction on s as follows: t(ε) def= 0, t(a(b).s′) def= ν b (ab | t(s′)),
t(ab.s′) def= ab | t(s′), t(a(c).s′) def= a(c).t(s′) and t(ab.s′) def= a(x).[x = b]t(s′) (x
fresh).

Modulo the new definitions of t(s) and of �|, the definitions of complete set, of
minimal set and of canonical form remain formally as in Definition 10.

Lemma 3 and Lemma 6 extend to the π-calculus without much difficulty. We
sketch them below.

Lemma 8. If t(s) s′=⇒ then t(s′) vπ t(s).

Proof: The proof parallels that of Lemma 3. We analyze only the case when
s = a(b).s0, hence t(s) = ν b (ab |t(s0)), which is the most interesting. Depending
on how the execution of actions in t(s0) and action ab are interleaved, there are
four possible cases for s′:

1. t(s0)
s′=⇒ (action ab is not fired at all);

2. s′ = σ.a′(b).ρ and t(s0)
σ.a′b.ρ
=⇒ ;

3. s′ = σ.a(b).ρ and t(s0)
σ.ρ
=⇒ ;

4. s′ = σ1.a′(b).σ2.ab.ρ and t(s0)
σ1.a′b.σ2.ρ

=⇒ .

For case 1, the thesis follows from induction hypothesis. We analyze now case
4, because 2 and 3 are easier. By induction hypothesis, t(σ1.a′b.σ2.ρ) vA t(s0),
hence

T
def= ν b (ab | t(σ1.a′b.σ2.ρ)) v

π
ν b (ab | t(s0)) = t(s).

On the other hand, repeatdly applying T5 and P2, we can push ab rightward
inside T and get that ν b t(σ1.a′b.σ2.ab.ρ) v

π
T . Finally, since b /∈ n(σ1), we can

push ν b rightward (using H1 and H2) until to a′b, thus getting t(s′) v
π

T , and
the thesis for this case. 2

Lemma 9. If s′ �| s then t(s) vA t(s′).

Proof: The thesis is proven by induction on the number n of times the laws P1–
P6 are used to derive s′ �| s. As an example, we analyze the base case (n = 1),
when s′ �| s is derived with one application of P3. In particular, consider the case
when s′ = σ.ab.ab.ρ and s = σρ, for some a, b and some traces σ and ρ. First,
note that for any P and fresh x, we have that a(x).[x = b](ab|P) vA a(x).(ax|P)
(use rule I1 and laws M1 and M2). Furthermore, this inequality can be proven
under any substitution σ for the names in fn(P)∪{a}, hence under any context.
By this fact and A2, we get:

t(s) = t(σ)[a(x).[x = b](ab | t(ρ))] vA t(σ)[a(x).(ax | t(ρ))] vA t(σ)[t(ρ)] = t(s′) .

2

The proof of uniqueness of canonical forms remains formally unchanged.
Existence of provably equivalent canonical forms (Lemma 7) requires one extra
ingredient, the use of the following derived laws:

(1) a(y).[b = c]P =π [b = c]a(y).P + a(y) if y /∈ {b, c}, and
(2) a(b).[b = c]P =

π
a(b).[b = c]P{c/b}.

These can be used to accommodate matching, when initially proving that P is
equivalent to a summation of t(s)’s; then, the proof proceeds formally unchanged.
Given the mentioned lemmas, the actual proof of completeness remains formally
unchanged.

Theorem 5 (completeness). For finite π-calculus processes P and Q, P <∼
m

Q

implies P vπ Q.

6 Conclusions and Related Works

In this paper, we have studied a may testing semantics for asynchronous variants
of CCS and π-calculus. For both calculi we have proposed a finitary trace–based
interpretation of processes and a complete inequational proof system.

Recently, there have been various proposals for models of asynchronous
processes. Two main approaches have been followed to this purpose. They dif-
fer in the way (non–blocking) output actions are modelled. These actions are

rendered either as state transformers or as processes themselves. The asynchro-
nous variants of ACP [4], CSP [16] and LOTOS [20] follow the first approach
and introduce explicit buffers in correspondence of output channels. This makes
outputs non–blocking and immediately executable. Within the same group we
can place the work on the actors foundation [3]. The asynchronous variants of
π-calculus [15, 8, 13, 1] and CCS [19, 12, 9] follow the second approach, as they
model output prefix a.P as a parallel composition a | P .

In the past, all these formalisms have been equipped with observational se-
mantics based on bisimulation or failures, but very few denotational or equa-
tional characterizations have been studied. A notable exception is the work by
de Boer, Palamidessi and their collaborators. On one hand, in [5], they propose
a trace-based model for a variant of failure semantics, on the other, in [4], they
provide axiomatizations that rely on state operators and explicitly model evo-
lution of buffers. Other studies deal with languages that fall in the first group
of asynchronous formalisms and propose set of laws that help to understand
the proposed semantics, but do not offer complete axiomatizations [20, 3]. For
those languages that model outputs by means of processes creation, the only
paper that presents an axiomatization is [1]. There, a complete axiomatization
of strong bisimilarity for asynchronous π-calculus is proposed, but the problem
of axiomatizing weak (τ -forgetful) variants of the equivalence is left open.

A paper closely related to ours is the recent [10]. There, for a variant of asyn-
chronous CCS, the authors present a complete axiomatization of must testing
semantics, which is more appropriate for reasoning about liveness properties.
No finitary model is presented and the problem of extending the results to the
asynchronous π-calculus is left open.

Acknowledgments. Five anonymous referees provided valuable suggestions.
We are grateful to Istituto di Elaborazione dell’Informazione in Pisa for making
our collaboration possible.

References

1. R.M. Amadio, I. Castellani, D. Sangiorgi. On Bisimulations for the Asynchronous
π–calculus. CONCUR’96, LNCS 1119, pp.147-162, Springer, 1996.

2. M. Abadi, A.D. Gordon: A calculus for cryptographic protocols: The Spi calculus.
Proc. 4th ACM Confeence on Computer and Communication Security, ACM Press,
1997.

3. G.A. Agha, I.A. Mason, S.F. Smith, C.L. Talcott. A foundation for actor compu-
tation. Journal of Functional Programming, 7:1-72, 1997.

4. F.S. de Boer, J.W. Klop, C. Palamidessi. Asynchronous Communication in Process
Algebra. LICS’92, IEEE Computer Society Press, pp. 137-147, 1992.

5. F.S. de Boer, J.N. Kok, C. Palamidessi, J.J.M.M. Rutten. The Failure of Failures
in a Paradigm for Asynchronous Communication. CONCUR’91, LNCS 527, pages
111-126, Springer, 1991.

6. M. Boreale, R. De Nicola. Testing Equivalence for Mobile Systems. Information
and Computation, 120: 279-303, 1995.

7. M. Boreale, R. De Nicola, R. Pugliese. Asynchronous Observations of Processes.
FoSSaCS’98, LNCS , Springer, 1998.

8. G. Boudol. Asynchrony in the π–calculus (note). Rapport de Recherche 1702, IN-
RIA Sophia–Antipolis, 1992.

9. N. Busi, R. Gorrieri, G-L. Zavattaro. A process algebraic view of Linda coordina-
tion primitives. Technical Report UBLCS-97-05, University of Bologna, 1997.

10. I. Castellani, M. Hennesy. Testing Theories for Asynchronous Languages. Proc.
FSTTCS, LNCS , to appear Dec. 1998.

11. R. De Nicola, M.C.B. Hennessy. Testing Equivalence for Processes. Theoretical
Computers Science, 34:83-133, 1984.

12. R. De Nicola, R. Pugliese. A Process Algebra based on Linda. COORDINA-
TION’96, LNCS 1061, pp.160-178, Springer, 1996.

13. M. Hansen, H. Huttel, J. Kleist. Bisimulations for Asynchronous Mobile Processes.
In Proc. of the Tblisi Symposium on Language, Logic, and Computation, 1995.

14. M.C.B. Hennessy. Algebraic Theory of Processes. The MIT Press, 1988.
15. K. Honda, M. Tokoro. An Object Calculus for Asynchronous Communication.

ECOOP’91, LNCS 512, pp.133-147, Springer, 1991.
16. H. Jifeng, M.B. Josephs, C.A.R. Hoare. A Theory of Synchrony and Asynchrony.

Proc. of the IFIP Working Conf. on Programming Concepts and Methods, pp.446-
465, 1990.

17. R. Milner. The Polyadic π-calculus: A Tutorial. Technical Report, University of
Edinburgh, 1991.

18. J. Parrow, D. Sangiorgi. Algebraic theories for name-passing calculi. Information
and Computation, 120(2):174–197, 1995.

19. R. Pugliese. A Process Calculus with Asynchronous Communications. 5th Ital-
ian Conference on Theoretical Computer Science, (A. De Santis, ed.), pp.295-310,
World Scientific, 1996.

20. J. Tretmans. A formal approach to conformance testing. Ph.D. Thesis, University
of Twente, 1992.

I1 if for each b ∈ fn(P, Q) : P{b/x} v Q{b/x} then a(x).P v a(x).Q

M1 [a = b]P = 0 a 6= b
M2 [a = a]P = P

C1 G + 0 = G
C2 G + G′ = G′ + G
C3 G + (G′ + G′′) = (G + G′) + G′′

C4 G + G = G

P1 P | 0 = P
P2 P |Q = Q | P
P3 P | (Q |R) = (P |Q) |R

EXP Let G =
∑

i∈I
αi.Pi and G′ =

∑
j∈J

α′j .P
′
j , where each

αi (resp. α′j) does not bind free names of G′ (resp. G). Then:
G |G′ =

∑
i∈I

αi.(Pi |G′) +
∑

j∈J
α′j .(G | P ′

j)

H1 (ν b̃)(
∑

i∈I
αi.Pi) =

∑
i∈I∧n(αi)∩̃b=∅

αi.(ν b̃)Pi

H2 (ν b̃)(P |Q) = P | (ν b̃)Q b̃ ∩ n(P) = ∅
H3 (ν a)(ab | α.P) = α.(ν a)(ab | P) a /∈ n(α)

H4 (ν a)(ab | a(c).P) = (ν a)(P{b/c})

T1 ab |
∑

i∈I
αi.Pi =

∑
i∈I

τ.(ab | αi.Pi)

T2 α.
∑

i∈I
αi.Pi =

∑
i∈I

α.αi.Pi

T3 P = τ.P
T4 G v G + G′

T5 a(c).(bd | P) v bd | a(c).P c 6= b, c 6= d

T6 P{b/c} v ab | a(c).P

A1 a(c).b(d).P v b(d).a(c).P c 6= b, c 6= d
A2 a(c).(ac | P) v P c /∈ n(P)

S1 (ν c)P v P{b/c}
Table 2. Laws for the asynchronous π-calculus

