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Abstract. We study methods to statically approximate “first-order” process cal-
culi (Pi, Join) by “propositional” models (CCS, BPP, Petri nets). We consider both
open and closed behavior of processes. In the case of open behavior, we propose a
type system to associate pi-calculus processes with restriction-free CCS types. A
process is shown to be in simulation relation with each of its types, hence safety
properties that hold of the types also hold of the process. We refine this approach
in the case of closed behavior: in this case, types are BPP processes. Sufficient
conditions are given under which a minimal BPP type can be computed that is
bisimilar to a given process. These results are extended to the Join calculus using
place/transition Petri nets as types.

1 Introduction

The behavior of large, possibly distributed programs that heavily rely on reference-
passing is generally difficult to comprehend, both intuitively and formally. Process cal-
culi like Pi [18] and Join [7] posses “first-order” features, like value passing and dy-
namic name creation, difficult to recast into well-analyzable operational formats. This
situation should be contrasted with that found in “propositional” formalisms like CCS
and Petri nets, that enjoy simpler and more tractable operational models, studied and
utilized for decades (the terminology “first order” and “propositional” is not standard
in the present context, and should be taken with a grain of salt.)

For many purposes it may be sufficient to take an abstract view of name-passing
processes, hopefully easy to recast into propositional terms. Imagine one specifies a
context Γ associating values and free names of a pi-process P with tags drawn from a
finite set. Tags might represent particular events an external observer is interested in.
Different names/values can possibly be collapsed onto the same tag (e.g., different val-
ues could be mapped to a unique tag representing their type). Imagine further that P’s
code specifies how to make such associations at run-time for newly generated names. If
one observes P “through” Γ, that is, dynamically maps values/names to tags in transi-
tion labels as prescribed, one obtains an abstract process PΓ. The latter is operationally
described by a possibly infinite, yet simpler propositional transition system. In many
cases, it may be sufficient to further limit one’s attention to the closed behavior of PΓ,
that is, to communication actions suitably decorated with tags, such as the identity of

? The first author is supported by the French government research grant ACI TRALALA. The
second author is supported by the EU within the FET-GC2 initiative, project SENSORIA.



the service that is called, types of the passed parameters and so on. In other words, PΓ

provides a bird’s eye view of the system under observation, which is often sufficient to
establish interesting properties of the system, typically safety ones.

The goal of this paper is to study means to statically computing finitary representa-
tions of PΓ, or at least suitable approximations of PΓ. The proposed methods will take
the form of behavioral type systems for process calculi. Such systems can be used to
assign a process P a propositional type T that, in general, over-approximates the be-
havior of PΓ. This technique should in principle allow one to verify certain properties
of T, being assured that the same properties also hold for PΓ. In each of the considered
type systems, the emphasis will be on keeping the class of types tractable. In particular,
(bi)similarity and model-checking for interesting modal logics should be decidable for
the given class. In other words, the aim here is laying a basis for property verification
by a combination of type-checking and model-checking techniques. This approach is
along the lines of the work on behavioral types by Igarashi and Kobayashi [10] .

More specifically, we start by introducing an asynchronous, “tagged” version of the
pi-calculus and the notion of abstract process PΓ (Section 2). In the first type system
(Section 3), types are a class of asynchronous, restriction-less CCS processes, which we
name CCS−. Both bisimulation and model checking for interesting logics are decidable
for CCS− (e.g., by translation into Petri nets [5]). Our main result here shows that PΓ

is in simulation relation with the types inhabited by P; hence safety properties that hold
for the types also holds for the abstract process PΓ. The absence of restriction causes an
obvious loss of precision in types; note however that in practice this can be remedied
by hiding certain actions at the level of modal logic formulae. In the second system
(Section 4), we focus on closed behavior. The goal is to obtain simpler and hopefully
more efficient behavioral approximations, by getting rid of synchronization in types. We
achieve this goal by directly associating each output action with an effect corresponding
to the observable behavior that that output can trigger. Input actions have no associated
effect, thus an inert type is associated to input processes. Types we obtain in this way
are precisely Basic Parallel Processes (BPP, [4]): these are infinite-state processes for
which, however, a wealth of decidability results exists [9,6]. We show that if we restrict
ourselves to a class of pi-processes satisfying a generalized version of uniform recep-
tiveness [26], a type can be computed that is bisimilar to PΓ. These techniques will be
illustrated using a concrete example (Section 5). We finally move to the Join calculus
(Section 6) and generalize some of the results obtained for the pi-calculus. At the level
of types, the main step is moving from BPP to the more general class of place/transition
Petri nets, for which again interesting decidability results are known [9,6]. We end the
paper with some remarks on related and further work (Section 7).

2 The asynchronous pi-calculus

2.1 Processes

Let N , ranged over by a,b,c, . . . ,x,y, . . ., be a countable set of names and Tag, ranged
over by α,β, . . . , be a set of tags disjoint from N ; we assume Tag also contains a distinct
“unit” tag (). The set P of processes P, Q, . . . is defined as the set of terms generated by
the following grammar:



P,Q ::= a〈b〉
∣∣ ∑

i∈I
ai(b).Pi

∣∣ ∑
i∈I

τ.Pi
∣∣ if a = b then P else P

∣∣ !a(b).P
∣∣ (νa : α)P

∣∣ P|P .

This language is a variation on the asynchronous π-calculus. A non-blocking output
of a name b along a is written a〈b〉. Nondeterministic guarded summation ∑i∈I ai(b).Pi
waits for a communication on ai, for i ∈ I. An internal choice ∑i∈I τ.Pi can choose to
behave like any of the Pi via an invisible τ transition. Conditional if a = b then P else Q
behaves as P if a equals b, as Q otherwise. Replication !a(b).P provides an unbounded
number of copies of a(b).P. Restriction (νa : α)P creates (and assigns a tag α to) a
new restricted name a with initial scope P. As usual, the parallel composition P |Q
represents concurrent execution of P and Q.

In an output action a〈b〉, name a is the subject and b the object of the action. Sim-
ilarly, in a replicated input prefix !a(b).P and in ∑i∈I ai(b).Pi, the names a and ai for
i ∈ I are said to occur in input subject position. Binders and alpha-equivalence arise as
expected and processes are identified up to alpha-equivalence. Substitution of a with b
in an expression e is denoted by e[b/a]. In what follows, 0 stands for the empty summa-
tion ∑i∈ /0 ai(x).Pi. We shall sometimes omit the object parts of input and output actions,
when not relevant for the discussion; e.g. a stands for an output action with subject
a and an object left unspecified. Similarly, we shall omit tag annotations, writing e.g.
(νa)P instead of (νa : α)P, when the identity of the tag is not relevant.

2.2 Operational semantics

The (early) semantics of processes is given by the labelled transition system in Table 1.
We let `, `′, . . . represent generic elements of N ∪Tag. A transitions label µ can be a
free output, a〈b〉, a bound output, (νb : α)a〈b〉, an input, a(b), or a silent move, τ〈`,`′〉.
We assume a distinct tag ι for decorating internal transitions (arising from conditional
and internal chioce; see Table 1) and often abbreviate τ〈ι, ι〉 simply as τ. In the following
we indicate by n(µ) the set of all names in µ and by fn(µ), the set of free names of µ,
defined as expected. The rules are standard, except for the extra book-keeping required
by tag annotation of bound output and internal actions. In particular, in (RES-TAU)
bound names involved in a synchronization are hidden from the observer and replaced
by the corresponding tags. Note that if we erase the tag annotation from labels we get
exactly the usual labelled semantics of asynchronous pi-calculus.

2.3 Γ-abstractions of processes

A context Γ is a finite partial function from names to tags, written Γ = {a1 : α1, · · · ,an :
αn}, with distinct ai. In what follows Γ` a : α means that a : α∈Γ. A tag sorting system
E is a finite subset of {α[β] |α,β are tags and α 6= ()}. Informally, α[β] ∈E means that
subject names associated with tag α can carry object names associated with tag β. In
what follows, if α[β1], · · · , α[βn] are the only elements of E with subject α, we write
α[β1, · · · ,βn] ∈ E .

A triple (P,Γ,E), written PΓ;E , is called Γ-abstraction of P under E . In what fol-
lows, we shall consider a fixed sorting system E , and keep E implicit by writing PΓ



(OUT) a〈b〉 a〈b〉−−→ 0

(I-SUM) ∑i∈I τ.Pi
τ−→ Pj, j ∈ I (G-SUM) ∑i∈I ai(bi).Pi

a j(c)−−→ Pj[c/b j], j ∈ I

(REP) !a(c).P
a(b)−−→ P[b/c] | !a(c).P (OPEN) P

b〈a〉−−→ P′ b 6= a

(νa : α)P
(νa:α)b〈a〉−−−−−−→ P′

(COM) P
a〈b〉−−→ P′ Q

a(b)−−→ Q′

P |Q τ〈a,b〉−−−→ P′ |Q′
(CLOSE) P

(νb:β)a〈b〉−−−−−−→ P′ Q
a(b)−−→ Q′

P |Q τ〈a,β〉−−−→ (νb : β)(P′ |Q′)

(IF-T) if a = a then P else Q τ−→ P (IF-F) if a = b then P else Q τ−→ Q, a 6= b

(PAR) P
µ−→ P′

P|Q µ−→ P′|Q
(RES) P

µ−→ P′ a /∈ n(µ)
(νa : α)P

µ−→ (νa : α)P′

(RES-TAU) P
τ〈`1,`2〉−−−−→ P′ a ∈ {`1, `2} ` = `1[α/a] `′ = `2[α/a]

(νa : α)P
τ〈`,`′〉−−−→ (νa : α)P′

Symmetric rules not shown.

Table 1. Operational semantics of pi-calculus processes.

instead of PΓ;E . Next, we define a labeled transition system with process abstractions
as states and transition labels λ, which can be output, α〈β〉, input, α〈β〉 or annotated
silent action, τ〈α,β〉. The set of labels generated by this grammar is denoted by Λ.
The labeled transition system is defined by the rules below. Here, µΓ denotes the re-
sult of substituting each a ∈ fn(µ)∩ dom(Γ) by Γ(a) in µ. Informally, PΓ represents
the abstract behavior of P, once each concrete action µ has been mapped to an abstract
action λ. Note that in both rule (A-OUTN) and rule (A-INPN) the context Γ grows with
a new association b : β. In rule (A-INPN), a tag for b is chosen among the possible tags
specified in E . Note that no type checking is performed by these rules, in particular
(A-OUTN) does not look up E to check that β can be carried by α.

(A-OLD) P
µ−→ P′ µ ::= τ〈`,`′〉|a(b)|a〈b〉 n(µ)⊆ dom(Γ) λ = µΓ

PΓ

λ−→ P′Γ

(A-OUTN) P
(νb:β)a〈b〉−−−−−−→ P′ Γ ` a : α

PΓ

α〈β〉−−→ P′Γ,b:β

(A-INPN) P
a(b)−−→ P′ Γ ` a : α α[β] ∈E b /∈ dom(Γ)

PΓ

α〈β〉−−→ P′Γ,b:β

2.4 Simulation, bisimulation and modal logic

Let T any labelled transition system with labels in Λ. As usual, the (strong) simulation
relation over T , written ., is the largest binary relation over states of T such that when-

ever s1 . s2 and s1
λ−→ s′1 then there is a transition s2

λ−→ s′2 such that s′1 . s′2. The



relation . is easily seen to be a preorder. (Strong) Bisimulation over T , written ∼, is
the largest binary relation over states of T such that both ∼ and ∼−1 are simulations.
The closed versions of simulation and bisimulation, written .c and ∼c, respectively,
are defined in a similar manner, but limited to silent transitions.

Next, we introduce a simple action-based modal logic that will help us to formulate
concisely properties of processes and types. The logic is very simple and only serves
to illustrate the approach presented in the paper. More precisely, we let L be given by
φ ::= true

∣∣ 〈A〉φ ∣∣ 〈〈A〉〉φ ∣∣ ¬φ
∣∣ φ∧φ, where /0 6= A ⊆ Λ. These formulae are interpreted

in the expected manner, in particular, a state s satisfies 〈A〉φ, written s � 〈A〉φ, if there

is a transition s λ−→ s′ with λ ∈ A and s′ � φ. The interpretation of modality 〈〈A〉〉φ is

similar, but the phrase “a transition s λ−→ s′ with λ ∈ A” is changed into “a sequence of
transitions s σ−→ s′ with σ ∈ A∗”. We shall make use of standard notational conventions,
like abbreviating ¬〈A〉¬φ as [A]φ, omitting a trailing “true”, and so on. Note that L can
be regarded as a fragment of the modal mu-calculus [27].

3 CCS− types for open behavior

In the first type system we propose, types are essentially CCS expressions whose behav-
ior over-approximate the (abstract) process behavior.

3.1 CCS− types

The set TCCS of types, ranged over by T, S, . . . , is defined by the following syntax:

T ::= α〈β〉
∣∣ ∑

i∈I
αi〈βi〉.Ti

∣∣ ∑
i∈I

τ.Ti
∣∣ !α〈β〉.T

∣∣ T|T

where α,αi 6= (). The empty summation ∑i∈ /0 αi〈βi〉.Ti will be often denoted by nil, and
T1 | · · · |Tn will be often written as ∏i∈{1,··· ,n}Ti. As usual, we shall sometimes omit
the object part of actions when not relevant for the discussion or equal to the unit tag (),
writing e.g. α and τ〈α〉 instead of α〈β〉 and τ〈α,β〉.Types are essentially asynchronous,
restriction-free CCS processes over the alphabet of actions Λ. The standard operational
semantics of CCS, giving rise to a labelled transition system with labels in Λ, is assumed
(Table 2).

3.2 The typing rules

Let E be a fixed tag sorting system and Γ a context. Judgements of the type system are
of the form Γ `E P : T. The rules of the type system are presented in Table 3.

A brief explanation of some typing rules follows. In rule (T-OUT), the output pro-
cess a〈b〉 gives rise to the action a〈b〉

Γ
= α〈β〉, provided this action is expected by the

tag sorting system E . The type T of an input process depends on E : in (T-INP) all
tags which can be carried by α, the tag associated with the action’s subject, contribute
to the definition of the summation in T as expected. In the case of (T-REP), summa-
tion is replaced by a parallel composition of replicated types, which is behaviorally –



(C-OUT) α〈β〉 α〈β〉−−→ nil (C-GSUM) ∑i∈I αi〈βi〉.Ti
α j〈β j〉−−−→ T j, j ∈ I

(C-ISUM) ∑i∈I τ.Ti
τ−→ T j, j ∈ I (C-REP) !α〈β〉.T α〈β〉−−→ T | !α〈β〉.T

(C-COM) T
α〈β〉−−→ T′ S

α〈β〉−−→ S′

T|S τ〈α,β〉−−−→ T′|S′
(C-PAR) T

λ−→ T′

T|S λ−→ T′|S
Symmetric rules for | not shown.

Table 2. Operational semantics of CCS− types.

(T-OUT) Γ ` a : α α[β] ∈ E Γ ` b : β

Γ `E a〈b〉 : α〈β〉

(T-INP) Γ ` a : α α[β1, · · · ,βn] ∈ E ∀i ∈ {1, · · · ,n} : Γ,b : βi `E P : Ti
Γ `E a(b).P : ∑

i∈{1,··· ,n}
α〈βi〉.Ti

(T-REP) Γ ` a : α α[β1, · · · ,βn] ∈ E ∀i ∈ {1, · · · ,n} : Γ,b : βi `E P : Ti
Γ `E !a(b).P : ∏

i∈{1,··· ,n}
!α〈βi〉.Ti

(T-GSUM)

|I| 6= 1 ∀i ∈ I : Γ `E ai(bi).Pi : ∑
j∈Ji

αi〈β j〉.Ti j

Γ `E ∑
i∈I

ai(bi).Pi : ∑
i∈I, j∈Ji

αi〈β j〉Ti j
(T-ISUM) ∀i ∈ I : Γ `E Pi : Ti

Γ `E ∑
i∈I

τ.Pi : ∑
i∈I

τ.Ti

(T-PAR) Γ `E P : T Γ `E Q : S
Γ `E P|Q : T|S (T-RES) Γ,a : α `E P : T

Γ `E (νa : α)P : T

(T-IF) Γ `E P : T Γ `E Q : S
Γ `E if a = b then P else Q : τ.T+ τ.S

(T-SUB) Γ `E P : T T . S
Γ `E P : S

Table 3. Typing rules for CCS− types.

up to strong bisimulation – the same as a replicated summation. Note that, concerning
guarded summation, the case with a single input |I|= 1, (T-INP), is kept separate from
the case with |I| 6= 1, (T-GSUM), only for ease of presentation. In (T-IF), the behavior
of a conditional process is approximated by a type that subsumes both branches of the
if-then-else into an internal choice. The subtyping relation . is the simulation preorder
over E , (T-SUB). The rest of the rules should be self-explanatory.

3.3 Results

The subject reduction theorem establishes an operational correspondence between the
abstract behavior PΓ and any type T that can be assigned to P under Γ.



Theorem 1 (subject reduction). Γ `E P : T and PΓ

λ−→ P′
Γ′ imply that there is T′ such

that T
λ−→ T′ and Γ′ `E P′ : T′.

As a corollary, we obtain that T simulates PΓ; thanks to Theorem 1, it is easy to see
that the relation R =

{
(PΓ,T)

∣∣Γ `E P : T
}

is a simulation relation.

Corollary 1. Suppose Γ `E P : T. Then PΓ . T.

A consequence of the previous result is that safety properties satisfied by a type
are also satisfied by the processes that inhabit that type – or, more precisely, by their Γ-
abstract versions. Consider the small logic defined in Section 2.4: let us say that φ∈L is
a safety formula if every occurrence of 〈A〉 and 〈〈A〉〉 in φ is underneath an odd number
of negations. The following proposition, follows from Corollary 1 and first principles.

Proposition 1. Suppose Γ `E P : T and φ is a safety formula, with T � φ. Then PΓ � φ.

As a final remark on the type system, consider taking out rule (T-SUB): the new
system can be viewed as a (partial) function that for any P computes a minimal type for
P, that is, a subtype of all types of P (just read the rules bottom-up).

In the examples we describe below, we shall consider a calculus enriched with
polyadic communication and values: these extensions are easy to accommodate.
Polyadic communications are written as τ〈α1,α2, · · · ,αn〉, where α1 is the subject and
α2, · · · ,αn are the objects; we omit objects that correspond to the unit tag.

Example 1 (factorial). Consider the process F defined below, which is the usual RPC
encoding of the factorial function, and the system S, where F is called with an actual
parameter n, a result is received on a private channel r and then the received value is
printed.

F
4
= ! f (n,r). if n = 0 then r〈n〉 else (νr′ : ret)

(
f 〈n−1,r′〉 |r′(m).r〈n∗m〉

)
S

4
= (νr : ret)( f 〈n,r〉 |r(m).print〈m〉) |F .

Let E = {fact[ret], ret[()], pr[()]} and Γ = { f : fact, print : pr,n : ()}. It is not difficult
to check that Γ `E F : TF and Γ `E S : TS, where:

TF
4
= !fact〈ret〉.

(
τ.ret + τ.(fact〈ret〉 |ret.ret)

)
TS

4
= fact〈ret〉 |ret.pr |TF

and that

TS � φ1
4
= ¬〈〈Λ−{fact〈ret〉,ret}〉〉 〈ret〉 〈〈Λ−{fact〈ret〉}〉〉 〈fact〈ret〉〉

TS � φ2
4
= ¬〈〈Λ−{fact〈ret〉,ret}〉〉 〈pr〉 〈〈Λ−{fact〈ret〉}〉〉 〈fact〈ret〉〉

meaning that no call at f can be observed after observing a return (φ1) or a print (φ2),
that is, as expected, after receipt of 0 as argument, no other calls to f can be produced.
Note that in both formulas we are forced to restrict certain actions so as to avoid inter-
action with the environment (e.g. in the first case we disallow action fact〈ret〉): this is
the price to pay for getting rid of restriction in types. Formulas φ1 and φ2 express safety
properties, thus thanks to Proposition 1, we can conclude that SΓ � φ1∧φ2.



(BPP-INV) α[β]→ T ∈ E

α[β]
τ〈α,β〉−−−→ET

(BPP-INT) ∑i∈I τ.Ti
τ−→ET j ( j ∈ I)

(BPP-PARL) T
λ−→ET′

T ‖ S
λ−→ET′ ‖ S

(BPP-PARR) T
λ−→ET′

S ‖ T
λ−→ES ‖ T′

Table 4. Operational semantics of BPP types.

4 BPP types for closed behavior

We focus here on the closed behavior of abstract processes. Although the system in the
previous section already takes into account closed behavior, it is possible in this case to
obtain a “direct style” behavioral type system by getting rid of synchronization in types.
This is achieved by directly associating each output action with an effect, corresponding
to the observable behavior that that output can trigger. Input actions have no associated
effect, thus an inert type is associated to input guarded processes. The types we obtain
in this way are precisely Basic Parallel Processes (BPP, [4]). We show that if we restrict
ourselves to a particular class of processes, notably to (a generalization of) uniform
receptive processes [26], a bisimulation relation relates processes and their types.

4.1 BPP Types

The set TBPP of BPP types, ranged over by T, S, . . . , is defined by the following syntax:

T ::= α[β] (Invocation)
∣∣ ∑

i∈I
τ.Ti (Internal Choice)

∣∣ T ‖ T (Interleaving)

where α 6= (). We consider an extended tag sorting system where each element α[β] is
enriched with an effect T, written α[β]→ T. More precisely, we let E be a set of rules
of the form {αi[βi]→ Ti | 1≤ i≤ n}. This can be viewed as a set of rules defining a set
of BPP processes. In particular, a process invocation α[β] activates the corresponding
rule in E ; the rest of the syntax and operational semantics should be self-explanatory
(Table 4). In what follows we write nil for ∑i∈ /0 τ.Ti, and often omit dummy nil’s, writing
e.g. T|nil simply as T.

4.2 Typing rules

Again, we consider contexts Γ of the form {a1 : α1, ...,an : αn}. The new type system is
defined in Table 5. Derivable statements take now the form Γ È ;E ′P : T, where Γ and
E are respectively a fixed context and extended tag sorting system. The parameter E ′

is used to keep track of rules of E actually used in the derivation: this extra parameter
will be useful to formulate a condition under which a bisimulation relation, rather than
simply a simulation, can be established between a type and its inhabiting processes.

A brief explanation of the typing rules follows. Rule (T-BPP-O) ensures that there
are some effects associated to the output action. In (T-BPP-INP) and (T-BPP-REP),



(T-BPP-INP)

Γ ` a : α ∀βi s.t. α[βi] ∈ dom(E) ∃Ti s.t. α[βi]→ Ti ∈ E and:

Γ,b : βi `E ;Ei P : Ti E ′ =
S

i(Ei∪{α[βi]→ Ti})
Γ È ;E ′a(b).P : nil

(T-BPP-REP)

Γ ` a : α ∀βi s.t. α[βi] ∈ dom(E) ∃Ti s.t. α[βi]→ Ti ∈ E and:

Γ,b : βi `E ;Ei P : Ti E ′ =
S

i(Ei∪{α[βi]→ Ti})
Γ È ;E ′ !a(b).P : nil

(T-BPP-O) Γ ` a : α Γ ` b : β ∃T : α[β]→ T ∈ E
Γ `E ; /0 a〈b〉 : α[β] (T-BPP-RES)

Γ,a : α È ;E ′P : T
Γ È ;E ′(νa : α)P : T

(T-BPP-GSUM)
|I| 6= 1 ∀i ∈ I : Γ `E ;Ei ai(bi).Pi : nil E ′ =

S
i Ei

Γ È ;E ′ ∑
i∈I

ai(bi).Pi : nil

(T-BPP-ISUM)
∀i ∈ I : Γ `E ;Ei Pi : Ti E ′ =

S
i Ei

Γ È ;E ′ ∑
i∈I

τ.Pi : ∑
i∈I

τ.Ti
(T-BPP-SUB)

Γ È ;E ′P : T T .c S
Γ È ;E ′P : S

(T-BPP-PAR)
Γ `E ;E1 P : T Γ `E ;E2 Q : S E ′ = E1∪E2

Γ È ;E ′P|Q : T ‖ S

(T-BPP-IF)
Γ `E ;E1 P : T Γ `E ;E2 Q : S E ′ = E1∪E2

Γ È ;E ′ if a = b then P else Q : τ.T+ τ.S

Table 5. Typing rules for BPP.

dom(E) denotes the set of all elements α[β]’s occurring in E : hence all object tags βi
associated with the subject tag α are taken into account. For each of them, it is checked
that the effects produced by the continuation process P are those expected by the corre-
sponding rule in E . As previously mentioned, input has no associated effect, hence the
resulting type is nil. In (T-BPP-SUB), note that the subtyping relation is now the closed
simulation preorder .c. The other rules are standard. In what follows we write Γ `E P
if there exist E ′ and T such that Γ È ;E ′P : T.

4.3 Results

The results obtained in Section 3.3 can be extended to the new system.

Theorem 2 (main results on È ;E ′ ). Suppose Γ È ;E ′P : T. Then: (a) PΓ

λ−→ P′
Γ′ implies

that there are a T′ and E ′′ ⊆ E ′ such that T
λ−→ET′ and Γ `E ;E ′′ P′ : T′; (b) PΓ .c T;

(c) safety formulas satisfied by T are also satisfied by PΓ.



Example 2 (factorial). Consider the processes defined in Example 1, the same context
Γ and a new system augmented with a (stub) printing service: S′ = S | !print(d). In
what follows, we omit the unit tag and write e.g. α → β for α[()]→ β[()] Consider the
following extended tag sorting system

E = {fact[ret]→ (τ.ret + τ.fact[ret]), ret → ret, ret → pr, pr → nil} .

Let Λτ ⊆ Λ be the set of communication labels (all labels of the form τ〈α, β̃〉). It is
not difficult to prove that Γ `E S′ : fact[ret] (note that subtyping plays an essential role
in this derivation). Moreover, it holds that fact[ret] � φ′1,φ

′
2, where φ′1 and φ′2 are the

versions of φ1 and φ2 defined in Example 1 with visible actions replaced by silent ones:

φ
′
1
4
= ¬〈〈Λτ〉〉 〈τ〈ret〉〉 〈〈Λτ〉〉 〈τ〈fact,ret〉〉 φ

′
2
4
= ¬〈〈Λτ〉〉 〈τ〈pr〉〉 〈〈Λτ〉〉 〈τ〈fact,ret〉〉 .

Formulas φ′1 and φ′2 express safety properties, hence thanks to Theorem 2, we can con-
clude the analog of what shown in Example 1: S′Γ � φ′1∧φ′2.

In several cases, the simulation preorder relating processes and their types is unnec-
essarily over-approximating. The rules for conditional and subtyping are obvious source
of over-approximation, as well as the presence in E of dummy rules that are not actu-
ally used in type-checking the process: these are sources of “fake” transitions in types,
that is, transitions with no correspondence in processes. A subtler problem is raised by
input prefixes. Input prefixes correspond to rules in E : but while an input prefix may
never become available, and a (non-replicated) input disappears upon synchronization,
the corresponding rules in E are always available and may give rise to fake transitions
in types. In the rest of the section we show that, for processes enjoying a certain “uni-
form receptiveness” condition with respect to Γ (Definition 1), a bisimilarity relation
between processes and types can be established. In this case, the abstract process and
its type satisfy the same properties.

Let us introduce some extra notation and terminology first. In what follows, ≡ will
denote the standard structural congruence in pi-calculus (see e.g. [18]), while out(P)
(resp. inp(P)) will denote the set of free names occurring in some output (resp. input)
action in P. Moreover, we define Γ−1(α) as the set {a|Γ ` a : α} and define contexts as
C ::= (νa : α)C | P|C | a(b).C | [ ]. A process P is input-local if for every action prefix
a(x).Q in P, replicated or not, it holds x /∈ inp(Q). Finally, a receptor is a process of the
form (νa)

(
∑i∈I ai(x).Pi | ∏ j∈J!a(x).Q j

)
such that a /∈ inp(Pi,Q j) for each i, j.

The definition below has a simple explanation: each tag should correspond to a
unique receptor, and the latter should be immediately available to any potential sender.
This somehow generalizes Sangiorgi’s uniform receptiveness [26]. In particular, it is
straightforward to modify the type system in [26] so that well-typed processes are uni-
form receptive in our sense. A more general technique for proving Γ-uniform receptive-
ness in concrete cases is given by its co-inductive definition: that is, finding a relation
that satisfies the conditions listed in the definition and contains the given Γ and P. Be-

low, we use → as an abbreviation of
τ〈α,β〉−−−→ for some α and β.

Definition 1 (Γ-uniform receptiveness). Let θ : α 7→ Rα be a function from tags to
receptors. We let Bθ be the largest relation over contexts and input-local processes
such that whenever Γ Bθ P then:



1. for each α such that Γ−1(α)∩out(P) 6= /0 it holds that
(a) ∀a ∈ Γ−1(α) there are R and Q such that (νa)P ≡ (νa)(R|Q) with a /∈ inp(Q)

and (νa)R = Rα;
(b) whenever P ≡ C[(νa : α)P′] there are R′ and Q′ such that P′ ≡ R′|Q′ with

a /∈ inp(Q′) and (νa)R′ = Rα;
2. whenever P ≡ (νa : α)P′ with a ∈ out(P′) then Γ,a : α Bθ P′;
3. whenever P → P′ then Γ Bθ P′.

We write Γ B P, and say P is Γ-uniform receptive, if Γ Bθ P for some θ.

In what follows, we write Γ `−E P : T if Γ È ;E ′P : T is derived without using rules
(T-BPP-SUB) and (T-BPP-IF), and E = E ′.

Theorem 3. Suppose P is Γ-uniform receptive and that Γ `−E P : T. Then PΓ ∼c T.

5 An extended example

A simple printing system is defined where users are required to authenticate for being
allowed to print. Users are grouped into trusted and untrusted, which are distinguished
by two groups of credentials: {ci | i ∈ I} (also written c̃i) for trusted and {c j | j ∈ J}
(also written c̃ j) for untrusted, with c̃i ∩ c̃ j = /0. Process A is an authentication server
that receives from a client its credential c, a return channel r and an error channel e and
then sends both r and e to a credential-handling process T . If the client is untrusted, T
produces an error, otherwise a private connection between the client and the printer is
established, by creating a new communication link k and passing it to C. C simulates the
cumulative behavior of all clients: nondeterministically, it tries to authenticate by using
credential cl , for an l ∈ I ∪ J, and waits for the communication link with the printer,
on the private channel r, and for an error, on the private channel e. After printing, or
receiving an error, C’s execution restarts.

We expect that every printing request accompanied by trusted credentials will be
satisfied, and that every print is preceded by an authentication request.

Sys
4
= (νa : aut, c̃i : ok, c̃ j : nok, M : (), print : pr)

(
T |C |A | !print(d)

)
T

4
= ∏i∈I!ci(x,e).(νk : key)

(
x〈k〉 | k(d).print〈d〉

)
| ∏ j∈J!c j(x,e).e

A
4
= !a(c,r,e).c〈r,e〉

C
4
= (νi : iter)

(
i | !i.(νr : ret, e : err)

(
∑l∈I∪J τ.a〈cl ,r,e〉 | r(z).((z〈M〉 | i) + e.i

))
Example 3 (CCS− types). Consider the tag sorting system

E = {aut[ok,ret,err], aut[nok,ret,err], ok[ret,err],

nok[ret,err], ret[key], pr[()], err[ ], key[()], iter[ ]} .



It is easy to prove that /0 `E Sys : TT |TA |TC | !pr = T, where

TT
4
= !ok〈ret,err〉.

(
ret〈key〉 | key.pr

)
| !nok〈ret,err〉.err

TA
4
= !aut〈ok,ret,err〉.ok〈ret,err〉 | !aut〈nok,ret,err〉.nok〈ret,err〉

TC
4
= iter | !iter.

(
(τ.aut〈ok,ret,err〉+ τ.aut〈nok,ret,err〉)|(ret〈key〉.(key|iter)+ err.iter)

)
.

Furthermore, it holds that

T � φ3
4
= ¬〈〈Λ−{nok〈ret,err〉,aut〈nok,ret,err〉,τ〈aut,nok,ret,err〉}〉〉 〈err〉

T � φ4
4
= ¬〈〈Λ−{ok〈ret,err〉,aut〈ok,ret,err〉,τ〈aut,ok,ret,err〉}〉〉 〈pr〉

that is, error is always generated by an authentication request containing untrusted cre-
dentials, and every pr action is preceded by a successful authentication request. Both
formulas express safety properties, hence Proposition 1 ensures that are both satisfied
by the abstract process Sys /0.

Example 4 (BPP types). Consider the system Sys previously defined; in this example
we show that a BPP type for Sys, which allow a more precise analysis of the system can
be obtained. Consider the following extended tag sorting system

E = { aut[ok,ret,err]→ok[ret,err], ok[ret,err]→ret[key], err→ iter,

aut[nok,ret,err]→nok[ret,err], nok[ret,err]→err, key→pr, pr → nil,

ret[key]→(key | iter), iter → τ.aut[ok,ret,err] + τ.aut[nok,ret,err])}.

First, it is easy to see that /0 `−E Sys : iter. Moreover it is not difficult to prove, by co-
induction, that Sys is /0-uniform receptive. Hence from

iter � φ′3
4
= [[Λτ]] [τ〈aut,ok,ret,err〉] 〈〈Λτ〉〉 〈τ〈pr〉〉

iter � φ′4
4
= [[Λτ]] [τ〈aut,nok,ret,err〉] 〈〈Λτ〉〉 〈τ〈err〉〉

and Theorem 3, Sys /0 � φ′3 ∧ φ′4, that is, every authentication request accompanied by
trusted credentials will be followed by a pr, while every untrusted request will be fol-
lowed by an err.

6 Join calculus and Petri nets types

We extend the treatment of the previous section to the Join calculus [7]. We shall only
consider the case of closed behavior; the open case requires some more notational bur-
den and we leave it for an extended version of the paper. The essential step we have
to take, at the level of types, is now moving from BPP to Petri nets. Technically, this
leap is somehow forced by the presence of the join pattern construct in the calculus. In
the context of infinite states transition systems [6,9], the leap corresponds precisely to
moving from rewrite rules with a single nonterminal on the LHS (BPP) to rules with
multisets of nonterminals on the LHS (PN).



Processes P,Q ::= a〈b〉 Output∣∣ def D in P Definition∣∣ P|P Parallel

Definitions D ::= J . P Pattern∣∣ D ∧ D Conjunction

Patterns J ::= aα(b) Input pattern∣∣ J ‖ J Join pattern

Table 6. Syntax of the Join calculus.

6.1 Processes and types

The syntax of the calculus is given in Table 6. Note that we consider a “pure” ver-
sion of the calculus without conditionals. Adding if-then-else is possible, but again
implies some notational burden at the level of types (notably, simulating an internal
choice operator with Petri nets), which we prefer to avoid. Over this language, we pre-
suppose the standard notions of binding, alpha-equivalence, structural congruence ≡
and (tag-annotated) reduction semantics

µ−→ , where µ ::= τ〈(`1, `
′
1), . . . ,(`n, `

′
n)〉. Here

(`1, `
′
1), . . . ,(`n, `

′
n) must be regarded as a multiset of pairs (subject, object). For a con-

text Γ, the transitional semantics λ−→ of the abstract processes PΓ is defined as expected,
where λ = τ〈(α1,β1), . . . ,(αn,βn)〉. A type is a multiset T ::= α1[β1] , . . . ,αn[βn] that
is, “,” is an associative and commutative operator with the empty multiset as unit. Types
will play the role of markings in a Petri net. We consider a tag sorting system E con-
taining elements of the form T→ S, to be interpreted as transitions of a Petri net. More
precisely, we shall fix a set of rules E = {Ti → Si | 1 ≤ i ≤ n}, where the following
uniformity condition is satisfied by E : let dom(E) be the set of all α[β]’s occurring in
E ; then for every α, β and β′ such that α[β],α[β′] ∈ dom(E), if α[β],T → S ∈ E then
also α[β′],T→ S′ ∈ E for some S′. The operational semantics of types is then defined
by the rules below, which make it clear that E is a Petri net, and a type T is a marking
of this net.

(J-T-COM) α1[β1], . . . ,αn[βn]→ T ∈ E

α1[β1] , · · · ,αn[βn]
τ〈(α1,β1),...,(αn,βn)〉−−−−−−−−−−−−→ T

(J-T-PAR) T
λ−→ T′

T ,S
λ−→ T′ ,S

6.2 Typing rules and results

The typing rules are defined in Table 7. The rules generalizes as expected those of
Section 4. In the rules, we use a function tags(D) that extracts tags associated with



(T-J-DEF) Γ `E D : nil Γ, tags(D) `E P : T
Γ `E def D in P : T

(T-J-PAR) Γ `E P : T Γ `E Q : S
Γ `E P|Q : T ,S

(T-J-CON) Γ `E Di : nil i = 1, . . . ,n
Γ `E D1 ∧ ·· · ∧ Dn : nil

(T-J-SUB) Γ `E P : T T .c S
Γ `E P : S

(T-J-OUT) Γ ` a : α Γ ` b : β α[β] ∈ dom(E)
Γ `E a〈b〉 : α[β]

(T-J-PAT)

J = a1
α1(c1) ‖ · · · ‖ an

αn(cn) ∀βk1 , . . . ,βkn s.t. αi[βki ] ∈ dom(E) ∃Tk s.t.

α1[βk1 ], . . . ,αn[βkn ]→ Tk ∈ E ∧Γ, tags(D),c1 : βk1 , . . . ,cn : βkn `E P : Tk

E ′ =
S

k{α1[βk1 ], . . . ,αn[βkn ]→ Tk}
Γ `E J . P : nil

Table 7. Typing rules for the Join calculus and Petri nets.

definitions, as follows:

tags(D1 ∧ ·· · ∧ Dn) =
S

i=1,...,n tags(Di) tags(J . P) = tags(J)

tags(J1 ‖ · · · ‖ Jn) =
S

i=1,...,n tags(Ji) tags(aα(c)) = {a : α}
.

We have the following result.

Theorem 4. Suppose Γ `E P : T. Then: (a) if PΓ

λ−→ P′Γ′ then there exists a T′ such

that T
λ−→ET′ and Γ′ `E P′ : T′; and (b) PΓ .c T.

7 Conclusions and related works

We have proposed methods for statically abstracting propositional approximations of
first-order process calculi (pi-calculus and Join). These methods take the form of be-
havioral type systems. Correspondingly, three classes of types have been considered:
restriction-free CCS, BPP and Petri nets. Concerning type reconstruction, we give meth-
ods to compute minimal types under certain assumptions on processes, but leave the
development of explicit type inference algorithms for future work.

In Igarashi and Kobayashi’s work [10], types are restriction-free CCS processes and
output prefixes are allowed. Roughly, types are obtained from pi-processes by replac-
ing any bound subject with the corresponding tag, and turning each object into a CCS-
annotation describing the behavior of the prefix continuation. Depending on the ac-
tual instantiation of this framework, the type checking algorithm of [10] may need to
call analysis procedures that check run-time properties of types (well-formedness). Our
work is mostly inspired by [10], but we try to simplify its approach by considering an
asynchronous version of the calculus and by extracting a tag-wise, rather than channel-
wise, behavior of processes. On one hand, this simplification leads to some loss of
information, which prevents us from capturing certain liveness properties such as race-



and deadlock-freedom. On the other hand, it allows us to make the connection between
different kinds of behavior (open/closed) and different type models (CCS/BPP) direct
and explicit. As an example, in the case of BPP we can spell out reasonably simple con-
ditions under which the type analysis is “precise” (Γ-uniform receptiveness). Also, our
approach naturally carries over to the Join calculus, by moving to Petri nets types.

The papers [23,3] present type systems inspired by [10]. The main difference be-
tween these works and Igarashi and Kobayashi’s, is that behavioral types here are more
precise than in [10], because described by using full CCS. An open (in the sense of [25])
version of simulation is used as a subtyping relation. Undecidability of (bi)simulation
on CCS with restriction is somehow bypassed by providing an ad-hoc assume-guarantee
principle to discharge safety checks at name restriction in a modular way.

Igarashi and Kobayashi’ type system was inspired by work on the analysis
of various properties of concurrent programs, notably linearity [12] and deadlock-
freedom [11,13,14]. Nowadays, the list of such properties has grown, so as to include
several forms of refined lock-freedom and resource usage analyses [15,16,17].

Concerning the Join calculus, previous work on type systems [8,21] proposed a
functional typing à la ML and a type system à la Hindley/Milner. The analogy be-
tween Join and Petri nets was first noticed in [1] and then in [22]. In [2], Buscemi
and Sassone classify join processes by comparison with different classes of Petri nets.
Four distinct type systems are proposed, that give rise to a hierarchy comprising four
classes of join processes. These classes are shown to be encodable respectively into
place/transition Petri nets, Colored nets, Reconfigurable nets and Dynamic nets. While
only the last class contains all join terms, note that only place/transition Petri nets are
actually “propositional” and enjoy effective analysis techniques. In other words, the em-
phasis of [2] is on assessing expressiveness of Join rather than on computing tractable
approximations of processes.

More loosely related to our work, there is a strong body of research on behavioral
types for object calculi. Notably, [20,19] put forward behavioral types for object in-
terfaces; these types are based on labelled transition systems that specify the possible
sequences of calls at available methods (services). Our extended tag sorting systems
are reminiscent of this mechanism. Similarly, in [24], a behavioral typing discipline for
TyCO, a name-passing calculus of concurrent objects, is introduced. Types are defined
by using graphs and the type compatibility relation is a bisimulation. This work is re-
lated to Yoshida’s paper [28], where graph types are used for proving full abstraction of
translations from sorted polyadic pi-terms into monadic ones.
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