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Abstract. In the pi-calculus, we consider decidability of certain safety properties
expressed in a simple spatial logic. We first introduce a behavioural type system
that, given a process P, tries to extract a spatial-behavioural type T , in the form
of a ccs term that is logically equivalent to the given process. Using techniques
based on well-structured transition systems, we then prove that, for an interesting
fragment of the considered logic, satisfiability (T |= φ) is decidable for types. As
a consequence of logical equivalence between types and processes, we obtain
decidability of this fragment of the logic for all well-typed pi-processes.
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1 Introduction

In recent years, spatial logic [6] and behavioural type systems [10,7,1] have gained
attention as useful tools for the analysis of concurrent systems described in process
calculi. Spatial logics are well suited to express properties related to concurrency and
distribution, thanks to a combination of spatial and dynamic connectives. An example
is the property expressing race-freedom on some channel a: “it is never the case that
there are two concurrent outputs ready at channel a”. behavioural type systems are used
in order to obtain abstract representation of message-passing systems and simplify their
analysis. In Igarashi and Kobayashi’s work on generic type systems [10], pi-calculus
processes are abstracted by means of ccs types. The main property of Igarashi and
Kobayashi’s system is type soundness: any safety property satisfied by a type is also
satisfied by processes that inhabit that type.

In [1], we have combined ideas from spatial logics and behavioural type system into a
single framework. Like in [10], the language of processes we consider is the pi-calculus,
while types are ccs terms. Differently from [10], though, types of [1] account for both
the behavioural and the spatial structure of processes. This fact allows one to estab-
lish a precise correspondence between processes and their types. This correspondence
makes it possible to prove type soundness theorems holding for fairly general classes of
properties, not only safety invariants, although this enhancement comes at some price
in terms of flexibility of the type system w.r.t. [10]. A prominent feature of [1] is that
structural congruence is used as a subtyping relation.
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A driving motivation in all the mentioned works is being able to combine type- and
model-checking. The idea is that, rather than model checking a given property against a
process, with a behavioural type system at hand, one checks the property against a sim-
pler model: a type. Moving from processes to types certainly implies a gain in simplic-
ity in terms of reasoning [10,1]. Unfortunately, in [11], undecidability of behavioural
type systems using the simulation preorder as a sub-typing relation has been proven.
The result suggests that any “reasonable” instances of the generic system of [10] based
on simulation preorders might turn out to be undecidable. We may hope the situation
is better for our system in [1], because this system adopts structural congruence as a
subtyping relation, that, for the considered languages, is easily seen to be decidable.

In the present paper, our goal is to show decidability of a fragment of Spatial Logic
over a pi-calculus with replication, introduced in Section 2. The fragment in question is
expressive enough to capture interesting safety invariants. We achieve our goal in two
steps. In the first one, we devise a behavioural type system whose purpose is, basically,
to extract behavioural ccs types T out of given processes P. The types extracted this
way are logically equivalent to the original processes. This part of the work is based on
behavioural type techniques similar to those discussed in [1] and is reported in Section 3.

In the second one (Section 6), we show that it is actually decidable whether a ccs
type T satisfies a formula in the fragment introduced in Section 4. This part, which is
largely independent from the first one, heavily relies on the technique of well-structured
transition systems (wsts) introduced by Finkel and Schnoebelen [8] and overviewed in
Section 5. Our result generalizes a previous result by Busi et al. [4], who had proven
decidability in ccs with replication of weak barbs. As a corollary of the logical corre-
spondence given by the type system, decidability of the considered logic carries over to
well-typed pi-processes.

It is worth to stress that, in the economy of the proof, being able to go from the pi-
calculus to ccs, via the behavioural type system, is crucial. In particular, the wsts tech-
nique does not apply to pi-calculus directly. The technical reason is that there is no upper
bound on the nesting depth of restrictions in pi-terms as they evolve, a fact that prevents
the definition of a syntax-basedwqo in pi-calculus. Instead, there is such a bound for ccs.

2 Processes

The language we consider is a synchronous polyadic pi-calculus [13] with guarded sum-
mations and replications. We presuppose a countable set of namesN and let a,b, . . . , x, . . .
range over names. Processes P,Q,R, . . . are defined by the grammar below

α ::= a(b̃)
∣
∣
∣ a〈b̃〉

∣
∣
∣ τ P ::=

∑

i∈I αi.Pi

∣
∣
∣ P|P

∣
∣
∣ (νb : t)P

∣
∣
∣ !a(b̃).P

where b̃ is a tuple of names and t = (x̃ : t̃′)T is a channel type where: (x̃ : t̃) is a binder
with scope T ; x̃ and t̃ represent the formal parameters and types of objects carried by
the channel; T is a process type (see Section 3) prescribing a usage of those parameters.
The calculus is equipped with standard notions of free and bound names (fn(·), bn(·)).
Notice that we let fn((νb : t)P) = (fn(P)∪ fn(t)) \ {b} and that terms are identified up to
alpha-equivalence, defined as usual. To prevent arity mismatch, we will only consider
well-sorted terms in some fixed sorting system (see e.g. [13]), and call P the resulting
set of processes.
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Table 1. Laws for structural congruence ≡ on processes

(νy)0 ≡ 0 (P|Q)|R ≡ P|(Q|R) P|Q ≡ Q|P P|0 ≡ P (νx : t)P|Q ≡ (νx : t)(P|Q) if x̃ � fn(Q)

Table 2. Rules for the reduction relation→ on processes

(com)
αl = a(x̃) α′n = a〈b̃〉 l ∈ I n ∈ J
∑

i∈I
αi.Pi|

∑

j∈J
α′j.Q j→ Pl[b̃/x̃]|Qn

(tau)
j ∈ I α j = τ
∑

i∈I
αi.Pi→ P j

(res) P→ P′

(νx : t)P→ (νx : t)P′

(rep) αn = a〈b̃〉 n ∈ J

!a(x̃).P|
∑

j∈J
α j.Q j→!a(x̃).P|P[b̃/x̃]|Qn

(par) P→ P′

P|Q→ P′|Q (struct)

P ≡ Q
Q→ Q′ Q′ ≡ P′

P→ P′

In the following, we write 0 for the empty summation, omit trailing 0’s and some-
times abbreviate (νb1 : t1) · · · (νbn : tn)P as (νb̃i : t̃i)i∈1..nP, or (νb̃ : t̃)P, or (νb̃)P.

Over P, we define a reduction semantics, based as usual on a notion of structural
congruence and on a reduction relation. These relations are defined as the least con-
gruence ≡ and as the least relation→ generated by the axioms in Table 1 and Table 2,
respectively. Concerning Table 1, note that we have dropped the law (νx : t)(νy : t′)P =
(νy : t′)(νx : t)P, which allows one to swap restrictions: the reason is that swapping t and
t′, which may contain free names, would require unpleasant side conditions. The rules
in Table 2 are standard.

In the sequel, we say that a process P has a barb a (written P↘a) if P≡(νb̃)(
∑

iαi.Pi+

a.Q|R), with a � b̃. P ↘a is defined similarly. By P
〈a〉
−−−→ Q we denote a reduction

P → Q arising from a synchronization on the channel name (subject) a ∈ fn(P).

3 Type System

Types. Types are essentially ccs terms, bearing some extra annotation on input prefixes
and restrictions. Let a, b, . . . range over finite set of names. The set T of types is gener-
ated by the following grammar:

μ ::= aa
∣
∣
∣ a
∣
∣
∣ τ T, S , U ::=

∑

i∈I μi.Ti
∣
∣
∣ !aa.T

∣
∣
∣ T |T

∣
∣
∣ (νaa)T .

In aa.T and (νaa)T , the annotations a contribute to the set of free names of a type,
indeed fn(aa.S ) = {a} ∪ a∪ fn(S ). In the type system, annotations will be employed so
as to ensure that for processes P and their types T scope extrusion, hence structural
congruence, works in the same manner in both P and in T (see [1] for more details).
In the sequel, we shall often omit the channel type ()0, writing e.g. (x)x instead of
(x : ()0)x, and annotations on input prefixes and restrictions when unnecessary. We will
often denote guarded summations and replications by the letters G, F, . . .. Notions of
free and bound names (fn(·) and bn(·)), alpha-equivalence, structural congruence and
reduction for types parallel those of processes.

Typing rules. Judgements of type system are of the form Γ � P : T , where: P ∈ P, T ∈ T
and Γ is a context: a finite partial map from names to channel types. We write Γ�a : t if
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Table 3. Typing rules for the local system

(T-Inp)

Γ � a : (x̃ : t̃)T fn(t̃)∪ fn(T ) \ x̃ = a
Γ, x̃ : t̃ � P : T |T ′ x̃ � fn(T ′)

Γ � a(x̃).P : aa.T ′
(T-Out) Γ � a : (x̃ : t̃)T Γ � b̃ : t̃ Γ � P : S

Γ � a〈b̃〉.P : a.(T [b̃/x̃] |S )

(T-Res) Γ,a : t � P : T a = fn(t)
Γ � (νa : t)P : (νaa)T

(T-Par) Γ � P : T Γ � Q : S
Γ � P|Q : T |S (T-Eq) Γ � P : T T ≡ S

Γ � P : S

(T-Sum) |I| � 1 ∀i ∈ I : Γ � αi.Pi : μi.Ti

Γ �
∑

i∈I
αi.Pi :

∑

i∈I
μi.Ti

(T-Rep) Γ � a(x̃).P : aa.T
Γ �!a(x̃).P :!aa.T

(T-Tau) Γ � P : T
Γ � τ.P : τ.T

a ∈ dom(Γ) and Γ(a)= t. We say that a context is well-formed if whenever Γ � a : (x̃ : t̃)T
then fn(T, t̃) ⊆ x̃∪dom(Γ). In what follows we shall only consider well-formed contexts.

The type system can be thought of as a procedure that, given P, builds a ccs approx-
imation T of P, with a little help from a context Γ prescribing channel usage. See [2]
for further details. In the following we say that a process P is Γ-well-typed if Γ � P : T
for some T ∈ T .

Results. This paragraph introduces the main properties of the type system. Theorem 1
and 2 guarantee the reduction-based correspondence between processes and the corre-
sponding types, while Proposition 1 guarantees the structural one. Note that the struc-
tural correspondence is shallow, in the sense that in general it breaks down underneath
prefixes. Finally, Proposition 2 guarantees decidability of �.

Theorem 1 (subject reduction). Γ � P : T and P→ P′ implies that there exists a T ′

such that T → T ′ and Γ � P′ : T ′.

Theorem 2 (type subject reduction). Γ � P : T and T → T ′ implies that there exists a
P′ such that P→ P′ and Γ � P′ : T ′.

Proposition 1 (structural correspondence). Suppose Γ � P : T.

1. P↘α, with α ::= a
∣
∣
∣ a, implies T ↘α; vice-versa for T and P.

2. P≡(νã: t̃)R implies T≡(νãã)S, with ã=fn(t̃) and Γ, ã: t̃ � R:S;vice-versa for T and P.
3. P ≡ P1|P2 implies T ≡ T1|T2, with Γ � Pi : Ti, for i = 1,2; vice-versa for T and P.

Proposition 2. Let Γ be a context. It is decidable whether P is Γ-well-typed.

4 Shallow Logic and Type-Process Correspondence

The logic for the pi-calculus we introduce below can be regarded as a fragment of Caires
and Cardelli’s Spatial Logic [6]. In [1] we have christened this fragment Shallow Logic,
as it allows us to speak about the dynamic as well as the “shallow” spatial structure of
processes and types. In particular, the logic does not provide for modalities that allows
one to “look underneath” prefixes.

Definitions. The set F of Shallow Logic formulae φ,ψ, . . . is given by the grammar
φ ::= T

∣
∣
∣ a
∣
∣
∣ a
∣
∣
∣ φ|φ
∣
∣
∣ ¬φ
∣
∣
∣H∗φ

∣
∣
∣ φ∧φ

∣
∣
∣ φ∨φ

∣
∣
∣ 〈a〉φ

∣
∣
∣ ♦∗φ, where a ∈ N .
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The set of logical operators includes spatial (a,a, |,H∗) as well as dynamic (〈a〉,♦∗)
connectives, beside the usual boolean connectives, including a constant T for “true”.
We have included both disjunction and conjunction to present more smoothly “mono-
tone” properties, that is, properties whose satisfaction is preserved when adding “more
structure” to terms. The names of a formula φ, written n(φ), are defined as expected.
The interpretation of F over processes and types is given below.

[[T]]=U [[〈a〉φ]]=
{

A
∣
∣
∣∃B : A

〈a〉
−−−→ B, B ∈ [[φ]]

}

[[φ1∨φ2]]= [[φ1]]∪ [[φ2]] [[φ1∧φ2]]= [[φ1]]∩ [[φ2]]
[[¬φ]]=U\ [[φ]] [[H∗φ]]=

{

A
∣
∣
∣∃ã,B : A ≡ (νã)B, ã � n(φ), B ∈ [[φ]]

}

[[a]]=
{

A
∣
∣
∣A↘a

}

[[φ1|φ2]]=
{

A
∣
∣
∣∃A1,A2 : A ≡ A1|A2, A1 ∈ [[φ1]], A2 ∈ [[φ2]]

}

[[a]]=
{

A
∣
∣
∣A↘a

}

[[♦∗φ]]=
{

A
∣
∣
∣∃B : A→∗ B, and B ∈ [[φ]]

}

We let U be the set including all processes and all types. We write A |= φ if A ∈ [[φ]],
where A ∈ U. Connectives and spatial modalities are interpreted as usual. Concerning
the dynamic part, 〈a〉φ checks if an interaction with subject a may lead A to a state where
φ is satisfied; ♦∗φ checks if any number, including zero, of reductions may lead A to a
state where φ is satisfied. In this paper, we shall mainly focus on safety properties, that
is, properties of the form “nothing bad will ever happen”. The following definition is
useful to syntactically identify classes of formulae that correspond to safety properties.

Definition 1 (monotone and anti-monotone formulae). We say a formula φ is mono-
tone if it does not contain occurrences of ¬ and anti-monotone if it is of the form ¬ψ,
with ψ monotone.

Safety invariants can often be written as anti-monotone formulae ¬♦∗ψ with ψ a mono-
tone formula representing the bad event one does not want to occur. This can also be
written as �∗¬ψ, where �∗ = ¬♦∗¬.

Example 1. The following formulae define properties depending on generic names, a

and l. NoRace(a)
�
= ¬♦∗H∗(a |a) says that it will never be the case that there are two

concurrent outputs competing for synchronization on a. Linear(a)
�
= ¬♦∗〈a〉♦∗〈a〉 says

that it is never the case that a is used more than once in a computation. In Lock(a, l)
�
=

¬♦∗H∗(l | 〈a〉), a represents a shared resource and l a lock: this formula says that it is
never the case that the resource a is acquired in the presence of l, that is, without prior
acquisition of the lock.

Logical correspondence between processes and types. The following theorem is crucial:
it basically asserts that, under a condition of well-typing, model checking on processes
can be reduced to model checking on types. The proof is based on the structural and
operational correspondences seen in Section 3.

Theorem 3 (type-process correspondence). Suppose Γ � P : T. Let φ be any formula.
Then P |= φ if and only if T |= φ.

This correspondence can be enhanced by the next result, saying that, under certain
circumstances, model checking can be safely carried out against a more abstract version
of the type T , with a further potential gain in efficiency. This more abstract version is
obtained by “masking”, by means of the ↓x̃ operator (see [2] for the details), the free
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names of the type that are not found in the formula. Moreover, if this masking produces
a top-level sub-term in the type with no free name, this term can be safely discarded.

Proposition 3. (a) SupposeΓ � P : T and let φ be an anti-monotone formula with n(φ)⊆
x̃. Then T ↓x̃|= φ implies that T |= φ. (b) Suppose fn(U) = ∅. Then, for any T and φ,
T |U |= φ if and only if T |= φ.

Example 2. Consider the formula NoRace(a) introduced in Example 1 and the process
P = b〈a〉+a |b(x).(νc)(c | !c.x.c

)

| !a. f | ! f .n. Here, at runtime, the number of occurrences
of n “counts” the number of interactions performed on a. For a suitable Γ, one finds
Γ � P : T , where (ignoring annotations) T = b.(νc)(c | !c.a.c

)

+a |b | !a. f | ! f .n and

T ↓a= (b.(νc)(c | !c.a.c
)

+a |b | !a. f | ! f .n) ↓a= τ.(νc)(c | !c.a.c
)

+a |τ | !a.τ | !τ.τ .

τ.(νc)(c|!c.a.c
)

+a|!a.τ |=NoRace(a) and P |=NoRace(a) (Proposition 3 and Theorem 3).

5 A Well-Structured Transition System for Behavioural Types

Background. We review below some background material about well-structured transi-
tion systems [8] and well quasi-ordering over trees and forests.

Definition 2 (wqo). Let S be a set. A quasi-ordering (qo, aka preorder) on S is a reflex-
ive and transitive binary relation over S . A qo � on S is a well quasi-ordering (wqo) if
for any sequence of elements of S , (si)i≥0, there are i and j, with i < j, s.t. si � s j.

Recall that a transition system is a pair Tr = (S , → ), where S is the set of states and
→⊆ S ×S is the transition relation. Tr is finitely-branching if for each s ∈ S the set of
successors {s′|s → s′} is finite.

Definition 3 (wsts, [8]). A well-structured transition system (wsts for short) is a pair
W = (�, Tr) where: (a) Tr = (S , → ) is a finitely-branching transition system, and (b)
� is a wqo over S that is compatible with → ; that is: whenever s1 � s2 and s1 → s′1
then there is s′2 such that s2 → s′2 and s′1 � s′2.

Otherwise said, awsts is a finitely-branching transition system equipped with awqo that
is a simulation relation. Let Tr be a transition system equipped with a qo�. Let I ⊆ S be a
set of states. We let the upward closure of I, written ↑ I, be {s ∈ S | s′ � s for some s′ ∈ I}.
The set ↑ {s} will be abbreviated as ↑ s. A basis of (an upward-closed) set Y ⊆ S is a
set I such that Y =↑ I. We let the immediate predecessors of I, Pred(I), be the set {s ∈
S | s → s′ for some s′ ∈ I} and the set of predecessors of I, Pred∗(I), be {s ∈ S | s →∗
s′ for some s′ ∈ I}. We say W has an (effective) pred-basis if there is a (computable)
function pb(·) : S → 2S such that for each s ∈ S , pb(s) is a finite basis of ↑ Pred(↑ s).

Proposition 4 ([8]). Let W be a wsts such that: (a) � is decidable, and (b) W has
an effective pred-basis. Then there is a computable function that, for any finite I ⊆ S ,
returns a finite basis of Pred∗(↑ I).

The above proposition entails decidability of a number of reachability-related problems
in wsts’s (see [8]). Indeed, saying that the set I is reachable from a given state s is
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equivalent to saying that s ∈ Pred∗(↑ I): this can be decided, if one has at hand a finite
basis B for Pred∗(↑ I), by just checking whether s � s′ for some s′ ∈ B.

We will also rely upon some definitions and results on trees. Let L be a set. We
define ordered forests F , G, ... with labels in L (from now on, simply forests) to be the
set of objects inductively defined as follows: (i) the empty sequence ε is a forest; (ii)
if F1, ...,Fk are forests (k ≥ 0) then the sequence (a1,F1) · · · (ak,Fk), with ai ∈ L, is a
forest with roots a1, ...,ak. A forest of the form (a,F ) is called an (ordered, rooted)
tree. A tree of the form (a, ε) is called a leaf. The multiset of leaves occurring in F is
denoted by L(F ), while the corresponding set is denoted l(F ). The height of a forest F ,
written h(F ), is defined as the maximal length of a path from a root to a leaf, defined as
expected; the height of a leaf is 0. We will often use the familiar pictorial representation
of trees and forests. The following theorem provides us with a wqo on forests, hence on
trees, called rooted tree embedding. One can think of this wqo as saying that F1 � F2 if
F1 can be mapped into a sub-forest of F2, provided that the mapping respects the roots
of F1. The proof of the theorem can be given relying on a result on wqo on sequences
due to Higman [9] (see [4] for a similar proof); or even generalizing the Kruskal tree
theorem [12] to forests, again via Higman’s lemma.

Theorem 4 (rooted tree embedding). LetF be the set of all forests with labels in a cer-
tain nonempty set. Consider the following qo � over F: (a1,F1) · · · (ak,Fk) � (b1,G1) · · ·
(bh,Gh) iff there are distinct indices 1≤ i1 < · · ·< ik ≤ h s.t. for each j, 1≤ j ≤ k, a j = bi j

and Fi � Gi j . Let G ⊆ F be such that: there is a finite bound on the height of the forests
in G and there is a finite L s.t. the labels of all forests in G are included in L. Then � is
a wqo on G.

A wsts for behavioural types. Let (Xi)i≥1 be an infinite sequence of variables disjoint
from N and consider the grammar of types in Section 3, augmented with the clause
T ::= X, where X ranges over variables. Let T be the set of terms generated by this
grammar – by “term” we mean here a proper term, not an alpha-equivalence class of
terms – where each variable occurs at most once in a term and only in the scope of
restrictions or parallel compositions. E.g. (νaa)(X1|aa.b.c)|X2 is in T, while a.X1 is not.
In other words, we are considering open terms representing static contexts, with the
variables Xi acting as the “holes”. We let C range over T, reserving the letters S ,T for
the subset of closed terms (types) and will sometimes write C[X̃] to indicate that C’s
variables are exactly X̃ = (Xi1 , ...,Xik). In this case, taken T̃ = (T1, ...,Tk), we will denote
by C[T̃ ] the term obtained by textually replacing each Xij with T j in C[X̃].

Each term C can be seen as a forest FC , with restrictions (νaa) as internal labels
and either guarded summations/replications G or variables Xi as leaves, and parallel
composition | interpreted as concatenation1, as shown in the following example.

Example 3. Consider the term C = b. f f | (νaa)
(

b
b
.a |X1 | (νcc)(b |a.(νdd)d )

)

. The forest
FC associated to C is depicted below.

1 More formally, each C is mapped to a forest FC as follows: FXi = (Xi, ε), FG = (G, ε), FT |S =
FT · FS and F(νaa)T = ((νaa),FT ).



38 L. Acciai and M. Boreale

b. f f (νaa)

bb.a X1 (νcc)

b a.(νdd)d

Via this correspondence, we can identify terms with forests, and in what follows
we shall not notationally distinguish between the two. In the following we will some-
times use a ground version of the function L(·), written GL(·), returning the multiset of
ground, i.e. non-variables, leaves of a term. In the example above: L(C)= {| b. f f, bb.a,
X1, b, a.(νdd)d |} and GL(C)={|b. f f, bb.a, b, a.(νdd)d |}. The qo defined in the statement
of Theorem 4 is also inherited by T, that is, we can set: C � C′ iff FC � FC′ . To make
this a well qo, we have to restrict ourselves to some subset of Twith bounded height and
set of labels. This will be obtained by tailoring out of T a superset of all terms that are
reachable from a given initial closed term T . To this purpose, we introduce a few more
additional notations directly on terms. Given a C, let us write dp(C) for the maximal
nesting depth of restrictions in C, defined thus (max over an empty set yields 0):

dp(Xi) = 0 dp(
∑

i∈I μi.Ci) = maxi∈I dp(Ci) dp(!aa.C) = dp(C)
dp(C1|C2) =max{dp(C1),dp(C2)} dp((νaa)C) = 1+dp(C) .

In the example above, dp(C) = 3. We denote by sub(C) the set of variables, summations
and replications that occur as subterms of C: this is of course a finite set. Finally, we
denote by res(C) the set of restrictions (νaa) occurring in C. The set of terms we are
interested in is defined below.

Definition 4 (TT [X̃] ). Fix a type T and a set of variables X̃ = (X j1 , ...,X jk), then

TT [X̃]
�
=
{

C ∈ T
∣
∣
∣ l(C) ⊆ sub(T )∪ X̃, res(C) ⊆ res(T ), dp(C) ≤ dp(T )

}

.

In the following, we abbreviate TT [X̃] as TT when X̃ = ε. Consider now the rooted-tree
embedding � described above, we have the following result.

Proposition 5. For any T and X̃, the relation � is a wqo over TT [X̃].

Proof. Terms in TT [X̃], by definition, have bounded height: indeed, for any C ∈ TT [X̃],
we have h(C) ≤ dp(C) ≤ dp(T ). Moreover, they are built using a finite set of labels:
X̃∪ res(T )∪ sub(T ). Theorem 4 ensures then that � is a wqo over TT [X̃].

We want to show now that TT can be endowed with wsts structure. In what follows,
we shall consider the traditional ccs transition relation over closed terms, denoted here
μ
�−→ ; in particular, we shall write

τ
�−→ as �→. The relation �→ is preferable to → in

the present context, because it avoids alpha-equivalence, structural congruence and is
finitely branching for the considered fragment. In Section 6, we shall argue that �→ is
equivalent to → for the purpose of defining the satisfaction relation S |= φ. The set TT
of closed terms enjoys the following crucial properties, which can be easily inferred by
induction on the structure of the term. Note in particular that, by the second property, the

restriction nesting depth of any term is not increased by
μ
�−→ . This is a crucial property

that does not hold in the pi-calculus. E.g. (type annotations omitted):

(νb1)a〈b1〉 | !a(y).(νb2)(y.b2 |c〈b2〉) | !c(x).a〈x〉 →∗
(νb1)(νb2)(b1.b2|(νb3)(b2.b3| · · · (νbn+1)(bn.bn+1 |c〈bn+1〉) · · · ))|!a(y).(νb2)(y.b2|c〈b2〉)|!c(x).a〈x〉.
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Proposition 6. (1) For any S ∈ TT and S ′, S
μ
�−→ S ′ implies that S ′ ∈ TT . (2) The

relation � is a simulation relation over TT . As a consequence: (3) For any T , let Tr be

the transition system (TT ,
τ
�−→ ). ThenWT

�
= (�,Tr) is a wsts.

Concerning the decidability issues, we note that: (a) the wqo � is decidable, indeed its

very inductive definition yields a decision algorithm; (b) the transition relation
μ
�−→ is

decidable for the fragment of ccs that corresponds to the language of types.

6 Decidability

Decidability of a fragment of Shallow Logic relies on applying Proposition 4 toWT .
Thewqo � has already seen to be decidable. In order to be able to apply this proposition,
we have to fulfill obligation (b), that is, show that WT has an effective pred-basis.
Moreover, we have to show that each denotation [[φ]] can be presented via an effectively
computable finite basis playing the role of “I” in the proposition.

Pred-basis. Informally, the pred basis function, pbT (S ), works in two steps. First, all de-
compositions of S as S = C[Ũ], with |Ũ | = 0,1 or 2, are considered – there are finitely
many of them. Then, out of each C, all contexts C′ are built that have the same ground
leaves as C, but possibly more holes, up to 2. Again, there are finitely many such con-
texts. The contexts C′ are then filled with ground leaves, in such a way that the resulting
terms posses a reduction to S , up to �. In what follows, we shall also admit as a possible
context C the 0-hole forest ε, which gives rise only to the decomposition S = ε[S ].

Definition 5 (pred-basis). Let T be a type, S ∈ TT and C, C′ range over TT [X1,X2].

pbT (S )
�
=
⋃

S=C[Ũ ]
{

C′[G̃] ∈ TT

∣
∣
∣C′ �C, GL(C′) =GL(C),G̃ ⊆ sub(T ), C′[G̃] �→� S

}

The construction of pbT (S ) is effective. In particular, given C, there are finitely many
ways of adding one or two holes to C, resulting into a C′ � C, and they can all be tried
in turn. In what follows we let PredT (·) stand for Pred(·)∩TT .

Theorem 5. Suppose T ∈ T . Then for any S ∈ TT , ↑ pbT (S ) =↑ PredT (↑ S ). Moreover,
pbT (·) is effective.

Proof. (Outline) Effectiveness has already been discussed. Moreover, by construction,
↑ pbT (S ) ⊆↑ PredT (↑ S ). Let us examine the other inclusion. Suppose first V �→� S ,
we show that there is U ∈ pbT (S ) s.t. V � U: this will be sufficient to accommodate
also the most general case V ��→� S , sinceWT is a wsts. Assume that the reduction
in V originates from two communicating prefixes (the τ-prefix case is easier). That
is, assume V = C[G1,G2] �→ C[S 1,S 2] � S . It is then easy to prove that S = C′′[S̃ ′],
with C � C′′ and (S 1,S 2) � S̃ ′. It is possible to build out of C′′ a 2-holes context C′ ∈
TT [X1,X2] s.t. C �C′ �C′′. Take U =C′[G1,G2].

We can extend pbT to finite sets I ⊆ TT , by setting pbT (I)
�
= ∪S∈IpbT (S ). By doing so,

we obtain the following corollary, which says thatWT has an effective pred-basis.

Corollary 1. There is a computable function pbT (·) such that, for any finite I ⊆ TT ,
↑ pbT (I) =↑ PredT (↑ I).
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Remark 1. Consider the labelled version of the reduction relation,
〈λ〉
�−→ , λ ::= a|ε. For

any fixed label 〈a〉, Corollary 1 still holds if considering the transition system given by
〈a〉
�−→ , rather than �→. We shall name pb〈a〉T (·) the corresponding pred-basis function.

Applying Proposition 4, we get the result we were after.

Corollary 2. There exists a computable function pb∗T (·) such that, for any finite set
I ⊆ TT , pb∗T (I) is a finite basis of Pred∗T (↑ I).

Finite bases for plain formulae. Our first task is showing that, for certain formulae
φ, the satisfaction relation S |= φ can be defined relying solely on �→ and on context
decomposition, in particular, with no reference to structural congruence and → . In the
proposition below, we show that this is indeed possible for plain formulae.

Definition 6 (plain formulae). We say a formula φ is plain if it does not contain ♦∗
underneath H∗.

Let us say a context C is pure if l(C) ⊆ (Xi)i≥1; we let D range over pure contexts; e.g.
D= (νa)(X1|X2)|X3 is pure. Given a context C[X̃, Ỹ] and two sequences G̃, F̃ s.t. |X̃|= |G̃|
and |Ỹ | = |F̃|, we say C links G̃ and F̃ if there are an internal node (νaa) of C seen as
a forest, Xi ∈ X̃ and Yj ∈ Ỹ such that both Xi and Yj are in the scope of this node, and
a ∈ fn(Gi)∩ fn(F j). Given a sequence G̃, we denote by

∏

G̃ the parallel composition of
the terms in G̃, in some arbitrary order. Given a term C[T̃ ] and S̃ � T̃ , fix any injection
f : {1, . . . ,k} → {1, . . . , |T̃ |} (k = |S̃ |) such that S j � T f ( j), for 1 ≤ f (1) < · · · < f (k) ≤ |T̃ |.
We write C[S̃ � f T̃ ] for the closed term obtained from C[S j/X f ( j)] j=1,··· ,k by pruning all
sub-trees having only variables as leaves. In the following we will write C[S̃ � T̃ ] for
C[S̃ � f T̃ ], when f is the identity. As an example, take T̃ = T1, T2, T3, T4, S̃ = S 1, S 2

and suppose f (1) = 1 and f (2) = 4. C, C[T̃ ] and C[S̃ � f T̃ ] are depicted below.
l1

X1 l3

X2 X3

l2

l4 l5

X4

l1

T1 l3

T2 T3

l2

l4 l5

T4

l1

S 1

l2

l4 l5

S 2

Proposition 7. Assume S ∈ TT , φ plain and monotone and bn(T )∩ n(φ) = ∅. Then we
have the following equivalences, where G̃,G̃1,G̃2 are assumed to be included in sub(T ).

S |=〈a〉φ iff∃U : S
〈a〉
�−−→ U and U |= φ S |= ♦∗φ iff ∃U : S �→∗ U and U |= φ

S |=a iff∃D,G̃, U : S = D[G̃] and for some G ∈ G̃ : G =!aa.U or aa.U is a summand of G
S |=a iff∃D,G̃, U : S = D[G̃] and for some G ∈ G̃ : a.U is a summand of G
S |=H∗φ iff∃D,G̃ : S = D[G̃] and

∏

G̃ |= φ
S |=φ1 |φ2 iff∃D,G̃1,G̃2 : S = D[G̃1,G̃2], D not linking G̃1 and G̃2, D[G̃i �G̃1,G̃2] |=φi (i = 1,2)

As discussed at the beginning of this section, in order to take advantage of Corollary 2,

we have to show that each set [[φ]], or, more accurately, each set [[φ]]T
�
= [[φ]]∩TT ,

can be presented via an effectively computable finite basis inWT . We define this basis
below, by induction on the structure of φ: the ♦∗ and 〈a〉 cases take advantage of the
pred-basis functions defined in the last paragraph, the other cases basically follow the
corresponding cases of the previous proposition or, in the case of ∨ and T, the expected
boolean interpretation. The only exception to this scheme is the ∧ connective, which
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is nontrivial and will be commented below. Some more terminology first. Given a set
I ⊆ TT , we denote by minimal(I) the set of minimal elements in I, w.r.t. the wqo �. For
any ordered sequence G̃, we denote by 〈G̃〉 the multiset obtained if ignoring order.

Definition 7 (finite basis). Let T be a type and φ be a plain and monotone formula,
such that bn(T )∩ n(φ) = ∅. The finite basis FbT (φ) is inductively defined below, where
G,G̃,G̃1 and G̃2 are assumed to be included in sub(T ).

FbT (a)
�
= {D[G] ∈ TT

∣
∣
∣G =!aa.U or aa.U is a summand of G, for some U}

FbT (a)
�
= {D[G] ∈ TT

∣
∣
∣ a.U is a summand of G, for some U}

FbT (φ1 |φ2)
�
=
⋃

S 1∈FbT (φ1),S 2∈FbT (φ2)
{

D[G̃1,G̃2] ∈ TT

∣
∣
∣ for i = 1,2 : 〈G̃i〉 = L(S i), D does not

link G̃1 and G̃2 and D[G̃i �G̃1,G̃2] � S i
}

FbT (H∗φ)
�
=
⋃

S∈FbT (φ)
{

D[G̃] ∈ TT

∣
∣
∣ 〈G̃〉 = L(S )

}

FbT (T)
�
= {D[G] ∈ TT

∣
∣
∣G ∈ sub(T )}

FbT (φ1∨φ2)
�
= FbT (φ1)∪FbT (φ2) FbT (〈a〉φ)

�
= pb〈a〉T (FbT (φ))

FbT (φ1∧φ2)
�
= minimal([[φ1]]∩ [[φ2]]) FbT (♦∗φ)

�
= pb∗T (FbT (φ))

Note that minimal([[φ1]]∩ [[φ2]]) is finite: if not, one would find an infinite sequence of
pairwise incomparable elements, thus violating the condition of wqo.

Theorem 6. Consider T and φ like in Definition 7. Then FbT (φ) is a finite basis for
[[φ]]T , that is ↑ FbT (φ) = [[φ]]T . Moreover, FbT (·) is computable.

Proof. (Outline) The first part of the statement is quite easy, indeed one inclusion,
↑ FbT (φ) ⊆ [[φ]]T , is valid by construction, while the opposite direction is proved by
induction on φ, relying on the characterization of |= provided by Proposition 7 for
the spatial and dynamic connectives, the boolean ones being trivial to handle. Prov-
ing that FbT (·) is computable is more difficult, because of the clause for conjunction.
This is accommodated by introducing an effective operator ‖ that over-approximates
the “minimal” operator: FbT (φ1) ‖ FbT (φ2) ⊇minimal([[φ1]]T ∩ [[φ2]]T ). The operator ‖
produces a finite set of terms by appropriately merging terms, seen as forests, drawn
from FbT (φ1) and FbT (φ2). We refer the reader to [2] for the details.

By virtue of the above theorem, we can decide if S |= φ, with S ∈ TT , by checking if
there is U ∈ FbT (φ) s.t. S � U: since � is decidable, this can be effectively carried out,
and we obtain Corollary 3. Finally, Corollary 4 is a consequence of Proposition 2.

Corollary 3 (decidability on types). Let φ be plain and monotone. It is decidable
whether T |= φ. Hence, decidability also holds for φ plain and anti-monotone.

Corollary 4 (decidability on pi-processes). Let Γ be a context. Given a Γ-well-typed
P and φ plain and (anti-)monotone, it is decidable whether P |= φ.

7 Conclusion and Related Work

We have proven the decidability of a fragment of Spatial Logic that includes interesting
safety properties for a class of infinite-control pi-processes. The proof relies heavily
on both behavioural type systems [10,7,1] and well-structured transition system tech-
niques [8]. Implementation issues are not in the focus of this paper. Whether a practical
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algorithm may be obtained or not from the theoretical discussion presented here is an
interesting topic, that is left for future work.

Our proof of decidability generalizes the result in [4] that “weak” barbs ♦∗a are
decidable in ccs with replication. Variations and strengthening of these results have
recently been obtained by Valencia et al. [14]. It is worth to notice that weak barbs
are not decidable in the pi-calculus, [3]. On the other hand, our results show that they
become decidable when restricting to well-typed pi-processes.

Also related to our approach is [5], where Caires proves that model-checking Spatial
Logic formulae for bounded pi-calculus processes, and in particular finite-control pro-
cesses, is decidable. Note that the class of processes we have considered here properly
includes bounded processes.

Acknowledgments. We wish to thank Luis Caires, Roland Meyer and Gianluigi Zavat-
taro for very stimulating discussions on the topics of the paper.
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