
LIF

Laboratoire d’Informatique Fondamentale
de Marseille

Unité Mixte de Recherche 6166
CNRS – Université de Provence – Université de la Méditerranée

A Typed Calculus for Querying
Distributed XML Documents

Lucia Acciai, Michele Boreale and Silvano Dal Zilio

Rapport/Report 29-2006

October 2005

Les rapports du laboratoire sont téléchargeables à l’adresse suivante
Reports are downloadable at the following address

http://www.lif.univ-mrs.fr

A Typed Calculus for Querying
Distributed XML Documents

Lucia Acciai, Michele Boreale and Silvano Dal Zilio

LIF – Laboratoire d’Informatique Fondamentale de Marseille
UMR 6166

CNRS – Université de Provence – Université de la Méditerranée

dalzilio@lif.univ-mrs.fr

Abstract/Résumé

We study the problems related to querying large, distributed XML documents. Our proposal
takes the form of a new process calculus in which XML data are processes that can be queried by
means of concurrent pattern-matching expressions. What we achieve is a functional, strongly-
typed programming model based on three main ingredients: an asynchronous process calculus
that draws features from π-calculus and concurrent-ML; a model where both documents and
expressions are represented as processes, and where evaluation is represented as a parallel com-
position of the two; a static type system based on regular expression types.

Keywords: Process calculi; XML; types.

Ce rapport s’intéresse aux problèmes liés à la manipulation et à l’interrogation de documents
XML de très grande taille, distribués sur un réseau. Nous proposons un nouveau calcul de
processus dans lequel les données sont des processus qui peuvent être interrogés par le biais
d’expressions de filtrage concurrentes. Un des résultats de ce travail est un modèle de pro-
grammation fonctionnel, fortement typé, basé sur trois ingrédients principaux: un calcul de
processus asynchrone qui emprunte certaines de ses caractéristiques au π-calcul et au langage
CONCURRENT-ML; un modèle dans lequel documents et requêtes sont représentés par des pro-
cessus et où l’évaluation d’une requête est représentée par la composition parallèle de ces deux
processus; un système de typage statique basé sur les expressions régulières de types.

Mots-clefs: Calcul de processus; XML; types.

Relecteurs/Reviewers: Denis Lugiez and Solange Coupet-Grimal

Notes: This work was partly supported by ACI Masses de Données, project TRALALA.

1 Introduction
There is by now little doubt that XML will succeed as a lingua franca of data interchange on
the Web. As a matter of fact, XML is a building block in the development of new models of
concurrent applications, often referred to as Service-Oriented Architecture (SOA), where com-
putational resources are made available on a network as a set of loosely-coupled, independent
services.

The SOA model is characterized by the need to exchange and query XML documents. In
this paper, we concentrate on the specific problems related to querying large, distributed XML
documents. This is the case, for example, of applications interacting with distributed heteroge-
neous databases or that process data acquired dynamically, such as those originating from arrays
of sensors (in this case, we can assume that the document is in effect infinite). For another exam-
ple, consider the programs involved in the maintenance of the big Web indexes used by search
engines [14]. A typical example is the computation of a term vector, that is a list of words found
on some documents of the index together with their frequency. Distribution, concurrency and
dynamic acquisition of data must be explicitly taken into account when designing an effective
computational model for this kind of applications.

We most particularly pay attention to the processing model. Our proposal takes the form of
a process calculus in which XML data are processes that can be queried by means of concurrent
pattern-matching expressions. In this model, the evaluation of patterns is distributed among
locations, in the sense that the evaluation of a pattern at a node triggers concurrent evaluation of
sub-patterns at other nodes, and actions can be carried out upon success or failure of patterns.
The calculus also provides primitives for storing and aggregating the results of intermediate
computations and for orchestrating the evaluation of patterns. In this respect, we radically depart
from previous works on XML-centered process calculi, see e.g. [2, 9, 17], where queries would
be programmed as operations invoked on (servers hosting) Web Services and XML documents
would be exchanged in messages. In contrast, we view queries as code being dispatched to the
locations “hosting” a document. This shift of view is motivated by our target application domain.
In particular, our model is partly inspired by the MapReduce paradigm described in [14] that
is used to write programs to be executed on Google’s large clusters of computers in a simple
functional style. Continuing with the “term vector example” above, assume that the documents
of interest are cached on different (maybe replicated) servers. A query that accomplishes the
aforementioned task would dispatch sub-queries to every server and create a dedicated reference
cell to aggregate the partial results from each server. Sub-queries sifts the local documents and
transmit to the central reference cell a sequence of pairs (word, frequency) produced locally. The
task of the aggregating function is to collect the frequencies for identical keywords as they arrive,
so as to eventually produce the global term vector. To achieve reliability, sub-queries may have
to report back periodically with status updates while the “master query” may decide to abort or
reinstate queries in case of servers failure.

Another important feature of our model is the definition of a static type system based
on regular expression types that is compatible with Document Type Definitions (DTD) and
other XML schema languages. What we achieve is a functional, strongly-typed programming
model for computing over distributed XML documents based on three main ingredients: a

3

semantics defined by an asynchronous process calculus in the style of the π-calculus [23] and
proposed semantics for concurrent-ML [16]; a model where documents and expressions are
both represented as processes, and where evaluation is represented as a parallel composition of
the two; a type system based on regular expression types (the soundness of the static semantics
is proved via a subject reduction property, Theorem 1). Each of these choices is motivated by a
feature of the problem: the study of service-oriented applications calls for including concurrency
and explicit locations; the need to manipulate large, possibly dynamically generated, documents
calls for a streamed model of processing; the documents handled by a service should often obey
a predefined schema, hence the need to check that queries are well-typed, preferably before they
are executed or “shipped”.

The rest of the paper is organized as follows. Section 2 presents the core components of
the calculus — documents, types and patterns — and Section 3 gives the formal semantics of
the calculus. In Section 4 we define a first-order type system with subtyping based on regular
expression types and prove the soundness of our type discipline. Before concluding with a review
of related works, we study possible extensions of our model in Section 5.

2 Documents, Types and Patterns
We consider a simple language of first-order functional expressions, denoted e, e′, . . . , enriched
with references and recursive pattern definitions that are used to extract values from documents.
Patterns are built on top of a syntax for defining regular tree grammars [13], which is also at the
basis of our type system.

2.1 Documents
An XML document may be seen as a simple textual representation for nested sequences of ele-
ments <a>. . .. In this paper, we follow notations similar to [21] and choose a simplified
version of documents by leaving aside attributes among other things. We assume an infinite set
of tag names, ranged over by a, b, . . . (we will often choose the symbol o for the tag of the root
element of a document). A document is an ordered sequence of elements a1[v1] . . . an[vn], where
v1, . . . , vn are documents. Documents may be empty, denoted (), and can be concatenated,
denoted v, v′. The composition operation is associative with identity ().

In the following we consider distributed documents, meaning that each element aj[vj] is
placed in a given location, say ıj . Locations are visible only at the level of the operational
semantics, in which the contents of a document is represented by the index ı1 . . . ın (the list of
locations) of its elements. For the sake of simplicity, locations and indexes are the only values
handled in our calculus and we leave aside atomic data values such as strings or integers.

4

2.2 Document Types
Applications that exchange and process XML documents rely on type information, such as
DTDs, to describe structural constraints on the occurrences of elements. In our model, types
take the form of regular tree expressions, which are a set of recursive definitions of the form
A := Reg(ai[Ai])i∈1..n, where Reg is a regular expression and A, A1, . . . , An are type variables.
This is essentially a syntax for defining regular tree grammar. A regular expression Reg(αi)i∈1..n

can be an atom αi with i ∈ 1..n; it can be the constant All, which matches everything, or Empty,
which matches the empty sequence; it can be a choice Reg1 Reg2, a sequential composition
Reg1,Reg2, or an iteration Reg∗. For instance, the declaration below defines the type L of fam-
ily trees, which are sequences of male or female person such that each person has a name element,
and two elements, d and s, for the list of his daughters and sons.

L := (man[P] woman[P])∗ P := name[All], d[WL], s[ML]
WL := woman[P]∗ ML := man[P] ∗ .

There is a natural notion of subtyping A <: B between regular expression types, meaning
that every document in A is also in B. The type system is close to what is defined in functional
languages for manipulating XML, see e.g. XDuce [19, 20, 21] or the review in [10], hence we
stay consistent with actual frameworks used in sequential languages for processing XML data.

2.3 Selectors and Patterns
The core of our programming model is a system of distributed pattern matching expressions
that concurrently sift through documents to extract information. Basically, patterns are types
enhanced with parameters and capture variables. However, like functions, patterns are declared
and have a name.

We assume a countable set of names, partitioned into locations ı, , `, . . . and variables
x, y, . . . We use the vector notation ~x for tuples of names. The declaration p(~x) :=(
Reg(ai[pi(~yi)])i∈1..n

)
as y defines a pattern called p, with parameters ~x, that will collect

matched documents in the reference y (where y is a variable in ~x). For instance, the patterns
defined below can be used to extract the names of persons occurring in a document of type L.

names(x, y) :=
(
man[p(x, y, x)] woman[p(x, y, y)]

)
∗

p(x, y, z) := name[all(z)], d[names(x, y)], s[names(x, y)]
all(z) := All as z.

A call to names(ı, `) stores in (the reference located at) ı the name of men and in ` the
name of women. A call to names(`, `) will store the names of all persons in `. Actually, the
most general form of pattern declaration allows let definitions and setting continuations to be
evaluated upon success or failure of the pattern, i.e. a pattern declaration is of the form, where S
is a selector Reg(ai[pi(~yi)])i∈1..n:

p(~x) := let
(
z1 = e′1, . . . , zm = e′m

)
in

(
S as y

)
then e1 else e2 ,

5

An important feature of our model is that patterns may extract multiple sets of values from
documents in one pass, which contrasts with the monadic queries expressible with technologies
such as XPath. In the next section, we give a formal definition of the calculus, which embeds
an operator try v p(~u) for applying the pattern p to the value v. During reduction, the index v
is matched against S after all the expressions e′1, . . . , e

′
m have been evaluated. If the matching

succeeds, then v is added to the values stored in y and e1 is evaluated. Otherwise, the compen-
sation e2 is evaluated. These optional continuations allow to add basic exception and transaction
mechanisms to the calculus.

Clearly, types are particular kind of patterns: a pattern declaration without parameters, let
definitions, capture variables and continuations is a type declaration. Moreover, every pattern p
can be associated with the type A obtained by erasing these extra information: A is the type of
all documents that are matched by p.

In the following, we assume that functions and patterns are typed explicitly. For instance,
we assume that the pattern names is declared with the type (All, All) → L. More generally, a
reference that merges values of type B will have a type A such that A, B <: A.

2.4 Witness and Unambiguous Patterns
Next, we define what it means for a pattern to match an index and define a notion of un-
ambiguous patterns. Assume S is the selector Reg(ai[pi(~vi)])i∈1..m. The sequence ai1 . . . ain
matches S if and only if it is a “word” in the language of Reg(ai)i∈1..m. This relation is de-
noted ai1 . . . ain `S pi1(~vi1) . . . pin(~vin) and we call (pij(~vij))j∈1..n a witness for S of ai1 . . . ain .
We write ai1 . . . ain 6`S if the sequence has no witness for S. More formally, the relation
a1 . . . an `S c1 . . . cn, with ci ::= p(~v) | All, is defined in the following table:

Witness

(W-All)

a1 . . . an `All All . . . All

(W-Empty)

() `Empty ()

(W-Choice)
∃i ∈ {1, 2} : a1 . . . an `Regi

c1 . . . cn

a1 . . . an `
Reg1Reg2

c1 . . . cn

(W-Atom)

a `a[c] c

(W-Seq)
∃i ∈ {0 . . . n} : a1 . . . ai `Reg1

c1 . . . ci ai+1 . . . an `Reg2
ci+1 . . . cn

a1 . . . an `Reg1,Reg2
c1 . . . cn

(W-Star-Empty)

() `Reg∗ ()

(W-Star)
∃i ∈ {1 . . . n} : a1 . . . ai `Reg c1 . . . ci ai+1 . . . an `Reg∗ ci+1 . . . cn

a1 . . . an `Reg∗ c1 . . . cn

It is standard in XML to restrict to expressions that denote sequences of elements unequiv-
ocally. We say that a pattern with selector S is unambiguous if each sequence of tags has at
most one witness for S. Assume that (pij(~vij))j∈1..m is “the witness” of S for b1 . . . bm. When a

6

document b1[v1] . . . bm[vm] is matched against a pattern with selector S, each sub-document vj is
matched against pij(~vij). If b1 . . . bm has no witness then the pattern-matching fails.

Some schema languages, like DTD for example [7], use a stronger notion which requires
that the witness can be computed incrementally, reading from a sequence of tags with only one
symbol look-ahead. While this notion is suitable when working with streamed data (of ordered
documents) it may impose needless performance penalties when working in a truly concurrent
way. For instance, we want to be able to start the evaluation on an element without necessarily
matching all its preceding siblings beforehand (while still providing a minimal support for “set-
at-a-time” operations). For this reason, we require an even stronger notion of unambiguity and
say that a selector Reg(ai[pi(~vi)])i∈1..n is consistently unambiguous if every tag specifies a unique
pattern, i.e. whenever ai = aj then pi(~vi) and pj(~vj) are the same.

Another (more flexible but also more complex) solution would be to require that, for every
sequence of tags and every integer i, the ith component of a witness can be computed only from
the value of the ith tag.

3 The Calculus
The presentation of the calculus can be naturally divided into two fragments: a language of
functional expressions, or programs, that are used in the body of pattern and function declara-
tions; and a language of processes, or configurations, that models distributed documents and the
concurrent execution of programs.

3.1 Programs
The calculus embeds a first-order functional language with references, pattern-matching and
constructs for building documents. In the following, we assume that every function identifier
f has associated arity n > 0 and a unique definition f(~x) := e where the variables in ~x are
distinct and include the free variables of e. We take similar hypotheses for patterns. The syntax
of expressions e, e′, . . . is given below:

Syntax of Expressions

u, v ::= results
x name: variable or location
ı1 . . . ın index (with n > 0)

e ::= expressions
u result
a[u] element creation
u, v result composition
f(u1, . . . , un) function call
let x = e1 in e2 let
newref u new reference (with initial value u)
!u dereferencing

7

u += v update (adds v to the values stored in u)
try u p(u1, . . . , un) pattern matching call
wait u(x) then e1 else e2 wait matching

A result is either a name or an index, i.e. an expression that immediately returns itself. Ex-
pressions include results, operators for creating new elements a[u], for concatenating indexes
u, v, and for creating and accessing references. Reference update has a slightly unusual seman-
tics since the effect of ı += v is to append v to the value stored in the reference ı. Actually,
we could imagine that each reference is associated with an “aggregating function” that specifies
how the sequence of values stored in the reference has to be combined. For example, assume
` is an “integer reference” that increments its value by one on every assignment. Then a call
to names(`, `) counts the number of people in a document of type L. We only consider index
composition in this work.

The expression try v p(~u) is used to apply the pattern p to the index v = ı1 . . . ın. A
try expression returns at once with the location of a fresh node where the matching oc-
curs. Moreover, evaluation of patterns is carried out concurrently: the effect of evaluating
let z =

(
try v p(~u)

)
in P is to filter v by p concurrently with the evaluation of P . In this

example, z is bound to the location of the “thread” that executes the try expression, say `. The
location ` can be tested in P to check whether the pattern-matching has ended using the expres-
sion wait `(x) then e1 else e2. The wait statement blocks until the pattern evaluating at `
stops. Then the continuation e1 is evaluated if the matching succeeds, otherwise e2 is evaluated.
In each case the variable x is bound to v.

3.2 Configurations
The syntax of processes P, Q, . . . is as follows:

Syntax of Processes

P, Q,R ::= processes
e expression
let x = P in Q let
〈 ı 7→ d 〉 location
P � Q parallel composition
(νı)P restriction

d ::= resources
ref u reference with value u
node a(u) node, element tagged a with index u
try ı p(u1, . . . , un) try matching
test ı u test matching
ok ı successful match
fail ı failed match

8

The calculus features operators from the π-calculus: restriction (νı)P specifies the scope of
a name ı local to P ; parallel composition P � Q represents the concurrent evaluation of P and Q.
Overall, a process is a multiset of let expressions, describing threads execution, and locations
〈 ı 7→ d 〉, that describes a resource d located in ı.

The calculus is based on an abstract notion of location that is, at the same time, the minimal
unit of interaction and the minimal unit of storage. Failures are not part of this model (they can
be viewed as an orthogonal feature) but could be added, e.g. in the style of [5]. Locations store
resources. The main resources are ref u, to store the current state of a reference, and node a(u),
to describe an element of the form a[u]. The calculus explicitly takes into account the distribution
of document nodes and, for example, the document a[b[] c[]] can be represented (at runtime) by
the parallel composition:

(νı1ı2)
(
〈 ı 7→ node a(ı1 ı2) 〉 �〈 ı1 7→ node b() 〉 �〈 ı2 7→ node c() 〉

)
.

The other resources arise in the evaluation of pattern-matching and correspond to different
phases in its execution: scheduling a “pattern call” (try); waiting for the result of sub-patterns
(test); stopping and reporting success (ok) or failure (fail).

Syntactic conventions: the operators let, wait and ν are name binders. Notions of α-
equivalence and of free and bound names arise as expected: we denote fv(P) the set of variables
that occur free in P and fn(P) the set of free names. We identify expressions and terms up-to
α-equivalence. Substitutions are finite partial maps from variables to results: we write P{x←u}
for the simultaneous, capture-avoiding substitution of all free occurrences of x in P with u. As-
sume σ is the substitution {x1←u1} . . . {xn←un} and ~u = (u1, . . . , un). We write f(~u) := e′ if
f(~x) := e and e′ = σ(e) and we write p(~u) := S ′ if the selector of p(~x) is S and S ′ = σ(S).
Finally, we make use of the following abbreviations: if u = ı1 . . . ın then (νu)P is a shorthand
for (νı1) . . . (νın)P ; the term (ν`)P � Q stands for ((ν`)P) � Q; the term let x = P in Q � R
stands for (let x = P inQ) � R; and wait `(x) then e1 stands for wait `(x) then e1 else ()
(and similarly for omitted then clause).

3.3 Reduction Semantics
The semantics of our calculus follows the chemical style found in the π-calculus [23]: it is based
on structural congruence and a reduction relation. Reduction represents individual computation
steps and is defined in terms of structural congruence and evaluation contexts.

Structural congruence ≡ allows the rearrangement of terms so that reduction rules may be ap-
plied. It is the least congruence on processes to satisfy the following axioms:

Structural Congruence: P ≡ Q

(Struct Par Assoc)

(P � Q) � R ≡ P �(Q � R)

(Struct Par Let)
x /∈ fn(P)

P � let x = Q in R ≡ let x = (P � Q) in R

9

(Struct Par Com)

(P � Q) � R ≡ (Q � P) � R

(Struct Res Let)
` /∈ fn(Q)

(ν`)let x = P in Q ≡ let x = (ν`)P in Q

(Struct Res Res)

(νı)(ν`)P ≡ (ν`)(νı)P

(Struct Res Par R)
ı /∈ fn(P)

(νı)(P � Q) ≡ P �(νı)Q

(Struct Res Par L)
ı /∈ fn(Q)

(νı)(P � Q) ≡ ((νı)P) � Q

(Struct Let Assoc)
x /∈ fn(R)

let y = (let x = P in Q) in R ≡ let x = P in (let y = Q in R)

Since a process may return a value, we take the convention that the result of a composition
P1 � . . . � Pn is the result of its rightmost term Pn. The values returned by the other processes
are discarded. This entails that the order of parallel components is relevant. For this reason,
unlike the situation in most process calculi, parallel composition is not a commutative operator.
Actually, composition is “left commutative”, which means that (P � Q) � R is equivalent to
(Q � P) � R but that we do not necessarily have P � Q equivalent to Q � P . This choice is
similar to what is found in calculi introduced for defining the semantics of concurrent-ML [16]
and for concurrent extension of object calculi [18]. An advantage is that we directly include
sequential composition of processes: the sequential composition P ; Q can be interpreted by the
term let x = P in Q, where x /∈ fv(Q). Moreover it relieves us from the need to encode the
operation of returning a result using continuations and sending a message on a result channel, as
in the π-calculus.

Reduction→ is the least binary relation on closed terms to satisfy the following rules.

Reduction: P → Q

(Red Fun)
f declared as f(~x) := e

f(u1, . . . , un)→ e{x1←u1} . . . {xn←un}

(Red Let)

let x = u in P → P{x←u}

(Red Struct)
P ≡ Q, Q→ Q′, Q′ ≡ P ′

P → P ′

(Red Context)(?)

P → P ′

E[P]→ E[P ′]

(Red Ref)
u = ı1 . . . ın ` fresh name

newref u→ (ν`)(〈 ` 7→ ref u 〉 � `)

(Red Read)

〈 ` 7→ ref u 〉 �!`→ 〈 ` 7→ ref u 〉 � u

(Red Write)(??)

w = u, v

〈 ` 7→ ref u 〉 � ` += v → 〈 ` 7→ ref w 〉 �()

10

(Red Node)
u = ı1 . . . ın ı fresh name

a[u]→ (νı)(〈 ı 7→ node a(u) 〉 � ı)

(Red Comp)
u1 = ı1 . . . ık u2 = ık+1 . . . ın

u1, u2 → ı1 . . . ın

(Red Try)
u = ı1 . . . ın ı, ` distinct fresh names

try u p(~v)→ (νı)(ν`)(〈 ı 7→ node o(u) 〉 �〈 ` 7→ try ı p(~v) 〉 � `)

(Red Try Match)
P = 〈 ı 7→ node a(ı1 . . . ın) 〉 �

∏
k∈1..n〈 ık 7→ node ak(wk) 〉

p(~v) := S a1 . . . an `S p1(~v1) . . . pn(~vn) w = 1 . . . n distinct fresh names

P �〈 ` 7→ try ı p(~v) 〉 → P � (νw)
(∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ` 7→ test ı w 〉
)

(Red Try All)

〈 ` 7→ try ı All 〉 → 〈 ` 7→ ok ı 〉

(Red Try Error)
P = 〈 ı 7→ node a(ı1 . . . ın) 〉 �

∏
k∈1..n〈 ık 7→ node ak(wk) 〉

p(~v) := S a1 . . . an 6`S

P �〈 ` 7→ try ı p(~v) 〉 → P �〈 ` 7→ fail ı 〉

(Red Try Error)
P = 〈 ı 7→ node a(ı1 . . . ın) 〉 �

∏
k∈1..n〈 ık 7→ node ak(wk) 〉 p(~v) := S a1 . . . an 6`S

P �〈 ` 7→ try ı p(~v) 〉 → P �〈 ` 7→ fail ı 〉

(Red Test Ok)
P = 〈 ı 7→ node a(ı1 . . . ın) 〉 �

∏
k∈1..n〈 k 7→ ok ık 〉 w = 1 . . . n

P �〈 ` 7→ test ı w 〉 → P �〈 ` 7→ ok ı 〉

(Red Test Fail)
P = 〈 ı 7→ node a(ı1 . . . ın) 〉 �

∏
k∈1..n〈 k 7→ dk 〉 w = 1 . . . n

∀k ∈ 1..n : dk ∈ {ok ık, fail ık} ∃j ∈ 1..n : dj = fail ıj

P �〈 ` 7→ test ı w 〉 → P �〈 ` 7→ fail ı 〉

(Red Wait Ok)
P = 〈 ı 7→ node a(u) 〉 �〈 ` 7→ ok ı 〉

P � wait `(x) then e1 else e2 → P � e1{x←u}

(Red Wait Fail)
P = 〈 ı 7→ node a(u) 〉 �〈 ` 7→ fail ı 〉

P � wait `(x) then e1 else e2 → P � e2{x←u}

(?) where E ::= Q � E | E � P | [.] | (ν`)E | let x = E in P

(??) in the general case we have w = op(u, v), where op is some “aggregating” function

11

The rules for expressions are similar to traditional semantics for first-order languages, with
the difference that the resources in a configuration play the role of the store. Likewise, the
rules for operators that return new values (the operators newref, a[] and try) yields reductions
of the form e → (ν`)(〈 ` 7→ d 〉 � `), which means that new values are always allocated in a
fresh location. Actually a quick inspection of the rules shows that resources are created in fresh
locations and are always used in a linear way: an expression cannot discard a resource or create
two different resources at the same location.

The remaining rules are related to the evaluation of pattern-matching expressions. A try

expression on the pattern p generates a fresh try resource, rule (Red Try). Assume that S is the
selector of p, the try resource will trigger evaluation of sub-patterns selected from a witness of
S, rule (Red Try Match). For the sake of simplicity, we only consider selector patterns in rule
(Red Try Match). In the general case, for patterns with local let definitions, capture variable
and continuation, we can use the following rule:

P ≡ 〈 ı 7→ node a(ı1 . . . ın) 〉 �
∏

k∈1..n〈 ık 7→ node ak(wk) 〉
p(~v) := let D in

(
S as vk

)
then e1 else e2

a1 . . . an `S p1(~v1) . . . pn(~vn) w = 1 . . . n fresh names
e′1 = let z = (vk += (ı1 . . . ın)) in e1 z fresh variable

P �〈 ` 7→ try ı p(~v) 〉 → P �
(
let D in (νw)

(∏
l∈1..n〈 l 7→ try ıl pl(~vl) 〉

�〈 ` 7→ test ı w e′1 e2 〉
))

A try resource spawns new try resource and turns into a test, waiting for the results of
these evaluations. Upon termination of all the sub-patterns, a test resource turns into ok or
fail, rules (Red Test Ok) and (Red Test Fail). The ok and fail resources are immutable. The
status of a pattern evaluation can be checked with the expression wait `(x) then e1 else e2,
see rules (Red Wait Ok) and (Red Wait Fail). If the resource at ` is ok ı then the wait

expression evaluates to e1{x←v}, where v is the index of the node located at ı. If the resource
is failı then the expression evaluates to e2{x←v}. In all the other cases the expression is stalled.

Remark: in rule (Red Try Match), we compute the witness for all the children of an element
in one go. This is not always realistic since the size of the children’s index can be very large
(actually, in real applications, big documents are generally shallow and have a large number
of children). It is possible to refine the operational semantics so that each sub-pattern is fired
separately, not necessarily following the order of the document, and we can imagine that indexes
are implemented using streams or linked lists. We have chosen this presentation for sake of
simplicity (it is one of the simplifications used in this paper so that we can concentrate on the
innovative features of the calculus and its type system).

4 Static Semantics
The types of document indexes are the same than the types for documents defined in Section 2.
Apart from regular expressions types A, the type t of a process can also be the resource type ?

12

(a constant type for terms that return no values); a reference type ref A; a node type node a(u)
for the type of a location holding an element a[u]; or a try type loc a(A), that is the type of a
location hosting the evaluation of a pattern of type A on the contents of an element tagged a.

Types

t ::= type
? no value
A regular expression type
ref A reference
node a(u) node location
loc a(A) try location

We can easily adapt the definition of witness to types (a type is some sort of selector). Assume
A is declared as A := Reg(ai[Ai])i∈1..n. We say that there is a witness for A of ai1 . . . aim ,
denoted ai1 . . . aim `A Ai1 . . . Aim , if and only if the sequence of tags ai1 . . . aim is in the language
of the regular expression Reg(ai)i∈1..n. We can define the language of a type A as the set of
documents that are matched by the pattern Reg(ai[Ai])i∈1..n. Based on this definition, we obtain
a natural notion of subtyping A <: B, meaning that the language of A is included in the language
of B. We write A

.
= B if the languages of A and B are equal. We write A for some chosen

regular expression type whose language is the complement of A. (The type A is unnecessary
when A

.
= All, which means that we do not need to introduce a type with an empty language.)

In the case of type witness, we have ai1 . . . aim 6`A if and only if there is a witness for A of
ai1 . . . aim .

The type system is given in the following table. A type environment E is a finite mapping x1 :
t1, . . . , xn : tn between names and types. The type system is based on a single type judgment,
E ` P : t, meaning that the process P has type t under the hypothesis E. We assume that there
is a given, fixed set of type declarations of the form A := Reg(ai[Ai])i∈1..n. We assume that
functions and patterns are well-typed, which is denoted f : ~t → t0 and p : ~t → A. The types
t1, . . . , tn in ~t are the types of the parameters, while t0 is the type of the body of f and A is the
type of the selector of p. The type of a selector S = Reg(ai[pi(~xi)])i∈1..n is obtained from S by
substituting to every pattern pi in the selector its corresponding type Ai. Hence the type of S is
equivalent to some type variable A such that A := Reg(ai[Ai])i∈1..n.

Typing Rules: E ` P : t

(Type x)

E, x : t, E ′ ` x : t

(Type Sub)
A <: B

E ` P : A

E ` P : B

(Type Fun)
f : (t1, . . . , tn)→ t0
E ` ui : ti i ∈ 1..n

E ` f(~u) : t0

(Type Let)

E ` P : t E, x:t ` Q : t′

E ` let x = P in Q : t′

(Type Doc)
E ` ık : node ak(uk) E ` uk : Bk k ∈ 1..n

E ` ı1 . . . ın : a1[B1], . . . , an[Bn]

(Type Node)
E ` u : A

E ` a[u] : a[A]

(Type Comp)
E ` ui : Ai i ∈ {1, 2}

E ` u1, u2 : A1, A2

13

(Type Ref)
E ` u : A

E ` newref u : ref A

(Type Read)
E ` u : ref A

E ` !u : A

(Type Write)
E ` u : ref A E ` v : B A, B <: A

E ` u += v : Empty

(Type Res)
E, `1 : t1, . . . , `n : tn ` P : t

u = (`1 . . . `n) u ∩ fn(E) = ∅
E ` (νu)P : t

(Type Par)

E ` P : t′ E ` Q : t

E ` P � Q : t

(Type Try Doc)
p : (t1, . . . , tn)→ A

E ` vi : ti i ∈ 1..n E ` u : B

E ` try u p(v1, . . . , vn) : loc o(A)

(Type Wait)
E ` u : loc a(A)

E, x : A ` e1 : t E, x : A ` e2 : t

E ` wait u(x) then e1 else e2 : t

(Type Loc Ref)
E ` ` : ref A E ` u : A

E ` 〈 ` 7→ ref u 〉 : ?

(Type Loc Node)
E ` ` : node a(ı1 . . . ın)

E ` 〈 ` 7→ node a(ı1 . . . ın) 〉 : ?

(Type Loc Ok)
E ` ` : loc a(A) E ` ı : node a(u)

u = ı1 . . . ın E ` u : A

E ` 〈 ` 7→ ok ı 〉 : ?

(Type Loc Fail)
E ` ` : loc a(A) E ` ı : node a(u)

u = ı1 . . . ın E ` u : A

E ` 〈 ` 7→ fail ı 〉 : ?

(Type Try Loc)
E ` ` : loc a(A) E ` ı : node a(ı1 . . . ın) p : (t1, . . . , tn)→ A E ` vi : ti i ∈ 1..n

E ` 〈 ` 7→ try ı p(~v) 〉 : ?

(Type Test Loc)
E ` ` : loc a(A) E ` ı : node a(u) E ` k : loc ak(Ak)

w = (1 . . . n) a1 . . . an `A A1 . . . An

E ` 〈 ` 7→ test ı w 〉 : ?

The typing rules for the functional part of the calculus are standard. In what follows, we
consider that references can only hold document values: a reference is of type ref A and not
ref t. Moreover, since a reference collects the sequence of values that are assigned to it, we
check for every assignment of a value of type B into a reference of type ref A that the relation
A, B <: A holds, see rule (Type Write). This check allows us to enforce statically the type of
references.

The remaining typing rules are for resources and pattern-matching operators. The type of an
expression try u p(~v) is loc o(A) if the pattern p matches documents of type A, see rule (Type
Try Doc). Indeed the effect of this expression is to return a fresh location hosting the evaluation
of p on an element of the form o[u]. Correspondingly, a wait expression is well typed only if it is

14

blocking on a location of type loca(A), that is the location of a resource that can eventually turn
into ok or fail. The important aspect of this rule is that, while the continuations e1 and e2 of
the wait expression must have the same type, they are typed under different typing environment:
the expression e1 is typed with the hypothesis x : A while e2 is typed with the hypothesis x : A.
This leads to more precise types for filtering expressions (see below).

The typing rules for locations are straightforward. Since a resource returns no value it has
type ?. By rule (Type Try Loc), a location ` containing a try resource, evaluating a pattern p
of type A, is well typed if ` is of type loc a(A) and the root tag of the evaluated document is
a. Note that no assumption is made on (ı1, . . . , ın), which might well not be of type A. Finally,
the rule for node location, (Type Loc Node), states that a location containing node a(u) has
only one possible type, namely node a(u) itself. Hence this rule avoids the presence of two
node resources with the same location but containing different elements. Actually, we could
extend our type system in a simpler way to ensure that a well-typed configuration cannot have
two resources at the same location: we say that the configuration is well-formed (for a formal
definition see Appendix A).

An important feature of our calculus is that every pattern is strongly typed: its type is the
regular expression obtained by erasing capture variables. Likewise we can type locations, ex-
pressions and processes using a combination of regular expression types and ref types. As
it is often the case with typed languages, the first important property we need to prove is that
well-typedness of processes is preserved by reduction.

Theorem 1 (subject reduction) Suppose that P is well formed and contains only unambiguous
patterns and t contains only unambiguous types. If E ` P : t and P → Q then E ` Q : t.

Proof. See Appendix B. �

The proof of Theorem 1 is by induction on the derivation of the relation P → Q. The proof
is quite involved since it is not possible to reason on a whole document at once: its content is
scattered across distinct resource locations. This complexity reflects actual restrictions imposed
when working with distributed documents, e.g. that they can never be checked locally.

We do not state a progress theorem in connection with Theorem 1. Indeed, there exists
no notion of errors in our calculus (like e.g. the notion of “message not understood” in
object-oriented languages) as it is perfectly acceptable for a pattern matching to fail or to get
blocked on a wait statement. Nonetheless the subject reduction theorem is still useful. For
instance, we can use it for optimizations purposes, like detecting that a specific matching will
always fail.

Well-Formed Environments and Well-Typed Patterns. The typing judgment E ` P : t defined in
page 13 relies on several auxiliary judgments that we describe in this section. The first judgment
is for stating that an environment is well-formed, E ` �, that is essentially that no variable is
declared more than once in an environment.

15

Good environments

(Env ∅)

∅ ` �

(Env x)
E ` � x /∈ dom(E)

E, x:t ` �

The remaining judgments are for defining well-typed pattern and function definitions. Indeed,
we assume in the typing rules (Type Fun), (Type Try Doc) and (Type Try Loc) that function and
pattern declarations are well typed, meaning that the functional type (globally) associated to
function or pattern identifiers is correct with respect to their definitions.

Well-Typed Declarations

(Type Selector)
S = Reg(ai[pi(~xi)])iin1..n E ` pi(~xi) : (~ti)→ Ai i = 1, . . . , n

Reg(ai[Ai])i∈1..n
.
= A

E ` S : A

(Type Pat)
p(x1, . . . , xn) := let z1 = e′1, . . . , zm = e′m in S as xk then e1 else e2

fn(p(~x)) ∩ dom(E) = ∅ E, x1:t1, . . . , xn:tn ` e′i : t′i i ∈ 1..m
E, x1:t1, . . . , xn:tn, z1:t

′
1, . . . , zm:t′m ` S : A A compatible with tk

E, x1:t1, . . . , xn:tn, z1:t
′
1, . . . , zm:t′m ` e1 : te1

E, x1:t1, . . . , xn:tn, z1:t
′
1, . . . , zm:t′m ` e2 : te2

E ` p(x1, . . . , xn) : (t1, . . . , tn)→ A

(Type Fun dec)
f := e E, x1 : t1, . . . , xn : tn ` e : t0

E ` f(x1, . . . , xn) : (t1, . . . , tn)→ t0

Rule (Type Selector) state that the type of a selector S is obtained from S by substituting
every pattern identifier pi with the corresponding type Ai. Rule (Type Pat) checks if the definition
p(x1, . . . , xn) := let z1 = e′1, . . . , zm = e′m in S as xk then e1 else e2 respects the declared
type (t1, . . . , tn) → A. Therefore, that upon receiving its actual parameters of type t1, . . . , tn
and evaluating the expressions in the let part, pattern p actually matches documents of type A.
In particular it is checked that the type of the selector S is A, that continuations e1 and e2 are
well typed, and that the type tk associated to the capture variable xk is compatible with A, that
is tk is of the form ref B and B, A <: B. Rule (Type Fun dec) verifies if the definition f := e
complies with the type (t1, . . . , tn) → t0 by checking if the type of the expression e is t0 when
evaluated in a context where the formal parameter of f have associated types t1, . . . , tn.

16

5 Examples and Possible Extensions
We study examples that show how to interpret interesting programming idioms in our model,
like spawning an expression in a new thread or handling user-defined exceptions.

5.1 Types and Pattern-Matching
We can encode a “traditional” match operator, as found in XDuce for example, that matches
the pattern p against u and conditionally proceeds with e1 or e2. Assume y is a fresh variable
(y /∈ fv(e1) ∪ fv(e2)), we define:

match u with p(~v) then e1 else e2 =def

{
let x =

(
try u p(~v)

)
in

(
wait x(y) then e1 else e2

) .

This example allows us to emphasize the role of the variable y when typing a wait statement.
Let e =def

(
match z with Empty then a[z] else z

)
be the expression that returns z if it is not

empty else returns a[z]. Assume z is a variable of type All, then the most precise type for e is
also All. In contrast, if we consider the expression let x =

(
try z Empty

)
in

(
wait x(y) then

a[y] else y
)
, which is equivalent to e, we obtain the more precise type Empty, that is, we prove

that the returned value cannot be empty. Indeed y plays the role of an alias for the value of z
that is used with type Empty in the continuation a[y] and with type Empty in y (and we have
a[Empty] <: Empty).

5.2 Concurrency
We show how to model simple threads, that is, we want to encode an operator spawn such that
the effect of spawn e1; e2 is to evaluate e1 in parallel with e2, yielding the value of e2 as a result.
The simplest solution is to interpret spawn e1; e2 by the configuration e1 � e2. A disadvantage of
this solution is that it is not possible to test in e2 whether the evaluation of e1 has ended.

Another simple approach to encode spawn is to rely on the pattern-matching mechanism. Let
p be the pattern p() := (Empty then e1). We can interpret the statement spawn e1; e2 with the
expression let x = (try () p()) in e2. Indeed we have:

let x = (try () p()) in e2 →∗ (νı`)
(
〈 ı 7→ node o() 〉 �(

let z = e1 in 〈 ` 7→ ok ı 〉
)
� e2{x←`}

)
.

In the resulting process, e1 and e2 are evaluated concurrently and the resource 〈 ` 7→ ok ı 〉 cannot
interact with e2 until the evaluation of e1 ends (see rule (Struct Par Let) for example). Hence an
occurrence of the expression (waitx(y) then e) in e2 acts as an operator blocking the execution
of e until e1 returns a value. We can in fact improve our encoding so that the result of e1 is bound
to z in e as follows:

spawn e1; e2 =def (νı`)

(
let z = e1 in

(
〈 ı 7→ node o(z) 〉 �〈 ` 7→ ok ı 〉

)
� e2{x←`}

)
.

17

It emerges from this example that a try location can be viewed as a future, that is a reference
to the “future result” of an asynchronous computation. More generally, we can liken a process
(〈 ı 7→ node a(u) 〉 �〈 ` 7→ ok ı 〉) to an (asynchronous) output action `!〈ok, u〉 as found in process
calculi such as the π-calculus. Similarly, we can compare an expression wait `(x) then e1 else

e2 with a combination of input action and matching, `?(x).{ok ⇒ e1 | fail ⇒ e2}, with the
following synchronization rules:

`!〈ok, u〉 ‖ `?(x).{ok⇒ e1 | fail⇒ e2} → `!〈ok, u〉 ‖ e1{x←u}
`!〈fail, u〉 ‖ `?(x).{ok⇒ e2 | fail⇒ e2} → `!〈ok, u〉 ‖ e2{x←u}

The main distinction with “traditional process calculi” is that we are in a situation where inputs
are replicated. For this reason, we can have multiple wait operators synchronizing on the same
location ` without the need for global consensus (or a lock) on the resource at `. Nonetheless,
since the calculus can express atomic reads and writes on a shared memory, it could be useful to
rely on a standard mutual exclusion algorithm for accessing references. We could also interpret
high-level primitives for mutexes directly in our calculus (see e.g. [18] for an example). Note also
that there is no need for replication in our calculus since resources are persistent and recursive
behaviors can be encoded using recursive function declarations.

5.3 Exceptions
We show how to model a simple exception mechanism in our calculus. Suppose we need to check
that a document u of type L (the type of family trees) contains only women. This can be achieved
using the pattern declarations p() := woman[q()]∗ and q() := name[All], d[p()], s[Empty]
and a matching expression try u p(). A drawback of this approach is that we need to wait
for the completion of all sub-patterns to terminate before completing the computation, even if
the matching trivially fails because we find an element tagged man early in the matching. A
natural optimization is to use an explicit handling of failures, e.g. to add primitives to kill and
“ping” (the location of) a try resource in the style of [5]. Another solution is to encode a basic
mechanism for handling exceptions using the following derived operators, where ıe is a default
name associated to the location 〈 ıe 7→ node o() 〉:

exception = (ν`)` creates a fresh (location) exception
throw ` = 〈 ` 7→ ok ıe 〉 �() raises an exception at `

catch ` e = wait `(x) then e catches exception ` and runs e (x /∈ fv(e))

A simple example is to raise the exception at the end of a computation, like in the expression
letx = exception in

(
(. . . ; throw x) � catch x e

)
. If and when the throw expression is eval-

uated, we obtain a configuration of the form (νl)
(
. . . �〈 ` 7→ ok ıe 〉 � wait `(x) then e

)
, which

starts the execution of e. For instance, it is possible to raise the exception in the compensation
part of a pattern declaration and to redefine the pattern p above in: p(x) := woman[q()]∗ else
throw x.

With our encoding, it is not possible to abort the execution of a whole “program block” using
exceptions. Using a more involved encoding, e.g. based on CPS transforms, we could interpret
this more general exception model.

18

6 Future and related work
We study a formal model for computing over large, perhaps dynamically generated, distributed
XML documents. We define a typed process calculus and show that it supports a first-order
type system with subtyping based on regular expression types, a system compatible with DTD
and other schema languages for XML. Our work may be compared with recent proposals for
integrating XML data into π-calculus. It can also be compared with proposals for filtering and
querying XML streams (or so-called XML pipelining frameworks) for which there exists almost
no formal foundations.

6.1 Related Work
There are a few works mixing XML with process calculi: Iota [6] is a concurrent XML script-
ing language with channel-based communications that relies on types to guarantee the well-
formedness (not the validity) of documents; XPi [2] is a typed π-calculus extended with XML
values in which documents are exchanged during communications; PiDuce [9] features asyn-
chronous communications and code mobility and includes pattern matching expressions with
built-in type checks. In all these proposals, documents are first class values exchanged in mes-
sages, which make these approaches inappropriate in the case of very large or dynamically gen-
erated data. At the opposite, we consider documents as special kind of processes that can be
randomly accessed through the use of distributed indexes.

Works on querying XML streams can be roughly divided in two approaches. The first is
to provide efficient single-pass evaluator, working with one query at a time (generally XPath
queries) on multiple documents. The second approach, in relation to peer-to-peer and event-
notification systems, is to filter XML streams by a large number of queries. We look more
closely at some examples of such systems. SPEX, XSQ and XSM [8, 12, 22] are single-pass
evaluators of XPath queries in which queries are compiled into networks of independent, deter-
ministic pushdown transducers with buffers. The query language in XSM is severely restricted
and only streams with non-recursive structure definitions can be processed (this is akin to non-
recursive types in our framework). XFilter, YFilter and XTrie [4, 15, 11] follow the second
approach. XFilter is a filtering system based on finite state machines (FSM). It uses one FSM per
path query and an indexing mechanism to allow all FSMs to be executed simultaneously during
the processing of a document. YFilter extends XFilter using a lazy NFA-based representation in
which state transitions for simultaneous queries are precomputed (hence exploiting commonali-
ties among path queries). Likewise, XTrie is based on decomposing tree patterns into collection
of substrings and indexing them using a trie with the purpose to share the processing of “common
sub-queries”.

Our work follows the first approach with some differences (patterns extend XPath queries and
try-statements apply one pattern to one document at a time). Most notably, we take a strongly
typed approach and, instead of using XPath or XQuery, we extend the functional approach taken
in e.g. XDuce and define distributed regular expression pattern. As a byproduct, we also provide
a possible semantics for a concurrent extensions of languages based on XDuce. Nonetheless,
since our operational semantics does not dictate how regular patterns should be implemented, we

19

can take inspiration from these systems to implement efficient and scalable filtering primitives in
our calculus. Conversely, we could use our calculus to give a formal semantics to these systems.

6.2 Future Work
The goal of this paper is not to define a new programming language. We rather try to provide
formal tools for the study of concurrent computation models based on service composition and
streamed XML data. However our calculus could be a basis for developing concurrent extensions
of strongly typed languages for XML, such as XDuce. It could also be used to provide the
semantics of systems in which XML documents contain active code that can be executed on
distributed sites (i.e. processes and document text are mixed), like in the Active XML system for
example [1]. To this end, it will be necessary to add an “eval/quote” mechanisms, as in LISP or
multi-stage programming languages [24], and to fundamentally revise our static type checking
approach.

Our work raises questions concerning observational equivalences that we intend to study in
future work. Another avenue to investigate is the encoding of other concurrency related prim-
itives, like channel-based synchronization and distributed transactions, or the possibility to dy-
namically update documents.

20

References
[1] Abiteboul S., Benjelloun O., Milo T., Manolescu I., Weber R.: Active XML: Peer-to-Peer

Data and Web Services Integration. In Proc. of VLDB, 2002.

[2] Acciai L., Boreale M.: XPi: a typed process calculus for XML messaging. In Proc. of
FMOODS, LNCS vol. 3535, Springer, 2005.

[3] Acciai L., Boreale M., Dal Zilio, S.: A Typed Calculus for Querying Distributed XML
Documents. LIF Research Report xx, 2006.

[4] Altinel M., Franklin M.J.: Efficient filtering of XML documents for selective dissemination
information. In Proc. of the 26th VLDB Conference, 2000.

[5] Amadio R.: An Asynchronous Model of Locality, Failure And Process Mobility. In Proc.
of COORDINATION, LNCS vol. 1282, Springer, 1997.

[6] Bierman G., Sewell P.: Iota: A concurrent XML scripting language with applications to
Home Area Networking. TR 577, Computer Lab., Cambridge, 2003.

[7] Brüggemann-Klein A., Wood D.: One-unambiguous regular languages. Information and
Computation, 142(2), 1998.

[8] Bry F., Furche T., Olteanu D.: An efficient single-pass query evaluator for XML data struc-
ture. TR PMS-FB-2004-1, Computer Science Institute, Munich, 2004.

[9] Brown A., Laneve C., Meredith G.: PiDuce: a process calculus with native XML datatypes.
In Proc. of Workshop on Web Services and Formal Methods, 2005.

[10] Castagna G.: Pattern and types for querying XML documents. In Proc. of DBPL, XSYM
2005 joint keynote talk, 2005.

[11] Chan C.Y., Felber P., Garofalakis M., Rastogi R.: Efficient filtering of XML documents
with XPath expressions. The VLDB Journal 11, 2002.

[12] Chawathe S.S., Peng F.: XPath Queries on Streaming Data. In Proc. of SIGMOD, 2003.

[13] Comon H., Dauchet M., Jacquemard F., Tison S., Lugiez D., Tommasi M.: Tree Automata
on their application. 1999. http://www.grappa.univ-lille3.fr/tata/

[14] Dean J., Ghemawat, S.:MapReduce: Simplified Data Processing on Large Cluster. In Proc.
of OSDI, 2004.

[15] Diao Y., Fisher P., Franklin M.J.: Yfilter: efficient and scalable filtering of XML docu-
ments. In Proc. of 18th ICDE, IEEE, 2002.

[16] Ferreira W., Hennessy M., Jeffrey A.S.: A theory of weak bisimulation for core CML. J.
Functional Programming 8(5), 1998.

21

[17] Gardner P., Maffeis S.:Modelling dynamic web data. Theor. Comput. Sci. 342(1) (2005).

[18] Gordon A.D., Hankin P.D.: A concurrent object calculus: reduction and typing. In Proc. of
HLCL. Electr. Notes Theor. Comput. Sci. 16(3), 1998.

[19] Hosoya H., Vouillon J., Pierce B.J.: Regular expression types for XML. ACM Transactions
on Programming Languages and Systems, 27(1), 2004.

[20] Hosoya H., Pierce B.J.: Regular expression pattern matching for XML. In Proc. of POPL,
2001.

[21] Hosoya H., Pierce B.J.: XDuce: A Statically Typed XML Processing Language. In Proc.
of ACM Transaction on Internet Technology, 2003.

[22] Ludäscher B., Mukhopadhyay P., Papakonstantinou Y.: A Tranducer-Based XML Query
Processor. In Proc. of VLDB, 2002.

[23] Milner R.: Communicating and Mobile Systems: The π-Calculus. CUP , 1999.

[24] Taha W., Sheard T.:MetaML and multi-stage programming with explicit annotations. Theor.
Comput. Sci. 248(1-2), 2000.

22

A Well-formedness
A well-formed process is a configuration where every location is defined once. In the style of [18]
we add simple linearity constraints to the type system to ensure well-formedness and we show
some properties of well-formed terms.

Definition 1 (well formed configuration) A configuration P is well formed if for every location
` it contains at most one definition 〈 ` 7→ d 〉.

It is convenient to define the domain of a configuration P , dom(P), to be the set of the names
of the free location definitions in P :

Domain of a configuration

dom(e) , ∅
dom(let x = P in Q) , dom(P) ∪ dom(Q)

dom(〈 ` 7→ d 〉) , {`}
dom(P � Q) , dom(P) ∪ dom(Q)

dom((ν`)P) , dom(P) \ {`}

The well-formed configurations are given by the judgement P : wf defined in the following
table:

Well-Formed configurations

(WF-Exp)

e : wf

(WF-Let)
P : wf Q : wf dom(P) ∩ dom(Q) = ∅

let x = P in Q : wf

(WF-Resource)

〈 ` 7→ d 〉 : wf

(WF Par)
P : wf Q : wf dom(P) ∩ dom(Q) = ∅

P � Q : wf

(WF-Res)
P : wf ` ∈ dom(P)

(ν`)P : wf

In what follows we show that well-formedness is preserved by structural congruence and
reductions.

Proposition 2 (well formed subject congruence) If P : wf and P ≡ Q then Q : wf and
dom(P) = dom(Q).

Proof. By induction on structural congruence rules:

(Struct Par Assoc) if (P1 � P2) � P3 : wf then, by (WF-Par), P1 � P2 : wf, P3 : wf and
dom(P1 � P2) ∩ dom(P3) = ∅. Again by (WF-Par), P1 : wf, P2 : wf and dom(P1) ∩
dom(P2) = ∅. dom(P2) ∩ dom(P3) = ∅, thus, by (WF-Par), P2 � P3 : wf and
dom(P2 � P3) ∩ dom(P1) = ∅, thus P1 �(P2 � P3) : wf. dom((P1 � P2) � P3) = dom(P1) ∪
dom(P2) ∪ dom(P3) = dom((P1 � P2) � P3);

23

(Struct Par Let) if P1 � letx = P2in P3 : wf then by (WF-Par) P1 : wf, letx = P2in P3 : wf
and dom(P1)∩dom(letx = P2 in P3) = ∅. By (WF-Let) , letx = P2 in P3 : wf implies
P2 : wf, P3 : wf and dom(P2) ∩ dom(P3) = ∅. Thus dom(P1) ∩ dom(P2) = ∅ and rule
(WF-Par) imply P1 � P2 : wf and by (WF-Let) and dom(P1 � P2) ∩ dom(P3) = ∅ we have
letx = P1 � P2in P3 : wf. dom(P1 � letx = P2in P3) = dom(P1)∪dom(P2)∪dom(P3) =
dom(let x = P1 � P2 in P3);

(Struct Par Com) it is similar to the (Struct Par Assoc);

(Struct Res Let) by rule (WF-Res) (ν`)let x = P1 in P2 : wf implies ` ∈ dom(let x =
P1 in P2) and let x = P1 in P2 : wf. By (WF-Let) P1 : wf, P2 : wf and dom(P1) ∩
dom(P2) = ∅. ` ∈ dom(let x = P1 in P2) and ` /∈ fn(P2) (thus ` /∈ dom(P2)) implies
` ∈ dom(P1), thus by (WF-Res) (ν`)P1 : wf and by (WF-Let) let x = (ν`)P1 in P2 : wf.
dom((ν`)letx = P1 in P2) = (dom(P1)∪dom(P2)) \ {`} = dom(letx = (ν`)P1 in P2);

(Struct Res Res) by (WF-Res) (ν ı)(ν `)R implies R : wf and ı, ` ∈ dom(R), and by (WF-Res)
(ν `)(ν ı)R : wf. dom((ν ı)(ν `)R) = dom(R) \ {ı, `} = dom((ν `)(ν ı)R);

(Struct Res Par R) (Struct Res Par L) by (WF-Res) (ν `)(P1 � P2) : wf implies P1 � P2 : wf
and ` ∈ dom(P1 � P2). By (WF-Par) P1 : wf, P2 : wf and dom(P1) ∩ dom(P2) = ∅ and
by (Struct Res Par R) ` ∈ dom(P2) (resp. (Struct Res Par L) implies ` ∈ dom(P1)). By
rule (WF-Res) (ν `)P2 : wf (resp. (ν `)P1 : wf); so by rule (WF-Par) P1 �((ν `)P2) :
wf (resp. ((ν `)P1) � P2 : wf). dom((ν `)(P1 � P2)) = (dom(P1) ∪ dom(P2)) \ {`} =
dom(P1 �((ν `)P2)) because ` ∈ dom(P2) and ` /∈ dom(P1);

(Struct Let Assoc) by rule (WF-Let) let x = (let y = P1 in P2) in P3 : wf implies let y =
P1 in P2 : wf, P3 : wf and dom(let y = P1 in P2) ∩ dom(P3) = ∅. Again, by rule
(WF Let), P1 : wf, P2 : wf and dom(P1) ∩ dom(P2) : wf. dom(P2) ∩ dom(P3) = ∅, so
by (WF-Let) let x = P2 in P3 : wf and dom(let y = P2 in P3) ∩ dom(P1) = ∅ thus
let y = P1 in (let x = P2 in P3) : wf. dom(let x = (let y = P1 in P2) in P3) =
dom(P1) ∪ dom(P2) ∪ dom(P3) = dom(let y = P1 in (let x = P2 in P3)).

�

Proposition 3 (well formed substitution) R : wf implies R{x←`} : wf and dom(R) =
dom(R{x←`}).

Proof. By induction on the depth of the derivation of R : wf; we consider the last rule applied:

(WF-Exp) e{x←`} : wf by (WF-Exp) and dom(e) = dom(e{x←`}) = ∅;

(WF-Let) lety = P inQ : wf implies P : wf, Q : wf and dom(P)∩dom(Q) = ∅. By induction
P{x←`} : wf, dom(P) = dom(P{x←`}), Q{x←`} : wf and dom(Q) = dom(Q{x←`}).
By (WF-Let) let y = P{x←`} in Q{x←`} = (let y = P in Q){x←`} : wf and
dom(lety = P inQ) = dom(P)∪dom(Q) = dom(P{x←`})∪dom(Q{x←`}) = (lety =
P in Q){x←`};

24

(WF-Resource) 〈 `′ 7→ d 〉 : wf; (〈 `′ 7→ d 〉){x←`} = 〈 `′ 7→ d{x←`} 〉 : wf. dom(〈 `′ 7→ d 〉) =
dom(〈 `′ 7→ d{x←`} 〉) = {`′};

(WF-Par) P1 � P2 : wf implies P1 : wf, P2 : wf and dom(P1) ∩ dom(P2) = ∅.
By induction P1{x←`} : wf, P2{x←`} : wf, dom(P1) = dom(P1{x←`}) and
dom(P2) = dom(P2{x←`}). By (WF-Par) P1{x←`} � P2{x←`} = (P1 � P2){x←`} :
wf and dom(P1 � P2) = dom(P1) ∪ dom(P2) = dom(P1{x←`}) ∪ dom(P2{x←`}) =
dom((P1 � P2){x←`});

(WF-Res) (ν`)′P : wf implies P : wf and `′ ∈ dom(P). By induction P{x←`} : wf and
dom(P) = dom(P{x←`}), thus by (WF-Res) (ν`)′P{x←`} : wf and dom((ν`)′P) =
dom(P) \ {`′} = dom(P{x←`}) \ {`′} = dom(((ν`)′P){x←`}).

�

Theorem 4 (well formed subject reduction) Suppose P : wf, if P → Q then Q : wf and
dom(P) = dom(Q).

Proof. By induction on the depth of the derivation of P → Q; we distinguish the last rule applied:

(Red Fun) f(~u) : wf (WF-Exp) and dom(f(~u)) = ∅. f(~u) → e{~x←~u}, e{~x←~u} : wf by
(WF-Exp) and dom(e{~x←~u}) = ∅;

(Red Let) let x = u in P : wf implies u : wf and P : wf; moreover dom(u) = ∅ because
u is an expression. let x = u in P → P{x←u}; by Proposition 3 P{x←u} : wf and
dom(P) = dom(P{x←u});

(Red Struct) P : wf and P ≡ Q imply Q : wf and dom(P) = dom(Q) by Proposition 2. By
induction, Q → Q′ implies Q′ : wf and dom(Q) = dom(Q′); finally, by Proposition 2,
Q′ ≡ P ′ implies P ′ : wf and dom(P ′) = dom(Q′) = dom(Q) = dom(P);

(Red Context) by a straightforward induction on the derivation of P : wf, distinguishing the
context E;

(Red Ref) newref u : wf and dom(newref u) = ∅, because it is an expression. newref u →
(ν`)(〈 ` 7→ ref u 〉 � `); by (WF-Exp) ` : wf and dom(`) = ∅, by (WF-Resource)
〈 ` 7→ ref u 〉 : wf and dom(〈 ` 7→ ref u 〉) = {`}, by (WF-Par) 〈 ` 7→ ref u 〉 � ` : wf and
dom(〈 ` 7→ ref u 〉 � `) = {`} and finally, by (WF-Res) (ν`)(〈 ` 7→ ref u 〉 � `) : wf and
dom((ν`)(〈 ` 7→ ref u 〉 � `)) = ∅ = dom(newref u);

(Red Read) 〈 ` 7→ ref u 〉 �!` : wf implies, by rule (WF-Par), 〈 ` 7→ ref u 〉 : wf and !` : wf;
moreover dom(!`) = ∅ because it is an expression. 〈 ` 7→ ref u 〉 �!` → 〈 ` 7→ ref u 〉 � u,
u : wf by rule (WF-Exp), and dom(u) = ∅. In conclusion, 〈 ` 7→ ref u 〉 � u : wf and
dom(〈 ` 7→ ref u 〉 � u) = dom(〈 ` 7→ ref u 〉 �!`) = {`};

25

(Red Write) 〈 ` 7→ ref u 〉 � ` += v : wf implies, by rule (WF-Par), 〈 ` 7→ ref u 〉 : wf and ` +=
v : wf; moreover dom(` += v) = ∅ because it is an expression. 〈 ` 7→ ref u 〉 � ` +=
v → 〈 ` 7→ ref u 〉 �(); () : wf by rule (WF-Exp), and dom(()) = ∅. In conclusion,
〈 ` 7→ ref u 〉 �() : wf and dom(〈 ` 7→ ref u 〉 �()) = dom(〈 ` 7→ ref u 〉 � ` += v) = {`};

(Red Node) a[u] : wf and dom(a[u]) = ∅ because it is an expression. a[u] →
(νı)(〈 ı 7→ node a(u) 〉 � ı); by rule (WF-Exp) ı : wf and dom(ı) = ∅ because it is an ex-
pression, by (WF-Resource) 〈 ı 7→ node a(u) 〉 : wf and dom(〈 ı 7→ node a(u) 〉) = {ı},
by (WF-Par) 〈 ı 7→ node a(u) 〉 � ı : wf and dom(〈 ı 7→ node a(u) 〉 � ı) = {ı}, finally,
by (WF-Res), (νı)(〈 ı 7→ node a(u) 〉 � ı) : wf and dom((νı)(〈 ı 7→ node a(u) 〉 � ı)) =
dom(〈 ı 7→ node a(u) 〉 � ı) \ {ı} = ∅ = dom(a[u]);

(Red Comp) u1, u2 : wf and dom(u1, u2) = ∅. u1, u2 → ı1 . . . ın; by (WF-Exp) ı1 . . . ın : wf
and dom(ı1 . . . ın) = dom(u1, u2) = ∅;

(Red Try) try u p(~v) : wf and dom(try u p(~v)) = ∅ because it is an expres-
sion. try u p(~v) → (νı, `)(〈 ı 7→ node o(u) 〉 �〈 ` 7→ try ı p(~v) 〉 � `); by (WF-
Exp) ` : wf and dom(`) = ∅ because it is an expression, by (WF-Resource)
〈 ı 7→ node o(u) 〉 : wf, 〈 ` 7→ try ı p(~u) 〉 : wf, dom(〈 ı 7→ node o(u) 〉) = {ı} and
dom(〈 ` 7→ try ı p(~u) 〉) = `. By (WF-Par) 〈 ı 7→ node o(u) 〉 �〈 ` 7→ try ı p(~v) 〉 � ` :
wf and dom(〈 ı 7→ node o(u) 〉 �〈 ` 7→ try ı p(~v) 〉 � `) = {ı, `} and by
(WF-Res) (νı, `)(〈 ı 7→ node o(u) 〉 �〈 ` 7→ try ı p(~v) 〉 � `) : wf and
dom((νı, `)(〈 ı 7→ node o(u) 〉 �〈 ` 7→ try ı p(~v) 〉 � `)) = ∅;

(Red Try Match) P �〈 ` 7→ try ı p(~v) 〉 : wf implies, by (WF-Par), P : wf,
〈 ` 7→ try ı p(~v) 〉 : wf, and dom(P)∩dom(〈 ` 7→ try ı p(~v) 〉) = ∅. P �〈 ` 7→ try ı p(~v) 〉 →
P �(ν1 . . . n)

(∏
k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ` 7→ test ı 1 . . . n 〉

)
; by (WF-

Resource) 〈 ` 7→ test ı 1 . . . n 〉 : wf and ∀k ∈ 1 . . . n 〈 k 7→ try ık pk(~vk) 〉 : wf.
dom(

∏
k∈1..n〈 k 7→ try ık pk(~vk) 〉) = {1, . . . , n} and dom(〈 ` 7→ test ı 1 . . . n 〉) = `,

thus dom(
∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉) ∩ dom(〈 ` 7→ test ı 1 . . . n 〉) = ∅ and by
(WF-Par)

∏
k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ` 7→ test ı 1 . . . n 〉 : wf. By (WF-Res)

(ν1, . . . , n)
(∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ` 7→ test ı 1 . . . n 〉
)
: wf and by (WF-

Par) P �(ν1 . . . n)
(∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ` 7→ test ı 1 . . . n 〉
)
: wf because

dom(P) ∩ dom((ν1 . . . n)
(∏

k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ` 7→ test ı 1 . . . n 〉
)
) =

∅. Moreover dom(P �〈 ` 7→ try ı p(~v) 〉) = dom(P) ∪ {`} =
dom(P �(ν1 . . . n)

(∏
k∈1..n〈 k 7→ try ık pk(~vk) 〉 �〈 ` 7→ test ı 1 . . . n 〉

)
)

(Red Try All) 〈 ` 7→ try ı All 〉 : wf and dom(〈 ` 7→ try ı All 〉) = {`}. 〈 ` 7→ try ı All 〉 →
〈 ` 7→ ok ı 〉; 〈 ` 7→ ok ı 〉 : wf by (WF-Resource) and dom(〈 ` 7→ ok ı 〉) = {`} =
dom(〈 ` 7→ try ı All 〉);

(Red Try Error) P �〈 ` 7→ try ı p(~v) 〉 : wf implies, by (WF-Par), P : wf, 〈 ` 7→ try ı p(~v) 〉 :
wf and dom(P) ∩ dom(〈 ` 7→ try ı p(~v) 〉) = ∅. P �〈 ` 7→ try ı p(~v) 〉 →
P �〈 ` 7→ fail ı 〉; by (WF-Resource) 〈 ` 7→ fail ı 〉 : wf, moreover dom(〈 ` 7→ fail ı 〉) =

26

dom(〈 ` 7→ try ı p(~v) 〉) = {`}, thus dom(P) ∩ dom(〈 ` 7→ fail ı 〉) = ∅ and by (WF-Par)
P �〈 ` 7→ fail ı 〉 : wf;

(Red Test Ok) P �〈 ` 7→ test ı w 〉 : wf implies, by (WF-Par), P : wf, 〈 ` 7→ test ı w 〉 : wf
and dom(P)∩dom(〈 ` 7→ test ı w 〉) = ∅. P �〈 ` 7→ test ı w 〉 → P �〈 ` 7→ ok ı 〉; by (WF-
Resource) 〈 ` 7→ ok ı 〉 : wf, moreover dom(〈 ` 7→ ok ı 〉) = dom(〈 ` 7→ test ı w 〉) = {`},
thus dom(P) ∩ dom(〈 ` 7→ ok ı 〉) = ∅ and by (WF-Par) P �〈 ` 7→ ok ı 〉 : wf;

(Red Test Fail) P �〈 ` 7→ test ı w 〉 : wf implies, by (WF-Par), P : wf, 〈 ` 7→ test ı w 〉 : wf
and dom(P) ∩ dom(〈 ` 7→ test ı w 〉) = ∅. P �〈 ` 7→ test ı w 〉 → P �〈 ` 7→ fail ı 〉;
by (WF-Resource) 〈 ` 7→ fail ı 〉 : wf, moreover dom(〈 ` 7→ fail ı 〉) =
dom(〈 ` 7→ test ı w 〉) = {`}, thus dom(P) ∩ dom(〈 ` 7→ fail ı 〉) = ∅ and by (WF-
Par) P �〈 ` 7→ fail ı 〉 : wf;

(Red Wait Ok) P � wait `(x) then e1 else e2 : wf implies, by (WF-Par), P : wf,
wait `(x) then e1 else e2 and dom(P) ∩ dom(wait `(x) then e1 else e2) = ∅.
P � wait `(x) then e1 else e2 → P � e1{x←u}; e1{x←u} : wf because e1 : wf

(WF-Exp) and by Proposition 3, moreover dom(e1{x←u}) = ∅, thus, by rule (WF-Par),
P � e1{x←u} : wf;

(Red Wait Fail) P � wait `(x) then e1 else e2 : wf implies, by (WF-Par), P : wf,
wait `(x) then e1 else e2 and dom(P) ∩ dom(wait `(x) then e1 else e2) = ∅.
P � wait `(x) then e1 else e2 → P � e2{x←u}; e2{x←u} : wf because e2 : wf

(WF-Exp) and by Proposition 3, moreover dom(e2{x←u}) = ∅, thus, by rule (WF-Par),
P � e2{x←u} : wf.

�

B Proof of Theorem 1
We are set to prove the main result of the paper, the subject reduction theorem; but we need a
few preliminary results.

Proposition 5 (substitution) If E, x:t ` P : t′ and E ` u : t then E ` P{x← u} : t′.

Proof. By a straightforward induction on the derivation of E, x:t ` P : t′. �

Proposition 6 (weakening) If E, x:t ` P : t′ and x /∈ fn(P) then E ` P : t′ and vice versa.

Proof. By a straightforward induction on the derivation of E, x:t ` P : t′. �

Proposition 7 (subject congruence) If P ≡ Q and E ` P : t then E ` Q : t.

27

Proof. By induction on the depth of the derivation of P ≡ Q; we consider the last structural
congruence rule applied:

(Struct Par Assoc) E ` (P1 � P2) � P3 : t3 implies, by rule (Type Par), E ` P3 : t3 and
E ` P1 � P2 : t2. Again, E ` P1 : t1 and E ` P2 : t2. By the same rule E ` P2 � P3 : t3
and E ` P1 �(P2 � P3) : t3;

(Struct Par Let) E ` P1 � let x = P2 in P3 : t3 implies, by (Type Par) and (Type Let),
E ` P1 : t1, E ` P2 : t2 and E, x:t2 ` P3 : t3. By (Type Par) E ` P1 � P2 : t2 and by
(Type Let) E ` let x = P1 � P2 in P3 : t3;

(Struct Par Comm) this case is similar to (Struct Par Assoc);

(Struct Res Let) E ` (ν`)let x = P1 in P2 : t2 implies, by (Type Res), E, `:t′ ` let x =
P1 in P2 : t2. By (Type Let) we have E, `:t′ ` P1 : t1 and E, `:t′, x:t1 ` P2 : t2. By (Type
Res) E ` (ν`)P1 : t1 and by Proposition 6 (weakening) E, x:t1 ` P2 : t2 and by rule (Type
Let) E ` let x = (ν`)P1 in P2 : t;

(Struct Res Res) E ` (ν`)(νı)R : t′ implies, by rule (Type Res), E, `:t1 ` (νı)R : t′, and again
E, `:t1, ı:t2 ` R : t′. By the same rule E, ı:t2 ` (ν`)R : t′ and E ` (νı)(ν`)R : t′;

(Struct Res Par R) E ` (νı)(P1 � P2) : t2 implies, by rule (Type Res), E, ı:t′ ` P1 � P2 : t2
and, by (Type Par), E, ı:t′ ` P1 : t1 and E, ı:t′ ` P2 : t2. By (Type Res) E ` (νı)P2 : t2,
by Proposition 6 (weakening) E ` P1 : t1 and by rule (Type Par) E ` P1 �(νı)P2 : t2;

(Struct Res Par L) this case is similar to the previous;

(Struct Let Assoc) E ` let x = (let y = P1 in P2) in P3 : t implies, by rule (Type Let),
E ` let y = P1 in P2 : t2 and E, x:t2 ` P3 : t3. Again, E ` P1 : t1 and E, y:t1 `
P2 : t2. By (Struct Let Assoc) y /∈ fn(P3) so, by Proposition 6 (weakening), we have
E, y:t1, x:t2 ` P3 : t3, so by (Type Let) E ` let y = P1 in (let x = P2 in P3) : t.

�

Proposition 8 Assume S = Reg(ai[pi(~vi)])i∈1..k is a unambiguous pattern with type A. If
a1 . . . an `S p1(~v1) . . . pn(~vn) then we also have a1 . . . an `A A1 . . . An.

Proof. E ` Reg(ai[pi(~vi)])i=1,...,k : A implies ∀i : pi : (~ti) → Ai, E ` ~vi : ~ti, and
Reg(ai[Ai])i=1,...,k

.
= A. a1 . . . an `S p1(~v1) . . . pn(~vn) implies that a1 . . . an ∈ Reg(ai)i=1,...,k.

Moreover, S is unambiguous, thus for every tag ai we have exactly one pattern pi(~vi), s.t.
pi : (~ti) → Ai and E ` ~vi : ~ti thus in A for every tag ai we have associated exactly the
type Ai, and a1 . . . an `A A1 . . . An. �

Proposition 9 Assume A is a an unambiguous type. If a1 . . . an `A A1 . . . An then
a1[A1], . . . , an[An] <: A and if a1 . . . an 6`A then there is no B1, . . . , Bn such that
a1[B1], . . . , an[Bn] <: A.

28

Proof. By definition of (type) witness. �

Proposition 10 Suppose A unambiguous and A 6= All. a1 . . . aj . . . an `A A1 . . . Aj . . . An ⇒
a1[A1], . . . , aj[Aj], . . . , an[An] <: A.

Proof. By Proposition 9, a1 . . . aj . . . an `A A1 . . . Aj . . . An implies
a1[A1], . . . , aj[Aj], . . . , an[An] <: A, that is L(a1[A1], . . . , aj[Aj], . . . , an[An]) ⊆ L(A).
∀d ∈ (a1[A1], . . . , aj[Aj], . . . , an[An]) : d /∈ (a1[A1], . . . , aj[Aj], . . . , an[An]) be-

cause L(Aj) = L(Aj), that is L(Aj) ∩ L(Aj) = ∅. Thus, by the unambiguity, ∀d ∈
a1[A1], . . . , aj[Aj], . . . , an[An] we have d /∈ A that is L(a1[A1], . . . , aj[Aj], . . . , an[An]) ∩
L(A) = ∅. In conclusion, L(a1[A1], . . . , aj[Aj], . . . , an[An]) ⊆ L(A) and
a1[A1], . . . , aj[Aj], . . . , an[An] <: A. �

Proposition 11 If a1[d1] . . . an[dn] ∈ A then A = a1[d1], . . . , an[dn] A.

Definition 2 ([[u]]E)
[[()]]E = ()
[[ı1 . . . ın]]E = a1[d1] . . . an[dn] if E ` ıi : node ai(ui) and [[ui]]E = di.

Proposition 12 E ` u : A and u = ı1 . . . ın ⇔ [[u]]E ∈ A.

Proof.

(⇒): By induction on the depth of u:

d = 0: In this case u = () and [[()]]E = (). E ` () : Empty and () ∈ Empty.

d = n + 1: In this case u = ı1 . . . ın. If the last rule applied for deducing that E ` u : A
is (Type Doc), we have:

• A = a1[B1], . . . , an[Bn];
• E ` ık : node ak(uk);
• E ` uk : Bk; every uk has depth less or equal to n, thus by induction [[uk]]E ∈

Bk.

If the last rule applied for deducing that E ` u : A is (Type Sub), we have:

• E ` u : a1[B1], . . . , an[Bn], that is E ` ık : node ak(uk), and E ` uk : Bk;
every uk has depth less or equal to n, thus by induction [[uk]]E ∈ Bk.
• a1[B1], . . . , an[Bn] <: A implies L(a1[B1], . . . , an[Bn]) ⊆ L(A).

In both cases, [[u]]E = a1[[[u1]]E] . . . an[[[un]]E] ∈ a1[B1], . . . , an[Bn], thus [[u]]E ∈ A.

(⇐): By induction on the depth of u:

d = 0: In this case u = () and [[()]]E = (). () ∈ A implies L(Empty) ⊆ L(A). E ` () :
Empty and by (Type Sub) Empty <: A implies E ` () : A.

29

d = n + 1: In this case u = ı1 . . . ın. [[u]]E = a1[d1] . . . an[dn] ∈ A with d1 = [[u1]]E ,
. . . , dn = [[un]]E . We can say that ∀i : di ∈ di and by induction E ` di : di.
a1[d1] . . . an[dn] ∈ A implies, by Proposition 11, A = a1[d1], . . . , an[dn] A. In
conclusion a1[d1], . . . , an[dn] <: A and by rules (Type Doc) and (Type Sub) E ` u :
A.

�

Proposition 13 Suppose E ` S : A and u = ı1 . . . ın with E ` ıi : node ai(ui) for i ∈ 1, . . . , n.
If a1 . . . an 6`S then E ` u : A.

Proof. Suppose S = Reg(a′i[pi(~vi)])i∈1,...,k. E ` S : A implies pi : (~ti) → Ai, E ` ~vi : ~ti and
A

.
= Reg(a′i[Ai])i∈1,...,k.

a1 . . . an 6`S means that a1 . . . an /∈ Reg(a′i)i∈1,...,k, so by definition a1 . . . an 6`A and by Propo-
sition 9 ∀Bi : a1[B1], . . . , an[Bn] 6<: A. We can not apply rule (Term Sub) for saying that
E ` u : A, so E 6` u : A. By Proposition 12, this means that [[u]]E /∈ A that is [[u]]E ∈ A, and by
Proposition 12 E ` u : A. �

Theorem 14 (Theorem 1) Suppose that P is well formed and contains only unambiguous pat-
terns and t contains only unambiguous types. If E ` P : t and P → Q then E ` Q : t.

Proof. By induction on reduction rules. We distinguish the last rule applied (rememebr that at
every step we work with a well formed term):

(Red Fun) by rule (Type Fun) E ` f(u1, . . . , un) : t0 implies f : (t1, . . . , tn)→ t0 and E ` ui :
ti. f : (t1, . . . , tn) → t0 means that f(x1, . . . , xn) := e and x1:t1, . . . , xn:tn ` e : t0. By
(Red Fun) f(u1, . . . , un) → e{x1 ← u1} . . . {xn ← un}; in conclusion, by Proposition 5
(substitution), x1:t1, . . . , xn:tn ` e : t0 and E ` ui : ti implies E ` e{x1 ← u1} . . . {xn ←
un} : t0;

(Red Let) by rule (Type Let) E ` let x = u in P : t′ implies E ` u : t and E, x : t ` P : t′;
by Proposition 5 (substitution) E ` P{x← u} : t′;

(Red Struct) if P : t and P ≡ Q by Proposition 7 (subject congruence) Q : t. By induction
Q→ Q′ and Q′ : t. Again for Proposition 7 (subject congruence), Q′ ≡ P ′ implies P ′ : t;

(Red Context) the proof is straightforward distinguishing the context E;

(Red Ref) by rule (Type Ref) E ` newref u : ref A implies E ` u : A. By (Red Ref)
newref u→ (ν`)(〈 ` 7→ ref u 〉 � `). If we consider ` : refA, and using rules (Type Res),
(Type Par), (Type Loc Ref) and (Type x) E ` (ν`)(〈 ` 7→ ref u 〉 � `) : ref A;

(Red Read) by rules (Type Loc Ref) and (Type Read) E ` 〈 ` 7→ ref u 〉 �!` : A implies E `
` : ref A, and E ` u : A. Using rules (Type Loc Ref), (Type x) and (Type Par) E `
〈 ` 7→ ref u 〉 � u : A;

30

(Red Write) by rules (Type Loc Ref) and (Type Write) E ` 〈 ` 7→ ref u 〉 � l += v : Empty

implies E ` ` : ref A, E ` u : A, E ` v : B and A, B <: A. Rule (Red Write) implies
u, v = w and by (Type Comp) E ` w : A, B, thus A, B <: A implies E ` w : A and
E ` 〈 ` 7→ ref w 〉 : ?, by rules (Type Loc Ref) and E ` 〈 ` 7→ ref w 〉 �() : Empty by
rule (Type Par);

(Red Node) E ` a[u] : a[A] implies, by (Type Node), E ` u : A. If we consider ı : node a(u),
by (Red Node) a[u]→ (νı)(〈 ı 7→ node a(u) 〉 � ı) implies u = ı1 . . . ın, and by rules (Type
Res), (Type Par), (Type Loc Node), and (Type Doc) E ` (νı)(〈 ı 7→ node a(u) 〉 � ı) : a[A];

(Red Comp) by rule (Type Comp) E ` u1, u2 : A1, A2 implies E ` ui : Ai for i = 1, 2. By
(Red Comp) u1 = ı1 . . . ık and u2 = ık+1 . . . ın.

If we have deduced E ` u1 : A1 and E ` u2 : A2 both by using rule (Type Doc),
then A1 = a1[B1], . . . , ak[Bk] and A2 = ak+1[Bk+1], . . . , an[Bn], and by (Type Doc)
E ` ı1 . . . ıkık+1 . . . ın : A1, A2.

If we have deduced E ` u1 : A1 and E ` u2 : A2 both by using rule (Type
Sub), then a1[B1], . . . , ak[Bk] <: A1 and ak+1[Bk+1], . . . , an[Bn] <: A2, and by
(Type Doc) E ` u1 : a1[B1], . . . , ak[Bk] and E ` u2 : ak+1[Bk+1], . . . , an[Bn].
By (Type Doc) E ` ı1 . . . ıkık+1 . . . ın : a1[B1], . . . , ak[Bk], ak+1[Bk+1], . . . , an[Bn].
Moreover, a1[B1], . . . , ak[Bk], ak+1[Bk+1], . . . , an[Bn] <: A1, A2, and by (Type Sub)
E ` ı1 . . . ıkık+1 . . . ın : A1, A2.

The cases E ` u1 : A1 by (Type Doc) and E ` u2 : A2 by (Type Sub) and vice versa, are
similar to the previous;

(Red Try) by rule (Type Try Doc) E ` try u p(~v) : loc o(A) implies p : (~t) → A, E `
~v : ~t, and E ` u : B; by the reduction u = ı1 . . . ın. If we choose ı : node o(u) and
` : loc o(A) we have E, ı:node o(u) ` 〈 ı 7→ node o(u) 〉 : ?, by (Type Loc Node), and
E, ı:node o(u), `:loc o(A) ` 〈 ` 7→ try ı p(~v) 〉 : ?. Finally, by rules (Type Res), (Type
Par), and (Type x) E ` (νı, `)(〈 ı 7→ node o(u) 〉 �〈 ` 7→ try ı p(~v) 〉 � `) : loc o(A);

(Red Try Match) by rules (Type Par), (Type Try Doc), and (Type Loc Node) E `∏
k∈1...n〈 ık 7→ node ak(wk) 〉 �〈 ı 7→ node a(ı1 . . . ın) 〉 �〈 ` 7→ try ı p(~v) 〉 : ? implies:

• E ` ı : node a(ı1 . . . ın);

• E ` ık : node ak(wk) and wk = (ı1k
. . . ınk

);

• E ` ` : loc a(A), p : (~t)→ A, and E ` ~v : ~t; thus if p(~v) := S then S : A.

By (Red Try Match)
∏

k∈1...n〈 ık 7→ node ak(wk) 〉 �〈 ı 7→ node a(ı1 . . . ın) 〉 �
〈 ` 7→ try ı p(~v) 〉 →

∏
k∈1...n〈 ık 7→ node ak(wk) 〉 �〈 ı 7→ node a(ı1 . . . ın) 〉 �

(νw)(
∏
〈 k 7→ try ık pk(~vk) 〉 �〈 ` 7→ test ı w 〉) implies w = 1 . . . n fresh and

a1 . . . an `S p1(~v1) . . . pn(~vn).
If pk : (~tk) → Ak we choose jk : loc ak(Ak) and E, jk : loc ak(Ak)k=1,...,n `∏

k〈 k 7→ try ık pk(~vk) 〉 : ?.
We have to show that 〈 ` 7→ test ı w 〉 : ?. We know that:

31

• E ` ` : loc a(A);

• E ` ı : node a(ı1 . . . ın);

• jk : loc ak(Ak)k=1,...,n.

We have to prove that a1 . . . an `A A1 . . . An. By the reduction we have
a1 . . . an `S p1(~v1) . . . pn(~vn); moreover pi(~vi) : Ai, and S : A, so by Proposi-
tion 8 a1 . . . an `A A1 . . . An, thus E ` 〈 ` 7→ test ı w 〉 : ?. In conclusion E `
(νw)(

∏
〈 k 7→ try ık pk(~vk) 〉 �〈 ` 7→ test ı w 〉) : ?;

(Red Try All) E ` 〈 ` 7→ try ı All 〉 : ? implies E ` ` : loc a(All), E ` ı : node a(ı1 . . . ın)
and All : () → All. By (Red Try All) 〈 ` 7→ try ı All 〉 → 〈 ` 7→ ok ı 〉 and E `
〈 ` 7→ ok ı 〉 : ? because E ` ı1 . . . ın : A (for any A) and A <: All, thus by (Type
Sub) E ` ı1 . . . ın : All;

(Red Try Error) E `
∏

k∈1,...,n〈 ık 7→ node ak(vk) 〉 �〈 ı 7→ node a(ı1 . . . ın 〉 �
〈 ` 7→ try ı p(~v) 〉 : ? implies E ` ı : node a(ı1 . . . ın), E ` ık : node ak(vk), vk =
(ı1k

. . . ınk
) E ` ` : loc a(A), p : (~t) → A, and E ` ~v : ~t. By the reduction p(~v) := S,

thus E ` S : A. a1 . . . an 6`S , thus, by Proposition 13, E ` ı1 . . . ın : A so, by (Type Let)
and (Type Loc Fail), E ` 〈 ` 7→ fail ı 〉 : ?;

(Red Test Ok) by rule (Type Loc Ok), (Type Loc Node), and (Type Test Loc) E `
〈 ı 7→ node a(ı1 . . . ın) 〉 �

∏
k∈1,...,n〈 k 7→ ok ık 〉 �〈 ` 7→ test ı w 〉 : ? (where w =

1 . . . n) implies E ` ı : node a(ı1 . . . ın), ∀k ∈ 1, . . . , n : E ` k : loc ak(Ak),
E ` ık : node ak(uk), and E ` uk : Ak. Moreover E ` ` : loc a(A) and
a1 . . . an `A A1 . . . An.
a1 . . . an `A A1 . . . An implies a1[A1], . . . , an[An] <: A, by Proposition 9; thus by
(Type Doc) E ` ık : node ak(uk), and E ` uk : Ak we have E ` ı1 . . . ın :
a1[A1], . . . , an[An] and by (Type Sub) E ` ı1 . . . ın : A. So by (Type Par) E `
〈 ı 7→ node a(ı1 . . . ın) 〉 �

∏
k∈1,...,n〈 k 7→ ok ık 〉 �〈 ` 7→ ok ı 〉 : ?;

(Red Test Fail) E ` 〈 ı 7→ node a(ı1 . . . ın) 〉 �
∏

k∈1,...,n〈 k 7→ dk 〉 �〈 ` 7→ test ı w 〉 : ? (with
w = 1 . . . n) implies:

• by rule (Type Loc Node) E ` ı : node a(ı1 . . . ın);

• by rule (Type Loc Ok) ∀k ∈ 1, . . . , n : s.t. dk = ok ık we have E ` k : loc ak(Ak),
E ` ık : node ak(vk), and E ` vk : Ak;

• by rule (Type Loc Fail) ∀k ∈ 1, . . . , n : s.t. dk = fail ık we have E ` k :
loc ak(Ak), E ` ık : node ak(vk), and E ` vk : Ak;

• by rule (Type Test Loc) E ` ` : loc a(A), E ` ı : node a(ı1 . . . ın), E ` k :
loc ak(Ak), a1 . . . an `A A1 . . . An.

By (Red Test Fail) 〈 ı 7→ node a(ı1 . . . ın) 〉 �
∏

k∈1,...,n〈 k 7→ dk 〉 �
〈 ` 7→ test ı w 〉 → 〈 ı 7→ node a(ı1 . . . ın) 〉 �

∏
k∈1,...,n〈 k 7→ dk 〉 �〈 ` 7→ fail ı 〉 if ∃j ∈

32

1, . . . , n : 〈 j 7→ fail ıj 〉 (note that for j we have E ` vj : Aj). Obviously A 6=
All, so by Proposition 10 a1[A1], . . . , aj[Aj], . . . , an[An] <: A. By rule (Type Doc)
E ` ı1 . . . ın : a1[A1], . . . , aj[Aj], . . . , an[An] and by (Type Sub) E ` ı1 . . . ın : A. In
conclusion, by (Type Loc Fail), E ` 〈 ` 7→ fail ı 〉 : ?;

(Red Wait Ok) by rules (Type Par), (Type Loc Ok), (Type Wait), and (Type Loc Node) E `
〈 ` 7→ ok ı 〉 �〈 ı 7→ node a(u) 〉 � wait `(x) then e1 else e2 : t implies u = ı1 . . . ın,
E ` ı : node a(u), E ` ` : loc a(A), E ` u : A, E, x:A ` e1 : t, and E, x:A ` e2 : t.
By rule (Red Wait Ok) 〈 ` 7→ ok ı 〉 �〈 ı 7→ node a(u) 〉 � wait `(x) then e1 else e2 →
〈 ` 7→ ok ı 〉 �〈 ı 7→ node a(u) 〉 � e1{x ← u}. By Proposition 5 (substitution), E ` u : A
and E, x:A ` e1 : t imply E ` e1{x ← u} : t. Finally, by rule (Type Par), E `
〈 ` 7→ ok ı 〉 �〈 ı 7→ node a(u) 〉 � e1{x← u} : t;

(Red Wait Fail) by rules (Type Par), (Type Loc Fail), (Type Wait), and (Type Loc Node) E `
〈 ` 7→ fail ı 〉 �〈 ı 7→ node a(u) 〉 � wait `(x) then e1 else e2 : t implies u = ı1 . . . ın,
E ` ı : node a(u), E ` ` : loc a(A), E ` u : A, E, x:A ` e1 : t, and E, x:A ` e2 : t.
By rule (Red Wait Fail) 〈 ` 7→ fail ı 〉 �〈 ı 7→ node a(u) 〉 � wait `(x) then e1 else e2 →
〈 ` 7→ fail ı 〉 �〈 ı 7→ node a(u) 〉 � e2{x← u}. By Proposition 5 (substitution), E ` u : A
and E, x:A ` e2 : t imply E ` e2{x ← u} : t. Finally by rule (Type Par), E `
〈 ` 7→ fail ı 〉 �〈 ı 7→ node a(u) 〉 � e2{x← u} : t.

�

33

