Symbolic trace analysis of cryptographic protocols*

Michele Boreale

Universita di Firenze

Dipartimento di Sistemi e Informatica

Abstract

A cryptographic protocol can be described as a system of concurrent processes, and analysis
of the traces generated by this system can be used to verify authentication and secrecy properties
of the protocol. However, this approach suffers from a state-explosion problem that causes the
set of states and traces to be typically infinite or very large. In this paper, starting from a
process language inspired by the spi-calculus, we propose a symbolic operational semantics that
relies on unification and leads to compact models of protocols. We prove that the symbolic and
the conventional semantics are in full agreement, and then give a method by which trace analysis
can be carried out directly on the symbolic model. The method is proven to be complete for
the considered class of properties and is amenable to automatic checking.

Keywords: spi-calculus, concurrency, formal methods for security protocols.

Author’s Address: Dipartimento di Sistemi e Informatica, Universita di Firenze, Via Lombroso
6/17, Firenze.

Phone: +39-55-4796769

Fax: +39-55-4796730

E-mail: boreale@dsi.unifi.it

*A preliminary version of this paper has been circulated as [5].

1 Introduction

In recent years, formal methods have proven useful in the analysis of cryptographic protocols,
often revealing previously unknown attacks. A popular approach is that of modelling a protocol
as a system of concurrent processes, described using an appropriate language, like CSP [13, 20, 22]
or the spi-calculus [1] — the latter an extension of the mw-calculus [18]. In this setting, Abadi and
Gordon advocate the use of observational equivalences to formalize and verify protocol properties
[2, 7]. Here, in the vein of [3, 4, 12, 13, 16, 20, 22], we analyze the sequences of actions (traces)
that a given process may execute. As an example, a secrecy property like “protocol P never leaks
the datum d”, might be verified by adding to the description of P an ‘error’ action to be performed
as soon as the environment learns d (the way this is done depends on the specific formalism, see
e.g. [3]), and then checking that P never performs that ‘error’ action.

The main drawback of trace analysis is that the execution of a protocol typically generates
infinitely many traces. The reason lies in the modelling of the environment, whose behaviour
is largely unpredictable. Rather than trying to describe this behaviour as a specific process, it
is sensible to simply assume that the communication network is totally under the control of the
environment. The latter can store, duplicate, hide or replace messages that travel on the network.
It can also operate according to the rules followed by honest participants and synthetize new
messages by pairing, decryption, encryption and creation of fresh nonces and keys, or by arbitrary
combinations of these operations (this approach seems to date back to Dolev and Yao [11]). Thus,
an agent waiting for an input at a given moment may expect any of the infinitely many messages
the environment can produce and send on the network. This leads to a state explosion that makes
the protocol model, typically a state-transition graph, infinite (more precisely, infinite-branching).
In practice, those approaches that rely on model checking [13, 20, 22] cut down the model to
a convenient finite size by imposing upper-bounds to the critical parameters (number of keys,
number of pairing and encryption in messages,...). Exhaustive exploration of the state-space is
then possible by standard techniques. However, this approach makes correctness in the general
case (completeness) very difficult to establish — though some progress has recently been made
[15, 21]. Furthermore, even when those upper-bounds can be justified and the model is finite, the
branching factor of input actions may cause the number of states and traces to explode as larger
systems are considered.

In this paper we explore an alternative approach to trace analysis of cryptographic protocols.
As a base language, we consider a variant of the spi-calculus, but this choice is not critical for the
development of the theory. The idea is to replace the infinitely many transitions arising from an
input action by a single symbolic transition, and to represent the received message as a variable.
Constraints on this variable are accumulated as the execution proceeds. Let us see this in more
detail. In the variant of the spi-calculus we use, the receiver of a message is written as a(z). R,
where a is an arbitrary label, z is the input variable and R is the continuation. The conventional
(‘concrete’) operational semantics of the language requires z to be instantiated with each message
that can possibly be received from the network, and this causes the state explosion. In our symbolic
semantics, x is not instantiated immediately, rather constraints on its value are added as needed.
These constraints take the form of most general unifiers. As an example, suppose that a process
P, after receiving a message x, tries decryption of z using key k, and, if this succeeds, calls y the

result and proceeds like P’. This is written as P def a(z).casez of {y};in P'. We represent a state
of the protocol as a pair (¢,Q), where o is the trace of process’ past actions and @ is a process
term. The two initial symbolic transitions of (¢, P) will be:

(6, P) — (a(z), casewof {y}yin P') — (a({y}s), P'[1¥}xk])

where [{¥}r/e] is the most general unifier for and {y};. In general, protocols not using repli-
cation/recursion will generate finitely many symbolic transitions. The resulting model is rather

compact: sequential processes will just exhibit a single complete symbolic trace, while, for parallel
compositions, traces will be obtained as usual by interleaving. We prove that the symbolic and
the conventional semantics are in full agreement, and then give a method by which trace analysis
can be carried out directly on the symbolic traces. We focus our attention on a specific class of
properties, those of the form “in every execution of the protocol, action o happens prior to action
37, for given « and 3. As we shall see, this scheme is flexible enough to express interesting forms
of authentication and secrecy. The method is proven to be complete for the language we consider,
and is easily mechanizable; this immediately yields decidability of trace analysis for the considered
language. When a protocol does not satisfy a property, the method also gives an easy way to
compute an attack, i.e. a trace that violates the property. A prototype implementation of the
method is already available [6].

The language we consider does not contain replication/recursion operators, that would make
trace analysis undecidable (see e.g. [12, 10]). Thus we consider only protocols with a bounded
number of participants. However, recent work by Lowe [15] and Stoller [23] indicates that, in some
cases, it is possible to reduce the analysis of an unbounded protocol to the analysis of a protocol
with a bounded, statically determined number of participants.

The symbolic approach to the analysis of security protocols has been explored by other authors,
including Amadio and Lugiez [4] and Huima [12]. Discussion with these and other related work
can be found in the concluding section.

The rest of the paper is organized a follows. The language, a variant of the spi-calculus with
shared-key cryptography, is introduced in Section 2, along with its conventional operational seman-
tics. Section 3 introduces trace analysis. The symbolic operational semantics, and its agreement
with the conventional semantics, are discussed in Section 4. Section 5 presents the symbolic method
for trace analysis, at the core of which is the concept of refinement. For the sake of presentation,
the language of Section 2 does not include the restriction operator, whose treatment is postponed
to Section 6. The symbolic trace analysis method is applied to an example, the Otway-Rees pro-
tocol, in Section 7. Section 8 contains discussion on related work and a few concluding remarks.
A separate appendix contains the proof of a major theorem.

2 The language

Syntax (Table 1) We presuppose three countable disjoint sets: £, A and V. The set £ of labels
is ranged over by a,b,.... The set of N of names is partitioned into two countable sets, a set
LN of local names a,b, ... and a set EN of environmental names a, b, .. .: these sets represent the
basic data (keys, nonces,...) initially known to the process and to the environment, respectively.
The set V of variables is ranged over by z,y,.... The set UV is ranged over by letters u,v,....
Names and variables can be used to build compound messages, in M, via shared-key encryption
and pairing. In particular, { M} represents the message obtained by encrypting M (the argument)
under name k (the key), using a shared-key encryption system. We allow pairing and encryptions
to be arbitrarily nested, but only permit atomic keys. Terms are obtained by closing messages
under substitutions (they are just ‘garbage’ that can be generated at run-time, with no semantical
significance).

The syntax of agent expressions, in A, is taken essentially from the spi-calculus [1]. Agent
case { M}, of {y}rin A tries decryption of {M}, using k as a key: if this is possible (that is, if
k = h), the result of the decryption, M, is bound to y, and the agent proceeds like A, otherwise,
the whole expression is stuck. Similarly, pair M of (x,y) in A tries to split M into two components
and call them z and y. A difference from spi/m-calculus is that, in our case, input and output
labels (a,b,...) must not be regarded as a channels (as already noted, we assume just one public
network), but rather as ‘tags’ attached to process actions for ease of reference. Also, the only

m,n,... names N Yy, ... variables V
a,b,...,h k,... local names LN a,b,...,h k,... environmental names &N
U, ... variables or names VUN a,b,... labels £
M,N == u | {M}, | (M,N) messages M
B = ou | A | (G terms 2
A/B = agents A
0 (null)
| a(x). A (input)
| a{(). A (output)
| case(of {y},inA (decryption)
| pairCof (z,y)in A (selection)
| c=mA (matching)
| A|B (parallel composition)
The occurrences of variables # and y in (input), (decryption) and (selection) are bound.

Table 1: Syntax

useful cases for output and decryption are when ¢ is a message and 7 is a name; otherwise the
whole agent is stuck.

Given the presence of binders for variables, notions of free variables, v(A) C V and alpha-
equivalence arise as expected. We shall identify alpha-equivalent agent expressions. For any M
and u, [M/u] denotes the operation of substituting the free occurrences of u by M. An agent
expression A is said to be closed or a process if v(A) = (; the set of processes P is ranged over by
P,Q,.... Local names and environmental names occurring in A are denoted by In(A) and en(A),
respectively. A process P is initial if en(P) = (J. These notations are extended to terms, messages,
and tuples/string/sets of such objects, component-wise. We shall also use such abbreviations as

In(M, P,Q) to mean In(M) UIn(P)UIn(Q).

Example 2.1 (the wide-mouthed frog protocol, WMF [8]) Principals A and B share two
secret keys, kag and kpg respectively, with a server S. The purpose of the protocol is that of
establishing a new secret key k& between A and B, which A may use to send a confidential datum d
to B. For the sake of simplicity, we suppose that the protocol is always started by A. The protocol
and its translation in spi-calculus, WM F’| are described below:

1.A—S: Ak}r,e A ¢ al{{k}r, o). a2({d}x). A’

2.5 — B: {k}ips s & sl(z).casezof {z'}k, . ins2({2'}x,e). 0

3.A— B: {d}&. B % bl(y).caseyof {y }rpsinb2(z).case zof {2’} in B
wME % A1s]B.

Agents A" and B’ represent the behaviour of A and B, respectively, after the protocol has been
completed. The above description just accounts for a single instance of the protocol. The case of
n > 1 instances is described by composing n copies of A, S and B in parallel and then appropriately
renaming the instance-dependent quantities (k, d, n4 and ng above).

Operational semantics The semantics of the calculus is given in terms of a transition relation
—, which we will sometimes refer to as ‘concrete’ (as opposed to the ‘symbolic’ one we shall
introduce later on). We will find it convenient to model a state of the system as a pair (s, P), where,
s records the current environment’s knowledge (i.e. the sequence of messages the environment has
“seen” travelling on the network up to that moment) and P is a process. Similarly to [3, 4, 9],
we characterize the messages that the environment can produce (or deduce) at a given moment,

(AX) MeS (ENV) a€éN
SFM Stkoa
S+ (M,N) S+ (M,N) SFM SEN
(PrOJ;) —— (PrOJy) —— (PAIR)
SEM SFN S+ (M,N)

S F {M}, Sk u SEFM Sk u

(DEC) (Enc)
SEM S EA{M},

Table 2: Deductive system ()

starting from the current knowledge s, via a deductive system. These concepts are formalized
below.

Definition 2.2 (the deductive system) Let S Cg, M and M a message. We let & be the
least binary relation generated by the deductive system in Table 2. If S = M we say that S can
produce M.

Note that, whatever S, the set of messages that S can produce is infinite, due to rules KNV, PAIR
and ENC. An action is a term of the form a(M) (input action) or a(M) (output action), for a a label
and M a message. The set of actions Act is ranged over by «, 3, ..., while the set Act* of strings
of actions is ranged over by s, s, String concatenation is written ‘>. We denote by act(s) and
msg(s) the set of actions and messages, respectively, appearing in s. A string s is closed if v(s) =0
(note that s does not contain binders) and initial if en(s) = (. In what follows, we write s = M
for msg(s) F M. We are now set to define traces, that is sequences of actions that may result from
the interaction between a process and its environment. In traces, each message received by the
process (input message) is deducible from the knowledge the environment has previously acquired.
In configurations, the latter is explicitly recorded.

Definition 2.3 (traces and configurations) A trace is a closed siring s € Act* such that for
each sy, sy and a(M), if s = sy -a(M) - sy then s; = M.

A configuration, written as (s, P), is a pair consisting of a trace s and a process P. A
configuration is initial if en(s, P) = (. Configurations are ranged over by C,C’,. ... <&

The concrete transition relation on configurations is defined by the rules in Table 3. Each action
taken by the process is recorded in the first component of the configuration (thus a ‘labelled’
transition relation is not needed). Rule (INP) makes the transition relation infinite-branching, as
M ranges over the infinite set {M : s = M, M closed }. Another point worth to notice is that
decryption with key & is achieved by matching the term to decrypt against a pattern {y}x, where
y is a fresh variable (rule (Caskg)). Finally, no handshake communication is provided (rule (PARr)):
all messages go through the environment.

3 Trace analysis

Given a configuration (s, P) and a trace s', we say that (s, P) generates s, written (s, P) N\, ¢,
if (s, P) —* (s, P') for some P'. Given a string of actions s € Act*, and actions a and 3,
we say that « occurs prior to 8 in s if whenever s = ¢’ - 3. 5" then a € act(s’). We let p range

(INP) (s, a(z). P) —> (s-a(M), P[Mjz]) s+ M, M closed
(Out) (s, a(M).P) —s (s -5(M), P)
(Casr) (s, case {(}gof {y}xin P) —> (s, P[Sfy])
(SELECT) (s, pair (¢,) of (z,y)in P) — (s, P[S/z, y])
(Marcn) (s, [(=(]P) — (s, P)

(s, P) — (s', P")

(PAR)
(s, PIQ) — (s', P'|Q)

plus symmetric version of (PAR).

Table 3: Transition relation (—).

over ground substitutions, i.e. finite maps from a set dom(p) C V to closed messages; tp denotes
the result of replacing each z € v(¢t) N dom(p) by p(z). The properties of configurations we are
interested in are defined below.

Definition 3.1 (properties and satisfaction relation) Let o and 3 be actions, with v(a) C
v(3), and let s be a trace. We write s = « <> [, or s satisfies o <= (3, if for each ground
substitution p it holds that ap occurs prior to fp in s. We say that a configuration C satisfies
a > 3, and write C |= o < 3, if all traces generated by C satisfy a < (. &

Note that the variables in o and § can be thought of as being universally quantified (so any
consistent renaming of these variables does not change the set of traces and configurations that
satisfy a «= 3). In practice, the scheme « = 3 permits formalizing all forms of authentication in
Lowe’s hierarchy [14], except the most demanding one (but can be easily modified to include this
one as well). As we shall see, the scheme also permits expressing secrecy as a reachability property,
in the style of [3]. To this purpose, it is convenient to assume a fixed ‘absurd’ action L that is
nowhere used in agent expressions. Thus the formula 1 <> a expresses that action a should never
take place, and can be used to encode reachability.

Example 3.2 (authentication and secrecy in WMF) We discuss the use of properties on the
simple protocol WM F' (Example 2.1), but our considerations are indeed quite general.

A property of WMF that one would like to check is the following: if B accepts as ‘good’ a
datum d encrypted under key k (step 3), then this message has actually been sent by A. This
is a form of authentication. In order to formalize this particular property, we make B explicitly
declare if, at the end of the protocol, a particular message has been accepted. That is, we consider

the process Buu & b1(y).caseyof {y/} 15, inb2(2).casezof {2/}, in (B’ | accept(z).0) instead of

B, and WMFE,,;, def 4 | S| Bautn instead of WMF. We have to check that, in every trace of

W MF,,;1,, every accept is preceded by the corresponding a2. More formally, we have to check that
(e, WM Fyun) | a2(t) <= accept(t) (where ¢ is any variable).
Another important property is secrecy: the environment should never learn the confidential

datum d. Following [3], we can formalize this property by considering a version of WM F that also

includes a ‘guardian’ listening to the public network: WM Fi.., ety p | guard(z). 0. Evidently,

WMF generates a trace s s.t. s I d (i.e. the environment learns d) if and only if (¢, WM Fi..,.)
generates a trace containing action guard(d). Thus, we have to check that action guard(d) never

takes place, i.e. that (¢, WM Fs...) = L = guard(d). Similarly, we can verify that the session
key k is never compromised by checking that (¢, WM F,..,) E L <= guard(k). Using small
transformations of this kind, we can, e.g., check that compromise of the session key k does not
compromise the long-term keys kag, kBs.

4 Symbolic semantics

‘Concrete’ traces and configurations can be given a symbolic counterpart, which may contain free
variables.

Definition 4.1 (symbolic traces and configurations) A symbolic trace is string ¢ € Act*
such that: (a) en(o) =0, and (b) for each o1, 09, @ and z, if 0 = 01 -+ 03 and z € v(a) — v(0o7)
then « is an input action. Symbolic traces are ranged over by o,0',. . ..

A symbolic configuration, written (o, A),, is a pair composed by a symbolic trace o and an

agent A, such that en(A) =0 and v(A) C v(0o). <&

Note that, due to condition (b) in the definition, e.g. a(z) - a({h},) is not a symbolic trace, while
a({h},)-a(z) is. Let us now recall some standard terminology about substitutions. A substitution
6 is a finite partial map from V to M and, for any object (i.e. variable, message, process, trace,...)
t, we denote by ¢ the result of applying 6 to t. A substitution 8 is a unifier of t1 and ty if 10 = t56.
We denote by mgu(ty,t2) a chosen most general unifier (mgu) of 1 and t3, that is a unifier 8 such
that any other unifier can be written as a composition of substitutions 86’ for some #’.

The transition relation on symbolic configurations, —, , is defined by the rules in Table 4.
There, a function new,,(-) is assumed such that, for any given V' Cg, V, new,, (V) is a variable
not in V. Note that, differently from the concrete semantics, input variables are not instantiated
immediately in the input rule (INP,). Rather, constraints on these variables are added as soon as
they are needed, and recorded via mgu’s. This may occur due to rules (CASE,), (SELECT,) and
(MaTcH,). In the following example, after the first step, variable z gets instantiated to name b
due to a (MATCH,)-reduction:

(¢, a2).[e=0]P); — (alz), [# =b]P); — (alb), PL])s .

The side condition on B’ in (PAR) ensures that constraints are propagated across parallel compo-
nents sharing variables, like in the following (MATCH,)-reduction: (o, [z = M]A | a(z). B)), —,
(o[Mfe], ADMp] | 3(M). BIME]),.

Whenever (o, A), — (o', A"); for some A’, we say that (o, A), symbolically generates o,
and write (o, A), \ o'. The relation —> is finite-branching. This implies that each configu-
ration generates a finite number of symbolic traces. It is important to stress that many symbolic
traces are in fact ‘garbage’ — jumbled sequences of actions that cannot be instantiated to give a

concrete trace. This is the case, e.g., for the trace a({z}) - a(z), which is symbolically generated

by (e, P),, where P def a(y).caseyof {z},ina(z).0. To state soundness and completeness of —,
w.r.t. —, we need a notion of consistency for symbolic traces, given below.

Definition 4.2 (solutions of symbolic traces) Given a symbolic trace o and a ground substi-
tution p, we say that p satisfies ¢ if op is a trace. In this case, we also say that op is a solution
of o, and that o is consistent. <&

Theorem 4.3 (soundness and completeness) Let C be an initial configuration and s a trace.
Then C N\, s if and only if there is 0 s.t. C \ ¢ and s is a solution of .

(INe,) (o, a(z). A)
(Out,) (o, aA(M). A), —s, (0 -3(M), A)
(Casry) (o, case {C}, of {z}uin A); — (06, A); 0 =mgu({C},, {z}.)

(SeLECT,) (0, pairCof (z,y)in A), —, (00, AB), 0 = mgu(¢, (z,y))

(Marcny) (o, [¢ = n]A), —, (o8, Ab), 6 = mgu((, 7)

(0, A)y — (o', A'),

(PAR;) B ' =Blifo' =0, BB =Bifc' =0
(0, A B)y — (o', A"| B'),

S

plus symmetric version of (PAR,). In the rules, it is assumed that:

(i) 2 = new, (V) — where V is the set of free variables in the source configuration,
(i) y = new,, (V U {z}) and

(iil) msg(o)d C M.

Table 4: Symbolic transition relation (—,)

Proor: By transition induction on — and —, , and then by induction on the length of traces.
O

Any given configuration generates only finitely many symbolic traces. Thus, by the previous
theorem, the task of checking C = a += 3 is reduced to analysing each of these symbolic traces in
turn. To do this, we need at least a method to tell whether any given symbolic trace is consistent
or not. More precisely, the previous theorem reduces the problem C = «a <> § to the following,
that will be faced in the next section.

Symbolic trace analysis problem (STAP) Given actions a, 8 (v(a) C v(f)) and a symbolic
trace o, check whether or not each solution s of ¢ satisfies a <= .

We write 0 = « <= (3 if the answer to STAP with o, a and § is ‘yes’. Note that STAP is a
non-trivial problem: one has to consider every solution of &, and there may be infinitely many of
them.

5 Refinement

As a first step towards devising a method for STAP, let us consider the simpler problem of checking
consistency of a symbolic trace. Existence of solutions (i.e. ground instances that are traces)
of a symbolic trace o depends on the form of input actions in ¢. For example, the symbolic
trace o9 = a(h) - b{({z};) (b # k) has no solution, because no matter which m is substituted
for z, we have {h} t/ {m}x. On the contrary, in oy = (k) - c({z}), instantiating = with any
environmental name a € EAN will give a solution, because {k} F {a};. Yet a different case is
oy = c({a}g) - €({b}x) - c({z}x). Since {{a}r, {b}r} I/ k, there are only two ways of getting a
solution of og9: to unify {z}; with either {a}r or {b}r. These examples suggest that it should
be possible to check consistency of a symbolic trace by gradually instantiating it until a trace is
obtained. We will call this process refinement. In order to formalize this concept, we first need
to lift the definition of ‘trace’ to the non-ground case. This requires a few more notations and
concepts.

In refinement, we shall consider both ordinary variables and marked variables; roughly, the
latters can only be instantiated to messages that the environment can produce. This is made
precise in the sequel. We consider a new set V of marked variables, which is in bijection with
VY via a mapping *: thus variables z,y, z,... have marked versions &, ¢, 2,.... Marked messages
are messages that may also contain marked variables, and marked symbolic traces are defined
similarly. The deduction relation is extended to marked messages by adding the new axiom

iey

(MvAR)
Sk z
to the system of Table 2. For any # and any sequence o, we denote by o\ the longest prefix of o
not containing &. The satisfaction relation is extended to marked symbolic traces as follows:

Definition 5.1 Let o be a marked symbolic trace and p be a ground substitution. We say that p
satisfies o if op is a trace and, for each & € v(o), it holds that (c\Z)p & p(2). We also say that
op is a solution of o, and that o is consistent. <&

The terminology introduced above agrees with Definition 4.2 when o does not contain marked
variables. We can give now the definition of solved form, that lifts the definition of trace to the
non-ground case (note that this definition is formally the same as Def. 2.3)

Definition 5.2 (solved forms) Let o be a marked symbolic trace. We say o is in solved form
(sf) if for every oy, a(M) and oy s.t. 0 = oy -a({M) - oy it holds that o, = M. &

Solved forms are consistent: the next lemma gives us a specific way to instantiate a solved form
80 as to get a trace.

Lemma 5.3 Let 0 be in solved form and let p be any substitution from v(o) to EN. Then p
satisfies o.

A key concept of refinement is that of decomposing a message into its irreducible components,
those that cannot be further split or decrypted using the knowledge of a given o.

Definition 5.4 (decomposition of messages) Let o be a marked symbolic trace.

e I(0) def {M : 0t M and either M € LN UY or M = {N}, for some u s.t. o t/ u }.

o The set [M], is defined by induction on M as follows:
[ul, = {u}—(VUEN)

(M, N)], = [M],U[N],
) {H{MAY o/
(M}, = { [M], ifo bt u

&

The irreducible components of o, I(o), are the building blocks of messages that can be produced
by o. This is the content of the next proposition, that makes the relationship among I(o), [M],
and F precise.

Proposition 5.5 Let o be a marked symbolic trace. Then o = M if and only if [M], C I(o).

1"

Let o be a marked symbolic trace, and assume o = ¢’ - a(M) - 6", where ¢’ is the longest prefix

of ¢ that is in solved form. Assume N € [M],» — I(o).

N ¢V, N €4 I(o'), y={z|z €v(o) and (cf)\z is shorter than o\z}

(REFl) i~
o = oblifj)

N=zor N={N'},

(REF2) -
o = of#a]

Table 5: Refinement (>)

There are two points worth noting with respect to the above proposition. First, I(¢) is finite
and can be easily computed by an iterative procedure, thus the proposition gives us an effective
method to decide ¢ = M this also implies that the set of solved forms is decidable. Second, the
proposition suggests a strategy for refining a generic ¢ to a solved form: for any input message M
in o, one tries to make the condition [M],: C I(o’) true, for the appropriate prefix o’ of 0. We are
now ready to define refinement formally. In the sequel, we shall use the following notations. We
write ‘t €9 S’ for: there is ¢ € S s.t. § = mgu(t,t'); when 7 is a set of variables, we denote by [¥/y]
the substitution that for each z € ¥ maps % to x.

Definition 5.6 (refinement) We let refinement, written >, be the least binary relation over
marked symbolic traces generated by the two rules in Table 5. <&

Rule (REF;) implements the basic step: an element N in the decomposition of M gets instantiated,
via 6, to an irreducible component of some past message (to be found in I(¢’)). E.g., consider
again the above o2 = €({a}r) - €({b}r) - c({z}k): its possible refinements are oy > 02[%z] and
oy = 09[Vz], and the refined traces are in sf. By rule (REF;), one may deem a variable marked.
Sometimes marked variables need to be ‘unmarked’ back to variables, and this is achieved via the
renaming [Jy] in (REF;).!

Refinement is repeatdly applied until some solved form is reached. It is important to realize
that the reflexive and transitive closure (>)* is a non-deterministic relation, and that not all
sequences of refinement lead to a solved form. However, the set of possible solved forms reachable
from o completely characterizes the set of solutions of o. Formally, for any symbolic trace o, we
let SF(0) def {o’|o (>)* 0’ and ¢’ is in sf}. Then we have the following theorem (The proof is
reported in the appendix).

Theorem 5.7 (characterization of solutions) Let o be a symbolic trace and s a trace. Then
s is a solution of o if and only if s is a solution of some o' € SF(o).

By the above theorem and Lemma 5.3, we obtain:
Corollary 5.8 A symbolic trace o is consistent if and only if SF(c) # 0.

Note that SF(o) can be effectively computed, and is always finite, as: (a) > is finitely-branching
relation, and (b) infinite sequences of refinement steps cannot arise. As to the latter point, note
that, since each (REF;)-step eliminates at least one variable, any sequence of refinement steps can

"Unmarking of & occurs in a (REF;)-step if the prefix o\& gets shorter, like in: a({a}x) - a(2) - a({z}n) - a(k) -
al{is) - a(l{i}obn) > alabe) -a({ed) -a({{ekbn) - a(K) - al{abe) - a({{z}y n), where {{2}}n gets unified with

{z}n.

contain only finitely many (REF;)-steps, after the last of which rule (REF;) can only be applied
a finite number of times. Thus, computing SF(o) is a method to decide consistency of symbolic
traces. This also suggests a method for solving STAP. As an example, suppose that we want to
check the property o &= L <> «, that is, no solution of ¢ contains an instance of «. Then we can
proceed as follows: for each action v in o, we check whether there is a mgu # that unifies v and «;
if such a # does not exist, or if it exists but ¢ is not consistent (i.e. SF(¢6) = 0, Corollary 5.8),
then the property is true, otherwise it is not. Considering the general case a <= 3 leads us to the
next theorem, which gives us an effective method to check o = o <= 3. Its proof relies on Theorem
5.7 and on Lemma 5.3, plus routine calculations on mgu’s.

Theorem 5.9 (a method for STAP) Let o be a symbolic trace and let pr = a < 3, where
v(ia) Cv(p) and v(B)Nv(c) = 0. Then o |= pr, if and only if the following is true: for each 6
such that o €g act(o) and for each o' € SF (o), say o' = 066', it holds that a8’ occurs prior to
366" in o’.

The above theorem immediately yields decidability of STAP, because there are finitely many mgu’s
6 to consider (at most one for each action in o), and SF(o) can be effectively computed. This
result lifts of course to configurations.

Corollary 5.10 (decidability) Let C be an initial configuration and o <= [be a property. It is
decidable whether C |= o <= 3 or not.

Proor: Compute {o | C symbolically generates ¢}, which is finite, and then check whether or not
for each o in this set it is the case that o = « ¢ §, which can be effectively done. The thesis is a
consequence of Theorem 4.3. O

In a practical implementation, rather than generating the whole set of symbolic traces of a given
configuration and then check the property, it is more convenient to generate the symbolic traces
‘on-the-fly’: every last symbolic action + taken by the configuration is compared against action 3
of the property « <= 3; only when 8 and ~ are unifiable the refinement procedure SF(-) is invoked.
This also the way our implementation works [6]. If (o, P) £ o < 3, this method allows one
to compute a trace violating the property, that is, an attack on (o, P). We will see a detailed
example of this in Section 7.

6 Restriction

We consider extending the base language via the restriction operator (new a) A, where a € LN and
A an agent; (new a) is binder for name a. The intended meaning of (new a)A is that a new name a
is created, which is private to A. The concrete and symbolic rules for restriction are given below.
A function new, (-) is assumed that, for any set of names V' Cg, LN, yields a local name a ¢ V.

(NEW) (s, (newa)P) — (s, P) a =new,,. (V)

(NEW,) (o, (newa)A), —, (o, A); @ =new,, (V)
In both rules, V is the set of local names occurring free in the source configuration. Note that the
side-condition on name «a is always met modulo alpha-renaming. A change is required in the rules
for parallel composition A | B, both in the concrete and in the symbolic case: in the conclusion,
an additional renaming [%a] (where @ = new ,, (In(o, A)) and b = new ., (In(o, A| B))) is applied
onto the target configuration: this prevents a new name a possibly created by a (NEW)-transition
of A from clashing with free occurences of @ in B (this is just the side-condition of the rule (PAR)
of the m-calculus [18] rephrased in our language).

10

We remark that, in the absence of recursion/replication, restriction is a handy renaming device,
but has little semantical relevance, as its effect can be achieved by a statical renaming of names. On
the other hand, adding recursion/replication makes trace analysis undecidable, as already noted.

7 An example

We consider a variant of the Otway-Rees protocol [8], which is designed to let any two agents A
and B establish a private session key &, with the help of an authentication server S. The protocol
may be described informally as follows:

1. A—-B TLA,A, B, {nA,A,B}kA

2. B—>S TLA,A, B, {nA,A,B}kA, ng, {TLA,A,B}kB
3. S—B : TLA,{k',TLA}kA,{k,TLB}kB

4 B— A : nA,{k,nA}kA.

Here, k4 and kg represent the long-term keys that A and B, respectively, share with the server S,

while n4 and npg are fresh nonces. The formal description of the protocol is in Table 6. We assume
three participants named A, B and [. [is a malicious insider: in other words, the hostile envi-
ronment has registered itself as a legitimate participant having name [and long-term key k7. The
identity of each participant is known to the others, and each participants may act as the initiator
or as the responder of a given round. We have added an action ‘accept;, ..’ that the initiator in
performs when he believes to have successfully completed a round with a responder re. To make
the description more readable some obvious meta-notation is used. In particular, we abbreviate
Av| oo | Ap as gy, 3 A’ We have also eliminated parentheses in pairs, and used abbrevi-
ations like ‘a({M, N},). A in place of a(z).casex of {z'}, in (pair 2’ of (y, z) in ([y = M][z = N]A)).
Subscripts in input variables are meant to remind the reader their expected values, bearing in mind
that “n’ stands for ‘initiator’, ‘re’ for ‘responder’,‘n’ for ‘nonce’, ‘¢’ for ‘certificate’ (messages of
the form {--}x), ‘K’ for ‘key and ‘f’ for ‘forward’. For 1nstance, the expected value for y,.., is
the responder’s nonce (ng in the informal description above). The initial environment’s knowledge
is given by the message in «y.

This version of the procol is subject to a subtle form of attack [19]. A message accepted by A
acting as the initiator at step 4 should originate from B, if B is the intended responder. Formally,
we wish that C |= b’4(z) <= accept 4 g(z) holds true. However, this is not the case: the intruder /
can place itself between A and the rest of the world and eventually convince A to have completed
a run of the protocol with B. As a result, A believes he shares a session key with B, while the
session key is actually shared with the intruder. The attack involves two interleaved executions of
the protocol, one in which A acts as the initiator and one in which A acts as the responder. In
more detail, C generates the symbolic trace ¢ = ap - oy - - - a7, where:

a; = al <TLA,A B {nA,A,B}kA> as = s2 <Zin.n;{kazin.n}kz){kazre.n}kA>
g = al <y1,n ny Yin, ;yinAc> dg = a2 <n’A){rkﬂn’A}kA>

as = a2 (Yinn,Yin, A, Yin ey Wy, {Yinn, Yin, Alks) a7 = accepty g(na, {zk,nalr,)

g = S]- <Zzn ny 1, A {Zzn ny 1, A}k‘”zre n;{zzn ny 1, A}k‘A>

To see that o [~ b/4(z) < accepty g(z), it is sufficient inspect the solved form o’ obtained
by refining o: the key steps are unifying {zipn, I, A}x, in s with {yinn, Yin, A}k, in ag, and
{zr,na}r, in ag with {k, z,c,}r, in as. By instantiating the variables remaining in ¢’ to an
arbitrary a € EN we can get a ground trace s generated by C in the concrete semantics

s = €<A;B;[; k[> . H<TLA;A;B;{TLA;A;B}R:A> : a/1<ga IJAJQ> . E<gﬁ [ﬁAﬁg’ n;\’{g’ I’A}kA>.
M{Q; [,A}k-”nA,{Q;I;A}k‘A> . SQ(Q,{k;Q}k};{kaTLA}k‘A> . aQ(nA;{k;nA}k‘A> .
acceptAyB<nA,{k;nA}kA>

that violates the property and shows what has happened: the environment uses the nonce n4
obtained from action al, and the certificate {a, I, A}, from a’2 to make S produce a session key

11

def —
A = Hxeqr,By (newna) (al(nA,A, X, {na, A, X}1,). a

2

accept, x(na, {nA,l’k}kA>~0)

" (neW TL;\) (all(yin.n; Yin, A; yin.c)~a/2<yin.n; Yin, Aa Yin ¢, n;\’ {yin.n; Yin, A}kA>'
313(yin.n) Yrs {yk‘ﬁ n;\}k‘A) al4<yi”-”’ yf) 0)

(nAa {l‘k, nA}kA)'

B is like A, but ‘b ’ replaces ‘a ’ in labels, and the roles of ‘B’ and ‘A’ are swapped.
def
S :e Sl(zin.n; Ziny Rre; fin.cy fre.n, er.c)~HXE{A7BJ} [Zzn = X] HYE{A,B,I}—{X} [Zre = Y]
(case Zin.c Of {Zin.n, X, Y }ix incase zy¢ ¢ of {zin n, X, Y }iy in
(neW k)§<zmn; {k, Zinntex, 1k, Zin.n}ky>- 0)
OR %' (newka, kp)(A] S| B)

C = (ag, OR) where ag d:efé(A, B,1,k;) (A, B, I and kj distinct local names)

Table 6: The Otway-Rees protocol

k, which A believes is in response to his message al (hence shared with B), but which is actually
shared with the environment. We have found the symbolic trace & above manually, being guided
by previous knowledge of the protocol and of the attack (see e.g. [19]). However, automatic
exhaustive search of the symbolic traces generated by C is perfectly feasible. When fed with this
example, our tool found the attack in a few seconds [6].

8 Conclusions

We have presented a symbolic method for analysing cryptographic protocols. The method is well
suited for an efficient mechanization. The word ‘efficient’ should be taken with a grain of salt here,
because the trace analysis problem is NP-hard [4, 10], thus pathological examples are unavoidable.
However, we expect the method to perform well in practical cases; this is further discussed below.
Experiments conducted with a preliminary, non optimized implementation have given encouraging
results [6]. Developments in the near future include an optimized implementation of the method
and extension of the present results to other cryptographic primitives, like public key and hashing:
this should not present conceptual difficulties, though we have not checked the details yet.

Approaches based on symbolic analysis have also been explored by Huima in [12] and Amadio
and Lugiez [4]. In [12], Huima presents a symbolic semantics by which the execution of a protocol
generates a set of equational constraints; only an informal description is given of the kind of
equational rewriting needed to solve these constraints. Amadio and Lugiez in [4] consider a variant
of the spi-calculus equipped with a symbolic semantics. Similarly to Huima’s, their symbolic
semantics generates equational constraints of a special form, rather than unifiers. The (rather
complex) constraint-solving procedure is embedded into symbolic execution, and uses a brute-
force method to resolve variables in key position (all possible instantiations of variables to names
that are around are tried). These factors have a relevant impact on the size of the symbolic
model. On the contrary, in our case symbolic execution and consistency check are kept separate,
and this permits to keep the size of the model to a minimum. As explained in Section 5, the
consistency check procedure (refinement) is invoked only when necessary, and does not use brute-
force instantiation. Finally, Amadio and Lugiez encode authentication via reachability: this may
add to the complexity of their method.

Model checking [9, 13, 20, 22] and theorem proving [17, 19] seem to be among the most successful
approaches to the formal analysis of security protocols. As Paulson has pointed out [19], theorem
proving is intuitive, but, within it, verification is not fully automated and general completeness

12

results are difficult to establish. On the contrary, model checking is automatic, but suffers from the
state explosion problem, which requires the model to be cut down to a convenient finite size. Our
paper might be regarded as an attempt at bridging the two approaches. We extract the unification
mechanism underlying theorem proving and bring it on the ground of a process language (a variant
of the spi-calculus) that naturally supports a notion of variable binding. This allows us to obtain
precise completeness results for trace analysis.

References

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Abadi, A.D. Gordon. A calculus for cryptographic protocols: The spi calculus. Information and
Computation, 148(1):1-70, 1999.

M. Abadi, A.D. Gordon. A Bisimulation Method for Cryptographic Protocols. Nordic Journal of Com-
puting, 5(4):267-303, 1998.

R. Amadio, S. Prasad. The game of the name in cryptographic tables. RR 3733 INRIA Sophia Antipolis.
In Proc. of Asian’00, LNCS, 2000.

R.M. Amadio, S. Lugiez. On the reachability problem in cryptographic protocols. In Proc. of Concur’00,
LNCS, 2000. Full version: RR 3915 Inria Sophia Antipolis.

M. Boreale. Symbolic analysis of cryptographic protocols in the spi-calculus. Manuscript, 2000. Avail-
able at http://www.dsi.unifi.it/ boreale/papers.html.

M. Boreale. STA: a tool for trace analysis of cryptographic protocols. ML object code and examples,
2001. Available at http://www.dsi.unifi.it/ boreale/tool.html.

M. Boreale, R. De Nicola, R. Pugliese. Proof Techniques for Cryptographic Processes. In Proc. of
LICS’99, IEEE Computer Society Press, 1999.

M. Burrows, M. Abadi, R.M. Needham. A logic of authentication. Proc. of the Royal Society of London,
426:233-271, 1989.

E.M. Clarke, S. Jha, W. Marrero. Using state exploration and a natural deduction style message
derivation engine to verify security protocols. In Proc. of the IFIP Working Conference on Programmaing

Concepts and Methods (PROCOMET), 1998.

N. Durgin, P. Lincoln, J. Mitchell; A. Scedrov. Undecidability of bounded security protocols. In Proc.
of Workshop on Formal Methods and Security Protocols, Trento, 1999.

D. Dolev, A.C. Yao. On the security of public key protocols. In IEEE Transactions on Information
Theory 29(2):198-208, 1983.

A. Huima. Efficient infinite-state analysis of security protocols. In Proc. of Workshop on Formal Meth-
ods and Security Protocols, Trento, 1999.

G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. In Proceedings
of TACAS’96, (T. Margaria, B. Steffen, Eds.), LNCS 1055, pp. 147-166, Springer-Verlag, 1996.

G. Lowe. A Hierarchy of Authentication Specifications. In 10th IEEE Computer Security Foundations
Workshop, TEEE Computer Society Press, 1997.

G. Lowe. Towards a completeness result for model checking of security protocols. In 171th Computer
Security Foundations Workshop, TEEE Computer Society Press, 1998.

D. Marchignoli, F. Martinelli. Automatic verification of cryptographic protocols through compositional

analysis techniques. In Proc. of TACAS99, LNCS 1579:148-163, 1999.

C. Meadows. The NRL protocol analyzer: An overview. In Proc. of the 2nd Conference on the Practical
Applications of Prolog, 1994.

R. Milner, J. Parrow, D. Walker. A calculus of mobile processes, (Part I and II). Information and
Computation, 100:1-77, 1992.

13

[19] L.C. Paulson. Proving Security Protocols Correct. In Proc. of LICS’99, TEEE Computer Society Press,
1999.

[20] A.W. Roscoe. Modelling and verifying key-exchange using CSP and FDR. In 8th Computer Security
Foundations Workshop, IEEE Computer Society Press, 1995.

[21] A.W. Roscoe. Proving security protocols with model checkers by data independent techniques. In 11th
Computer Security Foundations Workshop, IEEE Computer Society Press, 1998.

[22] S. Schneider. Verifying Authentication Protocols in CSP. IEEE Transactions on Software Engineering,
24(8):743-758, 1998.

[23] S. Stoller. A reduction for automated verification of security protocols. In Proc. of Workshop on Formal
Methods and Security Protocols, Trento, 1999.

14

A Proof of Theorem 5.7

Lemma A.1 Let 6 be a marked symbolic trace and suppose that p satisfies o. Than either o is
in sf, or there are o' and p' such that o = o', op = o'p’ and p' satisfies o'.

PRrOOF: The proof is based on the following three facts, whose proof is relatively straightforward
and omitted. Let o be in solved form and suppose p satisfies o. Then:

(a) for each name k, op F kiff o F k;

(b) T(op) = I(o)p:
(c) if op = Mp and N € [M], then op = Np.

Now, suppose that o is not in sf, and let o1 be the longest prefix of ¢ which is in sf. This means
o = oy -a(M) - oy, for some M s.t. oy I M. By virtue of Proposition 5.5, we can pick some
N € ([M]o, = I(a1)).

Since p satisfies o, we must have o1p = Mp (as op is a trace), which, by virtue of fact (c)
above, implies g1p = Np. Now, depending on the form of NV, there are three cases:

o N = {N'}, for some N’ and k s.t. oy I/ k. By virtue of (a) above, o1p I/ k as well. Since
o1p F Np, we deduce that Np € I(o1p) = I(oy)p (fact (b)). Thus there is {N"}, € I(oy) s.t.
({N"}.)p = ({N'}x)p. Therefore, there exists § = mgu({N"},, {N'}) and p is an instance

def o~ ~

of # as a substitution. By rule (REF), 0 > ¢’ = o8[¥/y], for an appropriate renaming [¥/y].
Furthermore, p = 8[Yfy]p’, for some ground substitution p’. Also note that, thanks to the
renaming [¥/y], for each & € v(o’), 0’\# is not longer than o\#, and this guarantess that p’

satisfies o’. Thus we have found ¢’ and p’ as required by the statement of the lemma.

e N = {N'},, for some z and N'. If o1p F p(x), then we can apply (REFz2), and define
o L o[%/x] and p’ def [*/z]p, and the thesis will follow. If o1p t/ p(2) = k, then we can

proceed like in the previous case.
e N =2z. Then oyp - p(z), and we can apply (REF3).

O

Theorem A.2 (Theorem 5.7) Let o be a symbolic trace and s a trace. Then s is a solution of
o if and only if s is a solution of some o' € SF(o).

PROOF: Suppose s = o'p is a solution of ¢’: then obviously s is a solution of o, as ¢’ = 0¥,
for some 8. On the converse, suppose s = ap is a solution of . By repeated application of the
previous lemma, we find that there is ¢’ in solved form and p’ s.t. that ¢ > *o', s = op = o'p/
and p’ satisfies ¢’. Hence, by definition, s is a solution of o’. O

15

