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Maximum Likelihood Theory

In our lessons, we will cover the following topics:

Likelihood function

Score vector

Fisher information matrix

Information matrix equality

Cramer-Rao inequality

Maximum Likelihood estimate/estimator

Invariance

Consistency

Asymptotic normality

Asymptotic efficiency

Three ”classical” tests based on the Likelihood
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Probabilistic model

Consider an observable random phenomenon that we want to
study. Suppose that this phenomenon can be appropriately
described by a random variable X with probability density function
(pdf ) (or probability mass function (pmf )) belonging to the family

Φ = {f (x ; θ); θ ∈ Θ}

where Θ is a subset of the k-dimensional Euclidean space Rk called
the parametric space. The family Φ is a probabilistic model.

A probabilistic model is a family of probability density functions (or
probability mass functions in the case of discrete distributions)
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Gaussian model

Φ =

{
f (x ; θ) =

1√
2πσ2

e−
1
2(

x−µ
σ )

2

; θ = (µ, σ2)′ ∈ Θ = R× R+

}
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Bernoulli model

Φ =
{
f (x ; θ) = θx(1− θ)1−x ; θ ∈ Θ = (0, 1)

}
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Poisson model

Φ =

{
f (x ; θ) =

e−θθx

x!
; θ ∈ Θ = (0,∞)

}
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Probabilistic model

Since the functional form of the density functions of the
probabilistic model is known, we have that all the uncertainty
concerning the random phenomenon is that concerning the
parameter θ.

In order to get information on θ, we will consider a sample. What
is a sample?
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Sample

Definition 1. Let Xn = (X1,X2, ...,Xn)
′ be a vector of n random

variables identically distributed with pdf (or pmf ) belonging to the
family

Φ = {f (x ; θ); θ ∈ Θ} .

We say that Xn = (X1,X2, ...,Xn)
′ is a sample of size n from

f (x ; θ). The distribution of the sample Xn = (X1,X2, ...,Xn)
′ is the

joint distribution of the random variables X1,X2, ...,Xn denoted by

f1,2,...,n(xn; θ) = f1,2,...,n(x1, x2, ..., xn; θ)

If the n random variables X1,X2, ...,Xn are independent, we say
that Xn = (X1,X2, ...,Xn)

′ is a random sample of size n from
f (x ; θ). In this case, we have that

f1,2,...,n(x1, x2, ..., xn; θ) = f (x1; θ)f (x2; θ)...f (xn; θ) =
n∏

i=1

f (xi ; θ)
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An example

Let Xn = (X1,X2, ...,Xn) be a random sample from a N(µ, σ2)
distribution with µ and σ2 unknown.
In this case

f (xi ; θ) =
1√
2πσ2

e
− 1

2

(
xi−µ

σ

)2

for i = 1, 2, ..., n

where θ = (µ, σ2)′ ∈ R× R+, and the joint distribution of the
random sample is

f1,2,...,n(xn; θ) =
n∏

i=1

1√
2πσ2

exp

{
−1

2

(
xi − µ

σ

)2
}

=

(
1√
2πσ2

)n

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
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Likelihood Function

Definition 2. Let Xn = (X1,X2, ...,Xn) be a sample of size n from
f (x ; θ), θ ∈ Θ. Given a realization

xn = (x1, x2, ..., xn)

of the sample Xn = (X1,X2, ...,Xn), the function

L : Θ → [0,∞)

defined by L(θ; xn) = f1,2,...,n(xn; θ) is called the likelihood
function.

Thus, the likelihood function L(θ; x) is the function f1,2,...,n(xn; θ),
viewed as a function of the parameter θ with xn = (x1, x2, ..., xn)
fixed.

Umberto Triacca Lesson 1: The Likelihood Function



Likelihood Function

We note that if
xn = (x1, x2, ..., xn)

is the realization of a random sample Xn = (X1,X2, ...,Xn), then

f1,2,...,n(xn; θ) =
n∏

i=1

f (xi ; θ) = f (x1; θ)f (x2; θ)...f (xn; θ)

and hence

L(θ; xn) =
n∏

i=1

f (xi ; θ)
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An example

Let xn = (x1, x2, ..., xn) be a realization of a random sample
Xn = (X1,X2, ...,Xn) from an N(µ, σ2) distribution with µ and σ2

unknown.
In this case θ = (µ, σ2) ∈ R× R+, and the likelihood function is

L(µ, σ2; xn) =

(
1√
2πσ2

)n

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
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Another example

Let xn = (x1, x2, ..., xn)
′ be a realization of a random sample

Xn = (X1,X2, ...,Xn)
′ from a Bernoulli distribution with probability

mass function

f (x ; θ) =

{
θ if x = 1
1− θ if x = 0

The likelihood function is

L(θ; xn) = θx1(1− θ)(1−x1)θx2(1− θ)(1−x2)...θxn(1− θ)(1−xn)

= θ
∑n

i=1 xi (1− θ)(n−
∑n

i=1 xi )
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An example

Suppose that the realization of the random sample
xn = (x1, x2, ..., xn) is such that

n∑
i=1

xi = 71

with n = 100.

The likelihood function is

L(θ; xn) = θ71(1− θ)29
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An example
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Likelihood Function

Let xn = (x1, x2, ..., xn)
′ and x∗n = (x∗1 , x

∗
2 , ..., x

∗
n )

′ be two different
realizations of a random sample Xn = (X1,X2, ...,Xn)

′.

The likelihood function at the point

xn = (x1, x2, ..., xn)
′

is (generally) a different function from what it is at the point
x∗n = (x∗1 , x

∗
2 , ..., x

∗
n )

′, that is

L(θ; xn) ̸= L(θ; x∗n)
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Likelihood Function

Consider a realization x5 = (x1, x2, x3, x4, x5) of a random sample
X5 = (X1,X2,X3,X4,X5)

′ from a Bernoulli distribution with
parameter θ.

Suppose x5 = (1, 0, 1, 0, 1)′. The likelihood function is:

L(θ; (1, 0, 1, 0, 1)′) = θ3(1− θ)2

Suppose x5 = (1, 0, 1, 0, 0)′. The likelihood function is:

L(θ; (1, 0, 1, 0, 0)′) = θ2(1− θ)3

Suppose x5 = (1, 0, 0, 0, 0)′. The likelihood function is:

L(θ; (1, 0, 0, 0, 0)′) = θ(1− θ)4
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Likelihood Function

The likelihood function at the point xn = (x1, x2, ..., xn)
′ is

(generally) a different function from what it is at the point
x∗n = (x∗1 , x

∗
2 , ..., x

∗
n )

′, that is

L(θ; xn) ̸= L(θ; x∗n)

Generally, but not always!

Consider again two realizations of a random sample
X5 = (X1,X2,X3,X4,X5)

′ from a Bernoulli distribution,
x5 = (1, 0, 0, 0, 0)′ and x∗5 = (0, 0, 0, 0, 1)′. We have that x5 ̸= x∗5
but

L(θ; x5) = L(θ; x∗5) = θ(1− θ)4
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Likelihood Function

The likelihood function expresses the plausibilities of different
parameters after we have observed xn. In particular, for θ = θ∗,
the number L(θ∗; xn) is considered a measure of support that the
observation xn gives to the parameter θ∗.
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Likelihood Function

Consider a realization x5 = (x1, x2, x3, x4, x5) of a random sample
X5 = (X1,X2,X3,X4,X5)

′ from a Bernoulli distribution with
parameter θ.

Suppose x5 = (1, 1, 1, 1, 1)′ and consider two possible values of θ:
θ1 = 1/3 and θ2 = 2/3. The plausibility of θ1 is:

L(θ1; (1, 1, 1, 1, 1)
′) =

(
1

3

)5

= 0.004115226

The plausibility of θ2 is:

L(θ2; (1, 1, 1, 1, 1)
′) =

(
2

3

)5

= 0.1316872

Clearly
L(θ2; (1, 1, 1, 1, 1)

′) > L(θ1; (1, 1, 1, 1, 1)
′)
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Likelihood Function

Now, suppose x5 = (0, 0, 0, 0, 0)′. The plausibility of θ1 is:

L(θ1; (0, 0, 0, 0, 0)
′) =

(
2

3

)5

= 0.1316872

The plausibility of θ2 is:

L(θ2; (0, 0, 0, 0, 0)
′) =

(
1

3

)5

= 0.004115226

Clearly
L(θ1; (0, 0, 0, 0, 0)

′) > L(θ2; (0, 0, 0, 0, 0)
′).
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Likelihood Function

In summary, the likelihood function is a fundamental concept
in statistical inference that quantifies the plausibility of
different parameter values given a set of observed data.
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Key Concepts

Probabilistic model

Sample

Sample realization

Likelihood function
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The log-likelihood

Definition 3. Let Xn = (X1,X2, ...,Xn) be a sample of size n from
f (x ; θ), θ ∈ Θ. Given a realization

xn = (x1, x2, ..., xn)

of the sample Xn = (X1,X2, ...,Xn), the function

ℓ : Θ → R

defined by
ℓ(θ; xn) = lnL(xn; θ)

is called the log-likelihood function.

Log-likelihood function is a logarithmic transformation of the
likelihood function.
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The log-likelihood

We remember that if xn is a realization of a random sample, then

L(θ; xn) =
n∏

i=1

f (xi ; θ)

and hence

ℓ(θ; x) =
n∑

i=1

lnf (xi ; θ)
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An example

Let xn = (x1, x2, ..., xn) be a realization of a random sample from a
N(µ, σ2) distribution with µ and σ unknown.
In this case θ = (µ, σ2) ∈ R× R+, and the likelihood function is

L(µ, σ2; x) =

(
1√
2πσ2

)n

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}

=
1

σn(2π)
n
2

exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]

and the log-likelihood function is given by

ℓ(µ, σ2; x) = −nlnσ − n

2
ln2π − 1

2σ2

n∑
i=1

(xi − µ)2
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Score function

Definition 4. If the likelihood function, L(θ; x), is differentiable,
then the gradient of the log-likelihood

s(θ; x) =
δℓ(θ; x)

δθ
=

δlnL(θ; x)

δθ

is called the score function.

The score function can be found through the chain rule:

δℓ(θ; x)

δθ
=

1

L(θ; x)

δL(θ; x)

δθ
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An example

Let x = (x1, x2, ..., xn) be a realization of a random sample from a
N(µ, σ2) distribution.In this case θ = (µ, σ2) ∈ R× R+.The
log-likelihood function is given by

ℓ(µ, σ2; x) = −nlnσ − n

2
ln2π − 1

2σ2

n∑
i=1

(xi − µ)2

We have that
δℓ((µ, σ2), x)

δµ
=

Σ(xi − µ)

σ2

and
δℓ((µ, σ2), x)

δσ2
=

Σ(xi − µ)2

2σ4
− n

2σ2

Thus the score function is given by

s(θ; x) =

(
Σ(xi − µ)

σ2
,
Σ(xi − µ)2

2σ4
− n

2σ2

)′
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Score vector

Definition 5. Evaluating the score function at a specific value of θ
and replacing the fixed values x = (x1, x2, ..., xn)

′ by their
corresponding random variables X = (X1,X2, ...,Xn)

′, the score
function becomes a random vector

s(θ;X) =
δℓ(θ;X)

δθ
=

δlnf (X; θ)

δθ
.

We call this random vector score vector.
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Score vector

Which is the expected value of the score vector?

The expected value of the score vector evaluated at the true
parameter value equals zero.
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Score vector

Theorem 1. Let X = (X1,X2, ...,Xn) be a random sample from a
distribution with p.d.f. belonging to the family

Φ = {f (x ; θ); θ ∈ Θ}

and let θ0 be the true value of the parameter θ, then under certain
regularity conditions

E [s(θ0;X)] =

∫
δlnf (x; θ0)

δθ
f (x; θ0)dx = 0

Here the single integral
∫
...dx, is used to indicate the multiple

integration over all elements of x.
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Remark

We use often the phrase ‘under certain regularity conditions’.
What are these regularity conditions?

These conditions mainly relate to differentiability of the density
f (x ; θ) and the ability to interchange differentiation and integration

δ

δθ

[∫
f (x; θ)dx

]
=

∫
δf (x; θ)

δθ
dx
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Proof Theorem 1

Because f (x; θ) ∀θ ∈ Θ is a probability density function, we have
that: ∫

f (x; θ)dx = 1 ∀θ ∈ Θ (∗)

Thus, differentiating (*) w.r.t. θ we get

δ

δθ

[∫
f (x; θ)dx

]
= 0 (∗∗)

The regularity conditions guarantee that operations of
differentiation and integration can be interchanged. Thus, we have

δ

δθ

[∫
f (x; θ)dx

]
=

∫
δf (x; θ)

δθ
dx
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Proof Theorem 1

So, (**) can be rewritten as∫
δf (x; θ)

δθ
dx = 0 (∗ ∗ ∗)
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Proof Theorem 1

Because
δlnf (x; θ)

δθ
=

1

f (x; θ)

δf (x; θ)

δθ
.

we have that
δf (x; θ)

δθ
=

δlnf (x; θ)

δθ
f (x; θ)

and hence∫
δlnf (x; θ)

δθ
f (x; θ)dx = 0 ∀θ ∈ Θ. (∗ ∗ ∗∗)
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Proof Theorem 1

On the other hand, we have that∫
δlnf (x; θ0)

δθ
f (x; θ0)dx = E

[
δlnf (X; θ0)

δθ

]
= E [s(θ0;X)] .

By equation (****) it follows that

E [s(θ0;X)] = 0

The score vector evaluated at the true parameter value has mean
zero.
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Score vector

Remark. Consider a vector of parameters θ1 ̸= θ0. We have that,
in general,

E [s(θ1;X)]

can be different from the null vector 0

E [s(θ1;X)] =

∫
δlnf (x; θ1)

δθ
f (x; θ0)dx ̸= 0
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Score vector

The expected value of the score vector evaluated at the true
parameter value equals zero.

E [s(θ0;X)] = 0

But the expected value of the score vector evaluated at a
parameter different from the true parameter can be different from
zero

E [s(θ1;X)] ̸= 0
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Information matrix

Definition 6. The variance-covariance matrix of the score vector,
evaluated at the true parameter value,

Var [s(θ0;X)] = E
[
s(θ0;X)s(θ0;X)

′] = E

[
δlnf (X; θ0)

δθ

δlnf (X; θ0)

δθ′

]
is called Fisher information matrix for θ0 (or Fisher’s information
measure on θ0 contained in the r.v. X).

This matrix, denoted by In(θ0), measures the amount of
information about θ0 contained (on average) in a realization x of
the r.v. X.
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Information matrix

In summary, we have that

The Fisher information matrix is defined to be the variance
of the score vector evaluated at the true parameter value θ0

In(θ0) = Var [s(θ0;X)]

The Fisher information matrix is always positive semi-definite. It
can be shown that the Fisher information matrix of regular
probability distributions is positive definite, and therefore always
invertible.
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Information Number

If
θ ∈ Θ ⊂ R

θ is scalar and the information matrix becomes a scalar that we
call information number.

In(θ0) = E

[(
δlnf (X; θ0)

δθ

)2
]
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The Hessian of the log-likelihood

Consider the Hessian of the log-likelihood

H(x; θ) =
δ2lnf (x; θ)

δθδθ′

The matrix of second partial derivatives.

H(x; θ) =
δ2lnf (x; θ)

δθδθ′
=



δ2lnf (x;θ)
δθ21

δlnf (x;θ)
δθ1δθ2

· · · δlnf (x;θ)
δθ1δθk

lnf (x;θ)
δθ2δθ1

δ2lnf (x;θ)
δθ22

· · · δlnf (x;θ)
δθ2δθk

...
...

. . .
...

lnf (x;θ)
δθkδθ1

δlnf (x;θ)
δθkδθ2

· · · δ2lnf (x;θ)
δθ2k


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The Hessian of the log-likelihood

Evaluating the Hessian of the log-likelihood at a specific value of θ
and replacing the fixed values x = (x1, x2, ..., xn)

′ by their
corresponding random variables X = (X1,X2, ...,Xn)

′, the Hessian
becomes a random matrix

H(X; θ) =
δ2lnf (X; θ)

δθδθ′

In particular, we consider the Hessian of the log-likelihood
evaluated at the true parameter θ0, that is

H(X; θ0) =
δ2lnf (X; θ0)

δθδθ′
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Information matrix equality

Theorem 2. Let X = (X1,X2, ...,Xn) be a random sample from a
distribution with p.d.f. belonging to the family

Φ = {f (x ; θ); θ ∈ Θ}

and let θ0 be the true value of the parameter θ, then under some
regularity conditions

In(θ0) = −E

[
δ2lnf (X; θ0)

δθδθ′

]

This theorem is called the information matrix equality. It
provides an alternative expression for the information matrix. The
information matrix for θ0 equals the negative of the expected value
of Hessian of the log-likelihood evaluated at the true parameter θ0.
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Information matrix

It is important to note that the results presented do not depend on
the assumption of independence of the random variables
X1,X2, ...,Xn. This assumption can be used in order to get the
following result.

Let X = (X1,X2, ...,Xn) be a random sample from a distribution
with p.d.f. f (x ; θ0). We have that

In(θ0) = nI1(θ0)

The information in a random sample of size n is n times that in a
sample of size 1.
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The asymptotic information matrix

The matrix
Ia(θ0) = limn→∞In(θ0)/n

if it exists, is the asymptotic information matrix for θ0.
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The asymptotic information matrix

Let X = (X1,X2, ...,Xn) be a random sample from a distribution
with p.d.f. f (x ; θ0). We have that

Ia(θ0) = lim
n→∞

In(θ0)

n

= lim
n→∞

nI1(θ0)

n

= I1(θ0)

The asymptotic information matrix is the Fisher information matrix
for one observation.
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Key Concepts

Log-likelihood function

Score function

Score vector

Fisher information matrix

Asymptotic information matrix
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Cramér-Rao inequality (scalar-parameter case)

Here we consider the case in which

θ ∈ Θ ⊂ R

Thus θ is scalar and the information matrix becomes a scalar that
we call information number.

In(θ0) = E

[(
δlnf (X; θ0)

δθ

)2
]
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Cramér-Rao inequality (scalar-parameter case)

Theorem 3. Let Xn = (X1, ...,Xn) be a random sample from the
distribution with p.d.f. f (x ; θ) depending on a real parameter
θ ∈ Θ ⊂ R. Let T (X) be an unbiased estimator of θ. Then,
subject to certain regularity conditions on f (x ; θ), the variance of
T (X) satisfies the inequality

Var[T (X)] ≥ 1

E

[(
δlnf (X;θ0)

δθ

)2]
where the derivative is evaluated at the true value of θ and the
expectation is taken with respect to f (x ; θ0).
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Proof

T (X) is an unbiased estimator of θ, so

E [T (X)] =

∫
T (x)f (x; θ)dx = θ ∀θ ∈ Θ (1)

Differentiating both sides of equation (1) with respect to θ, and
interchanging the order of integration and differentiation, gives∫

T (x)
δf (x; θ)

δθ
dx = 1 (2)

or ∫
T (x)

δlnf (x; θ)

δθ
f (x; θ)dx = 1 (3)
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Proof

Because∫
T (x)

δlnf (x; θ)

δθ
f (x; θ)dx = E

[
T (X)

δlnf (X; θ)

δθ

]
(4)

by (3) it follows that

E

[
T (X)

δlnf (X; θ)

δθ

]
= 1
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Proof

On the other hand, since

E

[
δlnf (X; θ0)

δθ

]
= 0

we have that

E

[
T (X)

δlnf (X; θ0)

δθ

]
= Cov

[
T (X),

δlnf (X; θ0)

δθ

]
Hence

Cov

[
T (X),

δlnf (X; θ0)

δθ

]
= 1
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Proof

Since the squared covariance cannot exceed the product of the two
variances, we have

1 =

(
Cov

[
T (X),

δlnf (X; θ0)

δθ

])2

≤ Var [T (X)] Var

[
δlnf (X; θ0)

δθ

]
or

1 ≤ Var [T (X)]E

[(
δlnf (X; θ0)

δθ

)2
]

It follows that

Var[T (X)] ≥ 1

E

[(
δlnf (X;θ0)

δθ

)2]

Umberto Triacca Lesson 3: Cramér-Rao inequality



Efficiency

Definition 7. An unbiased estimator T (X) is red more efficient
than another unbiased estimator, T ∗(X), if the variance of T (X) is
less than that T ∗(X). That is

Var(T (X) < Var(T ∗(X)
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Efficiency

In many situations, there are numerous estimators for the unknown
parameter θ. The usefulness of the Cramér-Rao inequality is that if
one of these is known to attain the variance bound, there is no
need to consider any other in order to seek a more efficient
estimator.
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Efficiency

Definition 8. An unbiased estimator T (X) is red efficient if its
variance is the lower bound of the inequality, that is

Var[T (X)] =
1

In(θ0)
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Remark

We have seen that the quantity

In(θ0) = E

[(
δlnf (X; θ0)

δθ

)2
]

is called Fisher information number.
Now, we are able to explain the reason of this terminology.

It is well known that there is an inverse relationship between the
variance of an efficient estimator and the information contained in
the sample, concerning the unknown parameter. The bigger is this
information, the lower it will be the variance. On the other hand,
there is also an inverse relationship between the variance of an
efficient estimator and the quantity In(θ0). Thus, we can conclude
that In(θ0) is a measure of the information about the unknown
parameter contained in a sample.
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Multidimensional Cramer-Rao inequality

The Cramer-Rao inequality (Theorem 3) can be generalized to a
vector valued parameter θ∈ Θ ⊂ Rk .

The generalization of the Cramer-Rao inequality states that, again
subject to regularity conditions, the variance-covariance matrix of
the unbiased estimator T (X), the k × k matrix Var(T (X)), is such
that Var(T (X))− I−1

n (θ0) is positive semi-definite.

Thus I−1
n (θ0) is in a sense a ‘lower bound’ for the variance matrix

of an unbiased estimator of θ.
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Maximum Likelihood Estimate

First, we consider the question of whether estimation of the
unknown parameter θ is possible at all: the question of
identification.

Definition 9 (Identification). The parameter θ is identified
(estimable) if for any other parameter θ∗ ̸= θ, for some sample x,
we have

L(θ;∗ x) ̸= L(θ; x).

In the follow, we assume that θ is identified.

How can we estimate the parameter θ? Given that the likelihood
function represents the plausibility of the various θ ∈ Θ given the
realization x, it is natural to chose as estimate of θ the most
plausible element of Θ.
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Maximum Likelihood Estimate

Definition 10. Let x = (x1, ..., xn) be a realization of a sample
from a distribution with p.d.f. f (x ; θ) depending on an unknown
parameter θ ∈ Θ. A Maximum Likelihood Estimate
θ̂n(x) = θ̂n(x1, ..., xn) is an element of Θ that maximizes the value
of L(θ; x), i.e.,

L(θ̂n(x); x) = maxθ∈ΘL(θ; x)

or
θ̂n(x) = argmaxθ∈ΘL(θ; x)
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Maximum Likelihood estimate

There are examples where the MLE is not unique or even does not
exist

Proposition 1 (Sufficient condition for existence). If the
parameter space Θ is compact and if the likelihood function
L(θ; x) is continuous on Θ, then there exists an MLE.

Proposition 2 (Sufficient condition for uniqueness of MLE). If the
parameter space Θ is convex and if the likelihood function L(θ; x)
is strictly concave in Θ, then the MLE is unique when it exists.
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Maximum Likelihood estimate

Maximizing the likelihood function is mathematically equivalent to
maximizing the log-likelihood function since the logarithm function
is a strictly increasing function. The values that maximize L(θ; x)
are the same as those that maximize lnL(θ; x)

L(θ̂; x) = maxθ∈ΘL(θ; x)

if and only if

lnL(θ̂; x) = maxθ∈ΘlnL(θ; x)

The log-likelihood function is usually simpler to optimize.
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Maximum Likelihood estimate
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Maximum Likelihood estimate

We remember that if xn is a realization of a random sample, then

L(θ; xn) =
n∏

i=1

f (xi ; θ)

and hence

l(θ; x) =
n∑

i=1

lnf (xi ; θ)

The convenience of the log likelihood arises from the fact that it is
typically much easier to differentiate a sum than a product.
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Maximum Likelihood estimate

In the case where L(θ; x) is differentiable the MLE can be derived
as a solution of the equation

δlnL(θ; x)

δθ
= 0

called the likelihood equation.
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Maximum Likelihood estimate

The likelihood equation represents the first-order necessary
condition for the maximization of the log-likelihood function.

The second-order necessary condition for a point to be the
local maximum of the log-likelihood function is that the
Hessian be negative semi-definite at the point.

Umberto Triacca Lesson 4: Maximum Likelihood estimator



Five steps for finding MLE

1 Find Likelihood function L(θ; x).

2 Get natural log of Likelihood function l(θ; x) = ln(L(θ; x).

3 Differentiate log-Likelihood function with respect to θ.

4 Set derivative to zero.

5 Solve for θ.
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Maximum Likelihood Estimate: an example

Let x = (x1, x2, ..., xn) be a realization of a random sample from an
N(µ, σ2) distribution with µ and σ unknown.
In this case θ = (µ, σ2) ∈ R× R+, and the likelihood function is

L(µ, σ2; x) =
1

(2πσ2)
n
2

exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]

The log-likelihood function is given by

ℓ(µ, σ2; x) = −n

2
ln2π − n

2
lnσ2 − 1

2σ2

n∑
i=1

(xi − µ)2
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Maximum Likelihood Estimate: an example

Taking the first derivative (gradient), we get

∂l(θ; x)

∂θ
=

(
Σ(xi − µ)

σ2
,
Σ(xi − µ)2

2σ4
− n

2σ2

)′
.

Setting
∂l(θ; x)

∂θ
= 0

and solve for θ = (µ, σ2) we have

θ̂ = (µ̂, σ̂2) = (x ,
n − 1

n
s2),

where x = Σxi/n is the sample mean and s2 = Σ(xi − x)2/(n − 1)
is the sample variance.
It is not difficult to verify that these values of µ and σ2 yield an
absolute (not only a local ) maximum of the log-likelihood
function, so that they are maximum likelihood estimates.
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Maximum-Likelihood Estimation of the Classical Linear
Regression Model

Consider the classical linear regression model

yt = β1xt1 + β2xt2 + ....+ βkxtk + ϵt t = 1, 2, ...,T

Let us assume that the disturbances ϵt are distributed normally,
independently and identically with E (ϵt) = 0 and E (ϵ2t ) = σ2 for
all t. The equation above can be written in summary form as

yt = x ′tβ + ϵt t = 1, 2, ...,T

where x ′t = [xt1, xt2, ..., xtk ], and β = [β1, β2, ..., βk ]
′.
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Maximum-Likelihood Estimation of the Classical Linear
Regression Model

Then, if the vectors xt are taken as data, the observations yt
t = 1, 2, ...,T have density functions N(x ′tβ, σ

2) and the likelihood
function of β and σ2, based on the sample y = (y1, y2, ..., yT ) is

L(β, σ2; y) =
1

(2πσ2)
n
2

exp

[
− 1

2σ2
(y − Xβ)′(y − Xβ)

]
where

X =


x ′1
x ′2
...
x ′T


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Maximum-Likelihood Estimation of the Classical Linear
Regression Model

The logarithm of this function is

l(β, σ2; y) = −T

2
ln(2π)− T

2
ln(σ2))− 1

2σ2
(y − Xβ)′(y − Xβ)
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Maximum Likelihood Estimate of the linear regression
model

Therefore the first order conditions for a maximum are:

δl

δβ
=

1

σ2
(X ′(y − Xβ) = 0

δl

δσ2
= − T

σ2
+

1

2σ4
(y − Xβ)′(y − Xβ) = 0

From the first of the two conditions it is evident that the maximum
likelihood estimator of β coincides with that of the ordinary least
squares.

β̂ML = β̂OLS = (X ′X )−1X ′y
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Maximum Likelihood Estimate

Sometimes it is not possible to find an explicit solution of the
likelihood equation and so we have to use iterative algorithms to
maximize l(θ; x), as the Newton-Raphson or the Fisher-scoring,
which at any iteration update the parameter θ in appropriate way
until convergence.
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A summary example

Let Xn = (X1,X2, ...,Xn) be a random sample from a N(µ, σ2)
distribution with µ and σ2 unknown.In this case

f (xi ; θ) =
1√
2πσ2

e
− 1

2

(
xi−µ

σ

)2

for i = 1, 2, ..., n

where θ = (µ, σ2)′ ∈ R× R+, and the joint probability density
function of the random sample is

f1,2,...,n(xn;µ, σ
2) =

n∏
i=1

1√
2πσ2

exp

{
−1

2

(
xi − µ

σ

)2
}

=

(
1√
2πσ2

)n

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
The likelihood function is

L(µ, σ2; xn) =

(
1√
2πσ2

)n

exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
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A summary example

The log-likelihood function is given by

ℓ(µ, σ2; x) = −n

2
ln2π − n

2
lnσ2 − 1

2σ2

n∑
i=1

(xi − µ)2

We have that
δℓ(µ, σ2; x)

δµ
=

Σ(xi − µ)

σ2

and
δℓ(µ, σ2; x)

δσ2
=

Σ(xi − µ)2

2σ4
− n

2σ2

Thus the score function is given by

s(θ; x) =

(
Σ(xi − µ)

σ2
,
Σ(xi − µ)2

2σ4
− n

2σ2

)′
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A summary example

Setting (
Σ(xi − µ)

σ2
,
Σ(xi − µ)2

2σ4
− n

2σ2

)′
= (0, 0)′

we obtain the following system of two equations in two unknowns
µ and σ2:

Σ(xi − µ)

σ2
= 0

Σ(xi − µ)2

2σ4
− n

2σ2
= 0
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A summary example

Solving for µ and σ2 we obtain the maximum likelihood estimator

θ̂ = (µ̂, σ̂2)′ = (x ,
n − 1

n
s2)′,

where
x = Σxi/n

is the sample mean and

s2 = Σ(xi − x)2/(n − 1)

is the sample variance.
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A summary example

Let xn = (x1, x2, ..., xn) be a realization of a random sample
Xn = (X1,X2, ...,Xn) from a N(µ, σ2). The score function is given
by

s(θ; x) =

(
Σ(xi − µ)

σ2
,
Σ(xi − µ)2

2σ4
− n

2σ2

)′

Evaluating the score function at a specific value of θ = (µ, σ2)′ and
replacing the fixed values x = (x1, x2, ..., xn)

′ by their corresponding
random variables X = (X1,X2, ...,Xn)

′, the score vector

s(θ;X) =

(
Σ(Xi − µ)

σ2
,
Σ(Xi − µ)2

2σ4
− n

2σ2

)′
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A summary example

In particular, we consider the score vector evaluated at the true
parameter θ0 = (µ0, σ

2
0)

′

s(θ0;X) =

(
Σ(Xi − µ0)

σ2
0

,
Σ(Xi − µ0)

2

2σ4
0

− n

2σ2
0

)′

We note that

E

[
Σ(Xi − µ0)

σ2
0

]
=

Σ(E (Xi )− µ0)

σ2
=

Σ(µ0 − µ0)

σ2
0

= 0

and

E

[
Σ(Xi − µ0)

2

2σ4
0

− n

2σ2
0

]
=

ΣE (Xi − µ0)
2

2σ4
0

− n

2σ2
0

=
nσ2

0

2σ4
0

− n

2σ2
0

= 0.

Thus
E (s(θ0;X)) = 0.

The expected value of the score vector evaluated at the true
parameter value equals zero
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A summary example

The variance-covariance matrix of the score vector evaluated at the
true parameter (the Fisher information matrix) is

Var (s(θ0;X)) =

 Var
(
∂ℓ(θ0;X)

∂µ

)
Cov

(
∂ℓ(θ0;X)

∂µ , ∂ℓ(θ0;X)
∂σ2

)
Cov

(
∂ℓ(θ0;X)

∂µ , ∂ℓ(θ0;X)
∂σ2

)
Var

(
∂ℓ(θ0;X)

∂σ2

) 

=

(
n
σ2
0

0

0 n
2σ4

0

)
.
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A summary example

The Hessian matrix evaluated at the true parameter is

H(µ0, σ
2
0) =

(
− n

σ2
0

− 1
σ4
0

∑n
i=1(Xi − µ0)

− 1
σ4
0

∑n
i=1(Xi − µ0)

n
2σ4

0
− 1

σ6
0

∑n
i=1(Xi − µ0)

2

)

The expected value of H(µ0, σ
2
0) is

E [H(µ0, σ
2
0)] =

(
− n

σ2
0

0

0 − n
2σ4

0

)
Thus

I (µ0, σ
2
0) = −E [H(µ0, σ

2
0)]

This is the information matrix equality. The information matrix
equals the negative of the expected value of Hessian of the
log-likelihood evaluated at the true parameter θ0 = (µ0, σ

2
0).
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Università dell’Aquila
Department of Computer Engineering, Computer Science and

Mathematics, University of L’Aquila, L’Aquila, Italy
umberto.triacca@univaq.it

Umberto Triacca Lesson 5: Properties of the Maximum Likelihood Estimator



Maximum Likelihood estimator

Definition 11. Let X = (X1, ...,Xn) be a sample from a
distribution with p.d.f. f (x ; θ) depending on an unknown
parameter θ ∈ Θ. An estimator θ̂n(X) = θ̂n(X1, ...,Xn) of θ is a
Maximum Likelihood Estimator if for any particular realization
x = (x1, ..., xn), the resulting estimate θ̂n(x) = θ̂n(x1, ..., xn) ∈ Θ is
a Maximum Likelihood estimate i.e.,

L(θ̂n(x); x) = maxθ∈ΘL(θ; x)
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Maximum Likelihood estimator: Properties

We will present some properties of MLE’s in the context in which θ
a single parameter, that is Θ ⊂ R.
Under certain regularity conditions, the maximum likelihood
estimator possesses many appealing properties:

1 The maximum likelihood estimator is equivariant

2 The maximum likelihood estimator is consistent

3 The maximum likelihood estimator is asymptotically normal

4 The maximum likelihood estimator is asymptotically efficient
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Maximum Likelihood estimator: Invariance

One of the most attractive properties of MLE’s is invariance.

Let θ̂n = θ̂n(X) be a MLE of θ. If g : Θ → R is a continuous
function, then a MLE of g(θ) exists and is given by g(θ̂n(X)).

For example, if g(θ) = θ2 its MLE is g(θ̂n) = θ̂2n.
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Maximum Likelihood estimator: consistency

Definition 12. Let X = (X1, ...,Xn) be a random sample from the
distribution with p.d.f. f (x ; θ) depending on a real parameter
θ ∈ Θ. An estimator θ̂n = θ̂n(X1, ...,Xn) is said to be consistent
for θ if

limn→∞P(|θ̂n − θ| < ϵ) = 1 ∀θ ∈ Θ

and we write θ̂n
P→ θ.
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Maximum Likelihood estimator: consistency

Theorem 4. Let X = (X1, ...,Xn) be a random sample from the
distribution with p.d.f. f (x ; θ) depending on a real parameter
θ ∈ Θ. Under suitable regularity conditions, the ML estimator
θ̂n = θ̂n(X1, ...,Xn) is a consistent estimator for θ.
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Maximum Likelihood estimator: asymptotic normality

Here, we consider θ a vector of parameters
Definition 13. Let X = (X1, ...,Xn) be a random sample from the
distribution with p.d.f. f (x ; θ) depending on a vector of parameters
θ ∈ Θ ⊂ Rk . An estimator θ̂n = θ̂n(X1, ...,Xn) for θ, with
covariance matrix Vn(θ), is said to be asymptotically normal if

√
n
(
θ̂n − θ

)
D→ N(0,V(θ))

where V(θ) = limn→∞Vn(θ)

In other terms, an estimator is said to have an asymptotic normal
distribution if √

n
(
θ̂n − θ

)
converges in distribution to a random vector with multivariate
distribution N(0,V(θ))
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Maximum Likelihood estimator: asymptotic normality

We note that if θ̂n is asymptotically normal, then θ̂n is
approximately distributed as a normal random vector with mean θ
and covariance matrix

1

n
V(θ).

The matrix 1
nV(θ) is called asymptotic variance.
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Maximum Likelihood estimator: asymptotic normality

Theorem 5. Let X = (X1, ...,Xn) be a random sample from the
distribution with p.d.f. f (x ; θ) depending on a vector of
parameters θ ∈ Θ ⊂ Rk . Under suitable regularity conditions, the
ML estimator θ̂n = θ̂n(x1, ..., xn) is asymptotically normal. That is

√
n
(
θ̂n − θ0

)
D→ N(0, Ia(θ0)

−1)

where

Ia(θ0) = limn→∞In(θ0)/n (asymptotic information matrix)

and θ0 is the true parameter value.
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Maximum Likelihood estimator: asymptotic normality

Because

Ia(θ0) = lim
n→∞

In(θ0)

n
= I1(θ0),

we have that

√
n
(
θ̂n − θ0

)
D→ N(0, I1(θ0)

−1)

The asymptotic variance matrix is the inverse of the Fisher

information matrix for one observation.
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Maximum Likelihood estimator: asymptotic normality

The practical consequence of this result is that in large samples,
when n is large enough, the ML estimator θ̂ has approximately a
normal distribution with mean vector θ0 and variance-covariance
matrix I1(θ0)

−1/n, in symbols

θ̂ approx . ∼ N
[
θ0, I1(θ0)

−1/n
]
.
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Maximum Likelihood estimator: asymptotic efficiency

Definition 14. Let X = (X1, ...,Xn) be a random sample from the
distribution with p.d.f. f (x ; θ) depending on a vector of parameters
θ ∈ Θ ⊂ Rk . A consistent and asymptotically normal estimator
θ̂n = θ̂n(X1, ...,Xn) for θ, with asymptotic variance (1/n)V(θ), is
said to be asymptotically efficient if the asymptotic variance of
any other consistent, asymptotically normally distributed estimator
exceeds (1/n)V(θ) by a nonnegative definite matrix.
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Maximum Likelihood estimator: asymptotic efficiency

Theorem 6. Let X = (X1, ...,Xn) be a random sample from the
distribution with p.d.f. f (x ; θ) depending on a vector of
parameters θ ∈ Θ ⊂ Rk . Under suitable regularity conditions, the
ML estimator θ̂n = θ̂n(x1, ..., xn) is asymptotically efficient.

The MLE has the ”smallest” variance among all consistent
asymptotically normal estimators.
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Maximum Likelihood estimator: Unbiasedness and
efficiency

It is possible to show that, under some regularity conditions, if
θ̂n(X) is an unbiased estimator of θ whose variance achieves the
Cramer-Rao bound, then the likelihood equation has a unique
solution equal to θ̂n(x).

In other terms, when there exists an unbiased estimator whose
variance attains the lower bound, this estimator is identical to the
ML estimator.
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Statistical Hypothesis Testing: General Aspects

As usual, we consider a sample X = (X1,X2, . . . ,Xn) from f (x ; θ).
In such a context, a statistical hypothesis is a statement that
asserts the unknown parameter θ belongs to a given subset Θ0 of
the parameter space Θ.

H : θ ∈ Θ0, Θ0 ⊂ Θ

An hypothesis of this type is called parametric hypothesis. A
parametric hypothesis can be of two types:

1 Simple

2 Composite

A parametric hypothesis

H : θ ∈ Θ0, Θ0 ⊂ Θ

is called simple if and only if Θ0 = {θ0} (It is a singleton set).
Parametric hypotheses that are not simple are called composite.
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Statistical Hypothesis Testing: General Aspects

Often, we will consider the following system of hypotheses:

H0 : θ ∈ Θ0, Θ0 ⊂ Θ

versus

H1 : θ ∈ Θc
0.

H0 is called null hypothesis and H1 is called alternative hypothesis.
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Statistical Hypothesis Testing: General Aspects

Once the system of hypotheses is formulated, we need to make a
decision regarding whether to reject the null hypothesis or not.
This can be done by partitioning the sample space C (i.e., the set
of all possible sample realizations) into two subsets C1 and C0, and
deciding to reject H0 if the sample realization
x = (x1, x2, . . . , xn) ∈ C1. The subset C1 is called critical region of
the test while C0? is called acceptance region. The critical region
is the set of all points of the sample space C for which the null
hypothesis is rejected

C1 = {x ∈ C : H0 is rejected}
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Statistical Hypothesis Testing: General Aspects

When we decide whether to reject or not the null hypothesis H0,
we can incur in two kinds of errors:

1 Type I error is made if H0 is rejected when it is true

2 Type II error is made if H0 is accepted when it is false
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Statistical Hypothesis Testing: General Aspects

We observe that the probability to commit a Type I error (the
probability of rejecting the null hypothesis when the null hypothesis
is true) varies as θ varies within Θ0. This probability is given by

Pθ(C1) =

∫
C1

f (x; θ)dx ∀θ ∈ Θ0

where the notation Pθ is used to indicate the fact that the
probability is calculated using the joint probability density function
f (x; θ) associated to the parameter θ.
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Statistical Hypothesis Testing: General Aspects

The maximum probability of committing a Type I error is

sup
θ∈Θ0

Pθ(C1)

This probability is called size of the critical region C1 or level of the
test.
We note that the critical region can be defined in terms of a test
statistic s = h(x1, x2, ..., xn), requiring that s ∈ B ⊂ R. In this case
in order to denote the size of the critical region we use the notation

sup
θ∈Θ0

Pθ(s ∈ B)

Umberto Triacca Lesson 6: The likelihood-based test procedures



The likelihood-based test procedures

Let X = (X1, ...,Xn) be a random sample from a distribution with
p.d.f. f (x ; θ), where θ ∈ Θ ⊂ Rk .
Consider the vector-valued function g : Θ ⊂ Rk −→ Rr

g(θ) = [g1(θ), g2(θ), ..., gr (θ)]
′,

with 1 ≤ r ≤ k .
It is assumed to be differentiable at all interior points of Θ, and
the (r × k) Jacobian matrix

G (θ) =
δg

δθ′
=


δg1(θ)
δθ1

... δg1(θ)
δθk

. . .
δgr (θ)
δθ1

... δgr (θ)
δθk

 .

is assumed to have full rank r .

Umberto Triacca Lesson 6: The likelihood-based test procedures



The likelihood-based test procedures

We want to test
H0 : g(θ) = 0

against
H1 : g(θ) ̸= 0

A number of different test procedures based on ML estimators can
be used.

1 Likelihood ratio test

2 Wald test

3 Lagrange multiplier test

To emphasize their key role in Statistical Inference, Rao (2005)
named them the Holy Trinity. All three tests are asymptotically
equivalent, in the sense that all the test statistics tend to the same
random variable (under the null hypothesis) as the sample size
tends to infinity.
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The Likelihood Ratio Test

Let the likelihood function be L(θ; x). Consider the so-called
likelihood ratio, defined by

λ(x) =
maxθ∈Θ0 L(θ; x)

maxθ∈Θ L(θ; x)
=

L(θ̃; x)

L(θ̂; x)

where θ̃ is the value of θ ∈ Θ0 = {θ ∈ Θ|g(θ) = 0} that
maximizes L(θ; x) and θ̂ is the MLE of θ. In other terms, θ̃ is the
restricted maximum likelihood estimator and θ̂ is the MLE of θ
obtained without regard to the restrictions:

θ̃ = arg max
θ∈Θ0

L(θ; x)

and
θ̂ = argmax

θ∈Θ
L(θ; x)
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The Likelihood Ratio Test

Now, we consider the test statistic, LR = −2lnλ(x). We note that
if the restriction g(θ) = 0 is valid, then the restricted estimate, θ̃,
should be near the point that maximizes the likelihood without any
restrictions , that is θ̃ ≈ θ̂. In fact, if H0 : g(θ) = 0 is true, then
the restriction g(θ) = 0 is valid at the true parameter value θ0,
that is g(θ0) = 0 and hence θ0 ∈ Θ0. This implies that for large
sample sizes θ̃ ≈ θ0. On the other hand, we have that when n is
big θ̂ ≈ θ0 (θ̂ is a consistent estimator). Thus we can conclude
that θ̃ ≈ θ̂
The condition θ̃ ≈ θ̂ implies that λ(x) ≈ 1. It follows that

LR = −2lnλ(x) = −2(lnL(θ̃; x)− lnL(θ̂; x)) ≈ 0.

Therefore large values of the LR statistic provide evidence against
the null hypothesis. We reject the null hypothesis when LR is
”large”.
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The Likelihood Ratio Test

More precisely, we reject the null hypothesis, H0 : g(θ) = 0, if
LR ≥ kα where kα is such that

sup
θ∈Θ0

Pθ(LR ∈ [kα,+∞)) = α

and α is a fixed value belonging to [0, 1] interval.
Now, since it is possible to show that under H0, the distribution of
the test statistic LR = −2lnλ(x) converges to a chi-square
distribution where the degrees of freedom are determined as the
number r of restrictions on θ, the critical value, kα, is found from
the chi-squared tables.
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The Likelihood Ratio Test

Summarizing, we reject the null hypothesis

H0 : g(θ) = 0

if LR = −2lnλ(x) ≥ kα, where kα is the 100(1-α) percentile point
of a Chi-Square distribution with r degree of freedom.
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The Wald test

A shortcoming of the likelihood ratio test is that it requires
computation of an MLE, θ̂, and a restricted MLE, θ̃, In complex
models, one or the other of these estimates may be very difficult to
compute. Fortunately, there are two alternative testing procedures,
the Wald test and the Lagrange multiplier test, that circumvent
this problem.
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The Wald test

In order to test the null hypothesis

H0 : g(θ) = 0

Wald (1943) proposed the following quadratic form in the vector
g(θ̂)

W = g(θ̂)′
[
G (θ̂)I (θ̂)−1G (θ̂)′

]−1
g(θ̂)

The so-called Wald test statistic.
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The Wald test

The informal argument underlying the Wald test, is as follows.
We start remember that the MLE estimator is consistent
estimator. This means that when n is big θ̂ ≈ θ0. If H0 : g(θ) = 0
is true, then the restriction g(θ) = 0 is valid at the true parameter
value θ0, that is g(θ0) = 0. Since θ̂ ≈ θ0 (for large sample), we
have that g(θ̂) ≈ 0 and hence

W = g(θ̂)′
[
G (θ̂)I (θ̂)−1G (θ̂)′

]−1
g(θ̂) ≈ 0

Therefore large values of the Wald statistic provide evidence
against the null hypothesis. We reject the hypothesis if W is
significantly different from zero.
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The Wald test

Under some regularity conditions and under the null hypothesis
H0 : g(θ) = 0, W follows asymptotically a chi-square distribution
with r degrees of freedom.

The null hypothesis is rejected if W exceeds the appropriate
critical value from the chi-squared tables.

The Wald test involves only the unrestricted estimate of θ and
consequently is convenient when the restricted estimate of θ is
difficult to compute.
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The Lagrange multiplier test or score test

The Lagrange multiplier test or Score test is an alternative to the
LR and Wald tests. The motivation for it is that on occasion it can
be easier to maximize the log likelihood subject to g(θ) = 0 than
to simply maximize it without restrictions .
Let θ̃ be a restricted MLE (i.e. a maximizer of ℓ(θ) subject to
g(θ) = 0).
The score test statistic is defined as

LM = s(θ̃)′I (θ̃)−1s(θ̃)
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The Lagrange multiplier test or Score test

We have seen that if the restriction g(θ) = 0 is valid, then θ̃ ≈ θ̂.
Thus s(θ̃) ≈ s(θ̂). Being s(θ̂) = 0, we have that s(θ̃) ≈ 0. It
follows that

LM = s(θ̃)′I (θ̃)−1s(θ̃) ≈ 0

So that the region of rejection of the null hypothesis H0 : g(θ) = 0
is associated with large values of LM.
Under the null hypothesis H0 : g(θ) = 0, LM follows
asymptotically a chi-square distribution with r degrees of freedom.
The null hypothesis is rejected if LM exceeds the appropriate
critical value from the chi-squared tables.
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The Holy Trinity

H0 : g(θ) = 0

LR = −2ln

(
L(θ̃; x)

L(θ̂; x)

)

W = g(θ̂)′
[
G (θ̂)I (θ̂)−1G (θ̂)′

]−1
g(θ̂)

LM = s(θ̃)′I (θ̃)−1s(θ̃)

Umberto Triacca Lesson 6: The likelihood-based test procedures



The case of a scalar parameter

We refer to the usual hypotheses

H0 : θ = θ0

vs
H1 : θ ̸= θ0
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The case of a scalar parameter

With this specification, the ‘Holy Trinity’ becomes

LR = 2[ℓ(θ̂; x)− ℓ(θ0; x)]

W = (θ̂ − θ0)
2I (θ̂)

LM = s(θ0; x)
2I (θ0)

−1
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The likelihood-based test procedures: conclusions

The LR test compares the log likelihoods of a model with values of
the parameter θ constrained to some value to a model where θ is
freely estimated.
In contrast, the Wald test compares the parameter estimate θ̂ to
θ0; θ0 is the value of θ under the null hypothesis.
Finally, the score test looks at the slope of the log likelihood when
θ is constrained. That is, it looks at how quickly the likelihood is
changing at the (null) hypothesized value of θ.
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The likelihood-based test procedures: conclusions

The following figure illustrates what each of the three tests does.

Figure: Holy Trinity. Figure based on a figure in Fox (1997, p. 570)
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The likelihood-based test procedures: conclusions

These three tests are asymptotically equivalent under the null
hypothesis. The choice among them is typically made on the basis
of ease of computation.

1 The Likelihood Ratio test requires computation of an
unrestricted MLE, θ̂, and a restricted MLE, θ̃.

2 The Wald test requires only computation of an unrestricted
MLE, θ̂.

3 The Lagrange Multiplier test requires only computation of a
restricted MLE, θ̃.

If an unrestricted MLE, θ̂, and a restricted MLE, θ̃, both are simple
to compute, then is convenient to use the Likelihood Ratio test. In
some problems, one of these estimators may be much easier to
compute than the other. If it is easier to calculate the unrestricted
estimator, then we use the Wald test. If it is easier to calculate the
restricted estimator, then we use the Lagrange Multiplier test.
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The linear regression model

Consider the following linear regression model

y = Xβ + ϵ,

ϵ ∼ N(0, σ2I ).

Here

θ =

[
β
σ2

]
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The null hypothesis

Consider a set of J linear restrictions on the coefficient vector β of
the form

H0 : Rβ − q = 0

where R is a known J × k constant matrix of rank J(< k), and q
is a J × 1 vector of known constants.
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The likelihood ratio statistic

The LR statistic is given by:

LR = −2ln
maxRβ=q,σ2L(β, σ2)

maxβ,σ2L(β, σ2)

= n
(
lnσ̂2

r − lnσ̂2
)
.

where

σ̂2 =
1

n
e ′e

with e = y − Xb

and

σ̂2
r =

1

n
e ′∗e∗

with e∗ = y − Xb∗.
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The Wald statistic

We have that

W = (Rb − q)′
[
σ̂2R(X ′X )−1R ′]−1

(Rb − q).
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The Lagrange multiplier statistic

We have

LM =
e ′∗X (X ′X )−1X ′e∗

σ̂2
r

.
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The W, LR and LM Inequality

An interesting relationship among the three tests statistics, when
the model is linear, is the following:

W ≥ LR ≥ LM

That is, the Wald test statistic will always be greater than the LR
test statistic, which will, in turn, always be greater than the test
statistic from the score test.
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