Spanos, A. (1999): Probability Theory and Statistical Inference. Econometric
Modeling with Observational Data. Cambridge University Press.

Spanos, A. (1986): Statistical Foundations of Econometric Modelling. Cam-
bridge University Press.

Davidson, J. (2000): Econometric Theory. Oxford: Blackwell.

James Bernoulli in 1713 proved the first Law of Large Numbers. This thread was taken
~ up by de Moivre who proved the first Central Limit Theorem in 1718. Laplace in 1812,
drew together and extended the previous two limit theorems. Apart from some marginal
weakening of the conditions underlying the LLN by Poisson in the 1830s, the next
important milestone was the founding of the Russian school of probability by
Chebyshev in the 1870s. Chebyshev was the first to recognize the generality of these limit
theorems and provided the foundation upon which the other members of this school of
thought, his students Markov and Lyapunov, extended the limit theorems to their
modern form. The last member of that illustrious school, Kolmogorov, not only
improved upon the work of his predecessors but, in 1933, provided probability theory
with its modern mathematical foundations. Let us see how the story of limit theorems
unfolds in some more detail.

The first limit theorem was proved by James Bernoulli (1654—1705) in his book Ars
Conjectandi, published posthumously in 1713. Bernoulli revealed his views about the
importance of the theorem by calling it the golden theorem; today it is known as the Law
of Large Numbers (LLN), a term first int_rodﬁced by Poisson in 1837. According to
Bernoulli’s LLN:

if we toss a fair coin » times and it falls k times heads (Hs), then, by increasing the number of

tosses the probability of the event [l(l;‘) - %] < a} goes to one.

As a prelude to the discussion that follows we make it clear at the outset that when we
refer to a sequence of random variables {X,}7.,:= {X|,X,, ..., X,....} we are in effect
talking about a stochastic process as defined in chapter 8. The reader is strongly advised
to refer back to chapter 8 for a number of concepts used in this chapter.

The WLLN, in its general form, can be stated crudely as saying that under certain
restrictions on the sequence of random variables { X, };-,:

lim, . P(|} 2o X~ 5 Zh-1 E(X)| <g) =1, forany £>0. (9.9)

9.3.1 Bernoulli’s WLLN

In an attempt to bﬁng out ihe gradual weakening of the conditions giving rise to the
WLLN let us begin with the general form of Bernoulli’s WLLN; see Bernoulli (1713).

Bernoulli’s WLLN Let {X,}_,:= {X},X5, ..., X,....} be a sequence of random variables
‘which satisfy the following conditions:

(D) Bernoulli: Sx:6) = 03(1 — Ok)l *, x,=0,1, k 1 2,
(M) » Independence: f(xl’x25 n’¢) Hk= lf(xka Bk)s
(H) Identical Distribution: 6, =6, for allk=1,2, ...,

limP(|, S, X, — 6] <e) =1, forany s>0, (9.10)
and denoted by:
Lsn X0,

The first condition to be weakened was that of Identical Distribution (complete homo-
geneity) when Simeon Denis Poisson (1781-1840) proved in 1837 that (iii) could be
relaxed without affecting the result.

Poisson’s WLLN Let {X,}_ bea scquence of random variables which satisfy the fol-
lowing conditions:

(D) Bernoulli: Sxi:0) = k(1 — 6)! %k, x, = 0,1, k=1,2,.
(M) Independence: f(x1,%, ..., Xn;00) = [Tic) %13 60),
(H) Heterogeneity: 6,#60,i,j=1,2,...

lim, P (I; Si X —2 30, 6 <e) = 1, for any £>0. (9.12)

The first general (in its modern form) WLLN was proved by Chebyshev (1821-1884), the
founder of the Russian school of thought which included Markov (1856-1922),
Lyapunov (1857-1918), and Kolmogorov (1903-1989). This school of thought had a
profound effect on probability theory.

In addition to the complete homogeneity relaxed by Poisson, Chebyshev noticed that
when using the inequality bearing his name to prove the WLLN:

(a) the Bernoulli distributed assumption seemed totally unnecessary; it is only role in
the above proof was in deriving the mean and variance of 52,'::1 Xy,

(b) the Independence assumption was unnecessarily restrictive; its only role is in ensur-
ing that the variance of the sum is equal to the sum of the individual variances. In
the case of dependence:

Var(y S, X,) = | 20 Var(X) + 53 Cov(X,,. X)) | (9.13)

For the last term to be zero, however, one does not need to assume complete inde-
pendence; non-correlation will suffice. Chebyshev in 1867 went on to impose the
somewhat stronger dependence restriction of pairwise independence, because
the difference between the latter condition and non-correlation was not very clear
at the time.

Chebyshev’s WLLN Let {X,}_, be a sequence of random variables which satisfy the
following conditions:

(D) Bounded moments: E(X,)<ex, Var(X,)<c<o, k=1,2,...

(M) Pairwise independence: flx;,x;¢) = f(x;0) f(x;;0), i#j,1,j=12,...

(H) Heterogeneity: E(X,) =, Var(X)=0}, k=1,2,...

lim, P [, S5_ 1 X, — i E(X)| <e) =1, for any £ >0. (9.14)

Andrei Markov, a student of Chebyshev, was the first to exploit in full the opportunities
offered by the proof of the WLLN using Chebyshev’s inequality in order the relax the
assumptions giving rise to the result. He saw that even the non-correlation was too
restrictive.

Markov’s LLN Let {X,}7, be a sequence of random variables which satisfy the follow-
ing conditions:

(D) Bounded moments: E(X,) <o, Var(X))<c<w, k=1,2,...

(M). Asymptotic non-correlation: ("lz) Var(E,’:lek) -0,

(H) Heterogeneity: EX,) =y, Var( X)) =0%, k=1,2,...

Then (9.14) holds. Condition (M) is called asymptotic non-correlation because in view
of (9.13), it holds only if:

| 2#12 Cov(X,, X)) 0.

The discerning reader would have noticed that, in addition to the gradual weakening of
the initial conditions used by James Bernoulli, the above theorems also show a trade off
between the restrictiveness of the three types of conditions. For instance Poisson, by
retaining the Bernoulli assumption, was able to relax the complete homogeneity condi-
tion to asymptotic homogeneity. This trade off is made in Khintchine’s WLLN, proved
in 1928 by retaining the IID assumptions, we can relax the boundedness of the variance;

we do not need to assume a finite variance. ‘

Khintchine’s WLLN
Let {X,};-, be a sequence of random variables which satisfy the followmg conditions:

(D) Bounded mean: EX)=p<o k=1.2,...

(M) Independence: f(xlsXZ: .. :xm‘P) = HZ= lf;((xk; ok)’(xlsxla e rxn) € Rn’
(H) Identical Distribution: f,(x;;0,) =f(x,;0), forallk=1,2,... ’

1imwp(|§2,:=,|xk—u|<a!=1,foranys>o. 9.17)
— —

93 The central limit theorem

As with the WLLN and SLLN, it was realised that LT2 was not
contributing in any essential way to the De Moivie-Laplace theorem and
the literature considered sequences of r.v.’s with restrictions on the first few
moments. Let {X,,n> 1} be a sequence of r.v.sand S,=)7_, X;, the CLT
considers the limiting behaviour of

5, —E(S,)
"= JVarS, 0

which is a normalised version of S, — E(S,), the subject matter of the WLLN
and SLLN.

(9.27)

Lindeberg—Levy theorem

Let {X,, n=1} be a sequence of IID r.v.’s such that E(X;)=u,
Var(X,)=02< o for all i. Then for F,(y) the DF of Y,,

f 7(2— exp{ —u?} du.

- (9.28)

lim F,(y)=lim P(Y,

n—owm n—o

Liapunov’s theorem
Let {X,, n>1} be a sequence of independent r.v.’s with

E(Xi)=”i7 .Var(Xi)=6i2<m7 E(|Xi|2+6)<w’ 6>0.

9.6.3 Lindeberg-Feller's CLT

"The most well known Central Limit Theorem is known as the Lindeberg Feller
theorem. This theorem assumes the existence of the second moment and provides
both necessary (proposed by Feller in 1935) as well as sufficient conditions (Lindeberg,

(1922
D Let {X,,n> 1} be a sequence of independent r.v.’s with distribution

functions {F(x),n> 1} such that

0 EX)=p

. 9.31
(i) Var(X;)=0?< o0, i=1,2,...} ©31)

This chapter introduces some fundamental theory for the treatment of dynamic
regression models. Although some of the material is quite general, we structure
the analysis around the simplest possible dynamic model, the first-order autore-
gression. Consider

=>\£L‘t_1 + Uy (611)

where z; is a scalar random variable. The intercept is omitted here solely for
simplicity, but the omission implies that the process has a mean of zero if u,
does.

By an elementary substitution, write

A -1/2§n »
VA=) = P D D Tt (6.1.6)

n-1 Zt=g 173—1

Focusing attention on the numerator on the right-hand side, notice that E(z;_;u;)
= 0 by censtruction, and this term also has a finite, albeit unknown, variance.

Consider (6.1.6) once again. Since the probability limit of n=! 3"1 , zZ_; has been

shown to be a positive constant, asymptotic normality of /(A — A) follows from
asymptotic normality of n=1/23"7_ z,_;u, by Cramér’s Theorem (Theorem 3.3.5)

The terms z;_u; are uncorrelated but not independent, since x;_, depends
on u;_; for all j > 0. Appeal must therefore be made to a central limit theorem
for dependent processes. The original result was proved in a famous paper by
Mann and Wald (1943b) who showed that the Liapunov central limit theorem
could be applied in an adapted form, given the asymptotic independence of the
terms z;_ju;. However, the martingale approach is neater and simpler.





