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Abstract

Principal stratification is an increasingly adopted framework for drawing counterfac-
tual causal inferences in complex situations. After outlining the framework, with special
emphasis on the case of truncation by death, I describe an application of the methodology
where the analysis is based on a parametric model with latent classes. Then, I discuss the
special features of latent class models derived within the principal strata framework. I argue
that the concept of principal stratification gives latent class models a solid theoretical basis
and helps to solve some specification and fitting issues.

1 Outline
Principal stratification is a conceptual framework developed in the setting of counterfactual
causal inference to deal with situations where the causal path from the treatment to the
outcome includes an intermediate variable that cannot be ignored (3). Examples are non-
compliance (1; 2; 10), where the intermediate variable is the compliance status, estimation
of direct effects (14; 16), where the intermediate variable is a variable whose effect one
wishes to control for, surrogacy in clinical trials (7; 8), where the intermediate variable is a
surrogate endpoint, and truncation by death (18; 4; 5; 19), where the intermediate variable
determines the existence of the outcome.

Basically, the problem with intermediate variables is that they are measured after treat-
ment and thus they are not balanced among the treatment arms. Therefore, the conventional
estimators of the causal effect of an intermediate variable are generally biased; moreover,
conditioning on an intermediate variable may bias the estimators of other causal effects of
interest.

The application described in the next section focuses on truncation by death, a case
taking its name from the studies on the quality of life, where the outcome of interest does
not exist for patients who died. The simplest approach is to carry out the analysis on the pa-
tients who survived, but this is likely to yield biased results since survival is a post-treatment
variable and conditioning on it destroys the randomized structure of the experiment. Zhang
and Rubin (18) noted that the same issue may arise in experiments for comparing educa-
tional programmes. In fact, they applied principal stratification to the hypothetical case of
a randomized experiment concerning two high school educational programmes, where the
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intermediate variable is graduation and the outcome is the score on a final test. This is an
instance of truncation by death since the outcome of interest exists only for students who
graduated.

Later Grilli and Mealli (4; 5) used principal strata to tackle a case of truncation by death
in the evaluation of the effectiveness of two degree programmes with respect to job oppor-
tunities, where the treatment is the degree programme (Economics vs Political Science), the
intermediate variable is the graduation status (graduated within 9 years) and the outcome is
the employment status (having a permanent job). This is another instance of truncation by
death: since the aim is to assess the relative effectiveness of graduation in different degree
programmes, the employment status is not defined for students who did not graduated.

A further application of principal stratification to deal with truncation by death is given
by Zhang, Rubin and Mealli (19) in the context of the effectiveness of job-training pro-
grams: indeed, estimating the effects of training programs on wages is complicated by the
fact that, even in a randomized experiment, wages are truncated by nonemployment, that
is, they are only observed and well-defined for individuals who are employed.

The paper proceeds with a section illustrating principal stratification through an appli-
cation to the effectiveness of degree programmes and a section discussing the latent class
perspective of principal stratification.

2 Review of principal stratification
The principal stratification framework requires a treatment with a finite number of levels
and two post-treatment variables, namely an intermediate variable and an outcome. The
nature of the intermediate variable determines the type of strata: a discrete intermediate
variable implies discrete strata, while a continuous intermediate variable implies continuous
strata. It will be clear that only discrete strata can be seen as latent classes. The simplest
case of discrete principal strata arises when both the treatment and the intermediate variable
are binary, implying four principal strata.

The principal stratification framework will be illustrated through the application of
Grilli and Mealli (4; 5), who analyzed 1941 freshmen of the University of Florence: 1068
enrolled in Economics and 873 in Political Science.

The treatment Zi takes the value 1 if student i enrolled in Economics and 0 if en-
rolled in Political Science. Under the standard Stable Unit Treatment Value Assumption
(3) (SUTVA), the post-treatment variables are defined as follows. The intermediate vari-
able Si(zi) is 1 or 0 if student i graduated or did not graduate within 9 years when enrolled
in degree programme zi. The outcome Yi(zi) is 1 or 0 if student i had or did not have a
permanent job at the time of the interview (i.e. from one to two years after the degree)
when enrolled in programme zi and graduated.

Since for each individual the treatment assumes a single value, for every post-treatment
variable only one of the two potential versions can be observed: Sobs

i = Si(Zi) and Y obs
i =

Yi(Zi). Since both the treatment and the intermediate variable are binary, there are four
principal strata:

• GG (Graduated, Graduated) if Si(1)=1 and Si(0)=1;

• GN (Graduated, Not graduated) if Si(1)=1 and Si(0)=0;

• NG (Not graduated, Graduated) if Si(1)=0 and Si(0)=1;

• NN (Not graduated, Not graduated) if Si(1)=0 and Si(0)=0.
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The principal stratum of individual i cannot be observed since either Zi = 0 or Zi = 1. The
principal stratum is thus a latent class, denoted with a latent variable Ci taking values in the
set {GG,GN, NG,NN}. The probability that an individual belongs to a given principal
stratum can be estimated. A crucial feature is that, given the values of the treatment Zi and
the intermediate variable Sobs

i , some principal strata are ruled out: for example, a student
who enrolled in Economics (Zi = 1) and then graduated (Sobs

i = 1) can only belong to
the strata GG and GN , so the strata NG and NN are inadmissible and their probability is
null.

The key feature of the principal strata is that they are defined by the couple of potential
values of the intermediate variable, so they are not affected by the treatment and thus can
be seen as categories of an unobserved pre-treatment covariate.

The terms entering the causal effect of interest Yi(1) − Yi(0) are both defined only in
the GG stratum, i.e. students who would be able to graduate in both programmes. The
estimand of main interest is thus the Average Causal Effect (ACE) on employment in the
GG stratum, i.e. the difference between the probabilities of being employed for Economics
and Political Science in the subset of students that would be able to graduate in any of the
two degree programmes.

Grilli and Mealli (4; 5) included also some covariates xi. In general, covariates are im-
portant when the treatment is not randomized, since the unconfoundedness assumption re-
quired for the causal interpretation of the effect of the treatment is more reasonable if stated
conditional on good covariates. Formally, the treatment is conditionally unconfounded
when Zi ⊥ {Si(0), Si(1), Yi(0), Yi(1)}|xi.

Under the assumptions of SUTVA and conditional unconfoundedness, the data gener-
ating process can be defined in terms of two sets of probabilities: the probabilities of the
principal strata and the probabilities of the outcome conditional on the principal stratum.

The probabilities of the principal strata are

{πGG:i, πGN :i, πNG:i, πNN :i} ,

e.g. πGG:i = Pr(Ci = GG|xi).
The probabilities of the outcome conditional on the principal stratum are

{γ1,GG:i, γ0,GG:i, γ1,GN :i, γ0,NG:i} ,

where the number 0 or 1 in the subscript is the value of Zi. For example, γ0,GG:i =
Pr(Yi(0) = 1|Ci = GG,xi). Here the γ’s for other combinations of programme and
principal stratum, such as Zi = 1 and Ci = NG, are not defined.

As in the majority of the applications with principal strata, the treatment and the inter-
mediate variable are both binary, leading to four principal strata. However, while in many
settings it is sensible to assume that certain strata are empty (e.g. the assumption of no
defiers in an experiment with non-compliance), in the present context such assumptions are
not plausible in the light of the symmetry of the two treatments, so all the strata are allowed
to exist and thus every observed group is generated by a mixture of two distributions.

The principal stratification framework can be exploited to carry out a non-parametric
analysis based on large-sample bounds (5) or to build a parametric model to be fitted with
Bayesian or likelihood methods (4). In the example, the likelihood is a product over four
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observable groups defined by Zi and Sobs
i :

∏

i: Zi=1, Sobs
i =0

{πNG:i + πNN :i} ×
∏

i: Zi=1, Sobs
i =1

{πGG:iB1,GG:i + πGN :iB1,GN :i} ×

∏

i: Zi=0, Sobs
i =0

{πGN :i + πNN :i} ×
∏

i: Zi=0, Sobs
i =1

{πGG:iB0,GG:i + πNG:iB0,NG:i}

where the B’s are the Bernoulli likelihoods for the γ’s, for example

B1,GG:i = (γ1,GG:i)
Y obs

i (1− γ1,GG:i)
1−Y obs

i .

The parametric model devised by Grilli and Mealli (4) is made of two components:
a multinomial logit model for the probabilities of the principal strata conditional on the
covariates (the π’s) and a set of logit models for the probabilities of the outcome conditional
on both the covariates and the principal stratum (the γ’s). The model is thus a latent class
model, but the principal stratification framework entails some peculiarities that make the
analysis different from traditional latent class modelling.

3 Principal stratification and latent class modelling
In the previous section it has been shown that in the case of discrete principal strata the
corresponding statistical model is a latent class (LC) model. Note that even if almost all
applications assume discrete strata, the principal strata can also be continuous: for example,
Jin and Rubin (6) tackled partial compliance by defining the strata as couples of proportion
of compliance to drug and proportion of compliance to placebo.

The connection between principal stratification and LC modelling has been recognized
in the case of non-compliance, with reference to the simple instance of a binary treatment
and a binary compliance status (all-or-none compliance). In the notation of the previous
section, the intermediate variable Si(zi) is the compliance status under treatment zi. The
target quantity, called Complier Average Causal Effect (CACE), is the average difference
Yi(1)− Yi(0) for individuals in the principal stratum of compliers, namely the individuals
that comply with the treatment regardless of the assigned treatment (1).

Bengt Muthén described CACE modelling in terms of LC modelling in (11) and then
implemented the idea in the Mplus software, whose user’s manual (12) reports a re-analysis
of Little and Yau’s data (9). In Mplus the class membership restrictions are handled by the
so-called training data, i.e. an auxiliary dataset declaring, for each sample unit, which
classes are admissible and which classes are not. The possibility to specify a CACE model
as an LC model with restrictions is also noted by Vermunt and Magidson in the manual of
the software Latent GOLD (17), where the class membership restrictions are inserted via
the Known Class option.

The latent class perspective in CACE modelling was exploited also by Skrondal and
Rabe-Hesketh in their book on Generalized Linear Latent Mixed Models (15), where they
showed how a CACE model can be written as an LC model that fits the GLLAMM frame-
work. Moreover, they re-analyzed Little and Yau’s data using the Stata gllamm command
(13).

The mentioned treatments of CACE via LC models are aimed at showing that causal
inference can be carried out within a general statistical modelling framework based on la-
tent variables. However, the implications of the connection have not been investigated.
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Moreover, there seems to be no discussion of the connection in the more general princi-
pal stratification framework, thus including topics such as direct effects and truncation by
death.

Let us use the notation introduced in the previous section and let us denote the latent
class corresponding to the principal stratum with Ci = c for c ∈ C. An LC model de-
rived within a framework with discrete principal strata differs from a general LC model in
several respects: (a) the number of classes (i.e. the cardinality of C) and their meaning is
determined a priori, as each class corresponds to a principal stratum; (b) an individual can
only belong to a subset of latent classes, i.e. given the data the probabilities of belonging
to certain classes are zero by assumption: ∃c ∈ C such that Pr(Ci = c|Zi, S

obs
i ,xi) = 0.

Truncation by death adds another peculiarity, namely: (c) latent class membership deter-
mines whether the outcome is defined or not (and its probability in case it is defined):
∃c ∈ C such that Yi(zi) is not defined.

Feature a allows to avoid the tricky problem of a data-driven choice of the number of
latent classes and the somewhat arbitrary exercise of attaching labels to the classes. Feature
b makes estimation simpler with respect to a standard LC model with the same number
of classes, since some components of the mixtures are ruled out by assumption. Feature
c is specific to truncation by death in the principal strata framework and does not apply
to standard LC models, where it is not conceivable to let the outcome be defined or not
depending on the class.

As for model specification, principal stratification gives solid arguments to put restric-
tions on the latent classes based on substantive assumptions or on the design: for example,
in experiments with non-compliance (1; 2) the latent class of defiers can be assumed to be
empty based on considerations on the behaviour of the individuals, while the latent class
of always takers is empty if the design prevents people assigned to control from taking the
active treatment.

Last but not least, a latent class model with a structure derived within the principal strata
framework guarantees that the model is consistent with the principles of counterfactual
causal inference and thus the parameters refer to well-defined causal quantities.

References
[1] Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996) Identification of Causal Effects

Using Instrumental Variables, J. Am. Stat. Assoc. 91, pp. 444–472.

[2] Barnard, J., Frangakis, C. E., Hill, J. L. and Rubin, D. B. (2003) Principal Stratifica-
tion Approach to Broken Randomized Experiments: A Case Study of School Choice
Vouchers in New York City, J. Am. Stat. Assoc. 98, pp. 299–323.

[3] Frangakis, C. E. and Rubin, D. B. (2002). Principal stratification in causal inference,
Biometrics 58, pp. 21–29.

[4] Grilli, L. and Mealli, F. (2007) University Studies and Employment. An Application
of the Principal Strata Approach to Causal Analysis, in Effectiveness of University
Education in Italy, ed. by L. Fabbris, pp. 219–232. Heidelberg: Physica-Verlag.

[5] Grilli, L. and Mealli, F. (2008) Nonparametric Bounds on the Causal Effect of Uni-
versity Studies on Job Opportunities Using Principal Stratification. J. Educ. Behav.
Stat. 33, pp. 111–130.

5



[6] Jin, H. and Rubin, D. B. (2008) Principal Stratification for Causal Inference With
Extended Partial Compliance, J. Am. Stat. Assoc. 103, pp. 101–111.

[7] Joffe, M. M. and Greene, T. (2009). Related causal frameworks for surrogate out-
comes, Biometrics 65, pp. 530-538.

[8] Li, Y., Taylor, J. M. G. and Elliott, M. R. (2010). A Bayesian Approach to Surrogacy
Assessment Using Principal Stratification in Clinical Trials, Biometrics 66, pp. 523-
531.

[9] Little, R. J. and Yau, L. H. Y. (1998). Statistical techniques for analyzing data from
prevention trials: Treatment of no-shows using Rubins causal model, Psychol. Meth-
ods 3, pp. 147–159.

[10] Mattei, A. and Mealli, F. (2007). Application of the Principal Stratification Approach
to the Faenza Randomized Experiment on Breast Self-Examination, Biometrics 63,
437-446.

[11] Muthén, B. O. (2002). Beyond SEM: general latent variable modeling, Behav-
iormetrika 29, pp. 81–117.

[12] Muthén, L. K. and Muthén, B. O. (2007). Mplus User’s Guide. Fifth Edition.. Los
Angeles, CA: Muthén & Muthén.

[13] Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2004). GLLAMM Manual, U.C.
Berkeley Division of Biostatistics Working Paper Series. Working Paper 160.

[14] Rubin, D. B. (2004). Direct and Indirect Causal Effects via Potential Outcomes,
Scand. J. Stat. 31, pp. 161–170.

[15] Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized latent variable modeling:
multilevel, longitudinal, and structural equation models. Boca Raton, FL: Chapman
& Hall/ CRC Press.

[16] VanderWeele, T. (2008). Simple relations between principal stratification and direct
and indirect effects, Stat. Probabil. Lett. 78, pp. 2957-2962.

[17] Vermunt, J. K. and Magidson, J. (2005). Technical Guide for Latent GOLD 4.0: Basic
and Advanced. Belmont, MA: Statistical Innovations Inc.

[18] Zhang, J. L. and Rubin, D. B. (2003). Estimation of causal effects via principal strat-
ification when some outcomes are truncated by ‘death’, J. Educ. Behav. Stat. 28, pp.
353–368.

[19] Zhang, J. L., Rubin, D. B. and Mealli F. (2009). Likelihood-Based Analysis of Causal
Effects of Job-Training Programs Using Principal Stratification, J. Am. Stat. Assoc.
104, pp. 166–176.

6


