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Introduction

The School of Economics and Management, University of Florence, uses the self-evaluation

test as an instrument to verify the knowledge of students who want to enrol in the three-

year degree program. It contributes to the process of orientation towards the choice of

the university course. The aim of this study is to evaluate if the self-evaluation test

adds information on predicting the student's performance over the variables available

before enrolment. The prediction capacity is helpful as it would allow the identi�cation

of inactive students or who have low performance. Delays or failures are costs that a�ect

both students and public administration (Grilli et al., 2016).

The measure of the student's performance is based on the number of credits gained

after one year. ECTS (European Credit Transfer and Accumulation System) credits

represent the workload and learning outcomes of a given course. Credits allow the

comparison between di�erent courses of Italian and European universities, through an

assessment of the workload required by the student in certain disciplinary areas for

the achievement of de�ned training objectives. They facilitate student mobility between

di�erent courses, but also between Italian and European universities. 60 credits represent

the equivalent of one year of study or work and a credit usually corresponds to 25 hours of

work including lessons, exercises, etc., but also home study. The gain of credits happens

when the students pass the exam.

The MIUR (2016)1, Ministry of Education of the University and Research, uses the

gain of at least of 20 credits as a criterion for allocating the share of premiums and the

equalization operation of the State Funding Fund. Universities use the threshold of at

least 40 credits as a performance indicator for a regular continuation of studies.

We will use the gain of “ > 0“, “ ≥ 20“, “ ≥ 40“ credits as indicators to evaluate

student's performance for the academic year 2014/2015. The self-evaluation test is com-

pulsory but does not preclude the enrolment. It consists of 24 written questions multiple

responses, one of which it is correct. The topics concern logic, verbal comprehension

and mathematics. For each of them, the students will have 20 minutes. For each cor-

rect answer the candidates will have a score of 1 point, for the wrong answer -0.25 and

1http://attiministeriali.miur.it/anno-2016/dicembre/dm-29122016.aspx
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0 points for the response not given. Based on this evaluation, each student will have

a �nal score. Students who obtain a scores equals or more to 8, will be able to take

the exams. In case of scores less than 8, students have to study the material indicated

by the university. Then, they have to give another self-evaluation test for seeing the

improvement in December.

The test can be done on paper, in September, or on the computer in November.

According to Article 1 of the announcement2 on the veri�cation of entry knowledge for

those who intend to enrol in the three-year degree program of economics, are excluded

those who:

• Are already in possession of an Italian university degree.

• Have done and passed the Cisia Economics test at the consortium universities.

• Already enrolled in another study program at the University of Florence, but this

student requested the passage to a School of Economics Management provided that

they have already supported and passed the veri�cation test at the School (or Fac-

ulty) of origin.

Two problems will be addressed. In the �rst, we will compare the performance between

students who did the test and those who were exempted. We will evaluate whether

the di�erence in performance can be given by the test session. Statistical matching

techniques are used for comparison. The second problem regards the evaluation of the

capacity of the test in predicting student's performance. We use the methods of the

logistic regression and random forest. The results of the two methods, based on the

average of prediction error derived from 10-fold cross-validation, are compared.

The thesis is structured as follows. Chapter 1 describes the data selection and the

variables used for the analysis. In Chapter 2 we will evaluate if students who were ex-

empted from the test have di�erent performance compared to those who did it. Then

we want to assess if the performance of the student is in�uenced by the period of the

test. Making the test in September or later can a�ect the regularly studying. Chapter

3 refers to the method of logistic regression. We use this method for the prediction of

student's performance and to evaluate the possible addition of information of the test

score variables. In Chapter 4 we will use the learning method of random forest for com-

parison with logistic regression. We want to �nd which method best predicts student's

performance and whether the test adds information to predict student's performance.

2https://www.economia.uni�.it/upload/sub/test-autovalutazione/bando-test-autovalutazione-2014-
15.pdf



Chapter 1

Data description

The original data set is a merge of the administrative career archive and the test archive.

We have 978 observations and 56 variables. We delete 19 observations because they

are students with a diploma obtained abroad. Also, other 2 observations were deleted

because the variable High school degree was missing. Most parts of the variables record

detailed information of the performance during the academic year. We will use informa-

tions on overall performances. The goal is to evaluate the addition of test information

on predicting the student's performance, besides the variables already known before the

enrolment. We delete also 88 students which didn't take the test in according to Article

1 of the announcement on the veri�cation of entry knowledge. So we limit the analysis

on 869 students who took the test and enrolled at the School of Economics and Man-

agement in the 2014/2015 academic year. As Grilli et al. (2016), we divide the variables

into three big groups and we will consider the pre-test variables for each student:

• gender = take value 1 if the student is male, otherwise 0.

• residence = take value 1 if the student have the residence in "Florence", "Arezzo",

"Pisa", "Pistoia", "Prato", otherwise 0. We consider this partition because these

cities are neighbouring to the University by one hour by train, so these students

don't need to move in Florence. The transfer involves di�erent distractions for

far-away students when they have the freedom to live alone.

• late enrolment = take value 1 if the age at high school diploma > 19, otherwise 0.

We consider this condition to distinguish students who had a regular career in the

high school from those who have been rejected at least once in the high school

• High school Type: Scienti�c, Humanities, Technical, Other

• High school grade (from 60 to 100)

7
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The test-variables, which is the score on Logic, Reading, and Mathematics, are

used in chapter 3 and 4 to evaluate if they add information to predict the student's

performance.

The University performance variables, are the credits gained during the �rst

year. For the prediction capacity of the self-evaluation test, we will consider three dif-

ferent outcomes. Since in the �rst-year there are 6 exams which have 9 credits each,

the outcomes will indicate the number of passed exams. As anticipated in the introduc-

tion, to construct the > 0 credits indicator we use the outcome Y1, which has value 1 if

students gives at least one exams, otherwise 0 thus representing inactive students. The

binary outcome Y3 takes value 1 if students have passed at least three exam thus indi-

cating students with low risk of dropping out of studies, otherwise 0. The last outcome,

Y5, represent the indicator ≥ 40 credits. It takes value 1 if students gives at least �ve

exams and it stand for students with a regular continuation of studies, otherwise 0.

Table 1.1: Construction of the binary outcomes that represent the University perfor-
mance variables

Y1 ≥ 1 exam > 0 credits
Y3 ≥ 3 exams ≥ 20 credits
Y5 ≥ 5 exams ≥ 40 credits

In �gure 1.1 we can see the distribution of the number of exams passed of the 869

students remained. There are 283 students who don't even give an exam, despite they

result enrolled and have an active career at the end of the �rst academic year. 152 stu-

dents give one exam while the presence of students who give two and three exams is very

similar (112 and 114 respectively). Finally, the number of students who give 4, 5 and

6 exams is similar, (83,69 and 5). In this case, as the exams have the same number of

credits, the di�erence in the students' performance is due to the amount of the exams.

Table 1.2 shows the score Test and the proportion of students who give ”Y1”, ”Y3”, ”Y5”,

for each variable, in 2014/2015 academic year. The biggest di�erence is given by the high

school grade. The threshold is chosen based on the average grade (77). Students with

HSG ≤ 77 are always worse performing. Only 4.7% of students with lower HSG has

given at least 5 exams compared to 23.2% with a score above 77. Furthermore, late-

enrolment students have worse performances than those with a regular career.

Lower score of females than males corresponds to a worse performance, thus leading

to a relationship between the test score and the carrier indicator. It's a slight relation
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Figure 1.1: Distribution of the number of exams passed at the end of the �rst academic
year 2014-2015, School of Economics and Management, University of Florence.

because there are no signi�cant di�erences in the variables even though performance at

the end of the year is di�erent, as, in the case of late enrolment, there is no di�erence in

score among late students but the performance for Y5 is very di�erent. There is a greater

male presence while the number of far-away. The resident student has a slightly better

performance in general against the far-away.

The greater presence of students results from the scienti�c and technical high school.

We can see that the best-performing students are those with scienti�c studies. This

happens because they have a good background in maths and logic. But that's not

all. The greatest in�uence is given by the method of study. In fact, it is observed that

similar performances occur from students with humanities studies as they acquire a good

methodology of study necessary for text translations from Latin and Greek.

The Change course of the variable Career status concerns students who switch to

another course but always belong to the School of Economics and Management. The

"drop out" are students who explicitly renounce the continuation of studies. We can see

that despite the drop-out test score does not look di�erent from the other variables, in

reality, only23.7% of the students give at least one exam and 2% at least 3 exams. So drop

out is strongly related to not giving any exam. It's important to keep in consideration

the presence of students who are enrolled but actually decided to stop the studies.

The description of the variables serves to a better comprehension of the phenomenon.

We cannot use only these variables for student selection as it discriminates. Furthermore,

variables such high school degree isn't fully appropriate to predict the academic perfor-

mance as it has several limitations. One of these limitations is "the possible mismatch

between the competencies evaluated at high school and those required for a given de-
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Table 1.2: Score Test and three binary outcomes for the performance results considering
each variable at the end of the �rst academic year 2014/2015. School of Economics and
Management, University of Florence

Score Test
N (max 40) %Y1= 1 %Y3=1 %Y5=1

All 869 13.35 67.4 36.4 13.7
Gender

Female 363 12.44 69.1 35.8 11.8
Male 506 14.00 66.2 36.8 15.0

Far-away resident

Yes 144 12.57 60.4 26.4 09.0
No 725 13.51 68.8 38.3 14.6

HS type

Scienti�c 297 14.78 75.4 45.1 21.2
Humanities 67 13.60 80.6 44.8 16.4
Technical 327 12.64 63.6 32.1 09.7

Other 178 12.16 56.2 26.4 07.3
Late-enrolment

Yes 108 12.25 45.3 14.8 04.6
No 761 13.51 70.6 39.4 15.0

Hs grade

≤ 77 448 12.54 55.1 20.1 04.7
> 77 421 14.21 80.5 53.7 23.2

Career status

Active career 718 13.60 75.6 43.2 16.4
Change course 4 14.19 75.0 0 0

Drop out 131 12.07 23.7 01.5 0
Transfer 16 12.44 56.2 25.0 06.3

gree program" (Grilli et al., 2016). The second concerns the diversity of types of higher

schools and between the di�erent regional areas. It is necessary to evaluate whether the

self-evaluation test adds information to the known variables, for predicting the perfor-

mances.



Chapter 2

Comparing students' performance

In this chapter, we want to evaluate the performance of students who didn't take the test

and those who took it. In the introduction, we anticipated Article 1. Students who have

already obtained a degree in Italy are excluded from taking the test. It's unlikely that a

graduate person decides to enrol in the three-year period. Students, who have requested

a transfer from another University to the School of Economics and Management and who

have been recognized as having 18 or more credits, are also excluded. Finally, fall in this

category those who requested the transfer from another degree course, provided they

have already supported and passed the self-evaluation test at the School (or Faculty) of

origin. In this case, the test of the faculty of origin may be di�erent from that of the

economy, including di�erent areas of evaluation.

The second goal is to evaluate whether di�erent test sessions lead to di�erent perfor-

mance. We want to compare students who made the self-evaluation test in September,

on paper, with those who made it in the second session on the computer, in November

or March. This is because a priori we think that students enrolled in September can

follow the courses and give the exam at the right time, instead, the students that take

the test in later, have followed fewer lessons and have had less time to study regularly.

Causality is related to an action (doing the self-evaluation test) applied to a unit

(student). A causal statement assumes that even if a unit was (at a given time) subject

to a particular action (active treatment), the same unit could have been exposed to an

alternative treatment (control treatment) at the same point in time. So for each unit,

the outcome would be observed under the active control and active treatment, and this is

called potential outcome because in the end only one outcome can be realized and can be

observed. The causal e�ect is to compare these two potential outcomes. For this study,

we assume the SUTVA because the potential outcomes for any student don't vary with

the treatments assigned to other units, and, for each student, there are no di�erent forms

11
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or versions of each treatment level, which lead to di�erent potential outcomes(Imbens

and Rubin, 2015). We denote the observed outcome Y obs
i for a unit i ∈ {1, . . . , N} in a

population of N units:

Y obs
i = Yi(Wi) =

Yi(0) if Wi = (0)

Yi(1) if Wi = (1)

where Wi is the treatment indicator, take value 0 for the control treatment, and 1 for

the active treatment. For each unit we have the missing potential outcome denoted by

Y mis
i :

Y mis
i = Yi(1−Wi) =

Yi(1) if Wi = (0)

Yi(0) if Wi = (1)

For the causal e�ect, the presence of the missing outcome leads to an inferential

problem. The key role is played by the assignment mechanism, which is the process that

determines which units receive the treatment and which one takes control treatment.

Although the assignment mechanism is an unknown function, because we are in an

observational study, we still keep the assumption of individualiscness1 , probabilisticness2

, unconfoundedness3 (Imbens and Rubin, 2015). These assumptions implicate that the

assignment mechanism can be interpreted as the division of units into groups, where

inside have the same value of the covariates. So we can give a causal interpretation to

the comparison of the potential outcomes for the units being submitted at the active

and control treatment, for each group. But the approach that divides the population

into groups de�ned by the value of covariates, can create classes in which there are only

treated units or just controls. In this way, it becomes impossible to detect the causal

e�ect.

In experimental studies, characterized by the randomization of the treatment assign-

ment vector. covariate balancing is implicitly performed. In observational studies, the

treatments were not randomly assigned to experimental units, so the treated and control

groups may not directly comparable (Rosenbaum, 1984). Thus, Rosenbaum and Ru-

bin (1983) de�ned the balancing score, b(x),as a function of the observed covariates, for

1The assignment mechanism is said to be individualistic if the individual probabilities, for the unit
i, depend on his covariates and his potential outcome
(pi(X,Y (0,Y (1) = q(Xi, Yi(0), Yi(1))
and if multiplying individual probabilities, the result is equal to the probability of a particular assignment
vector less than a constant of proportionality

(P (W |X,Y (0),Y (1)) = c

N∏
i=1

q(Xi, Yi(0), Y (1))W (1− q(Xi, Yi(0), Yi(1)))
1−Wi

2Probabilistic assignment implies a non-zero probability for each treatment value, for each unit
(1 ≥ pi(X,Y (0,Y (1)) ≥ 0)

3The probability of assignment does not depend on any of the potential outcomes
(P (W |X,Y (0),Y (1)) = P (W |X))
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which, by conditioning this function, the conditional distribution of x given b(x) is the

same for the treated and the control units :

X⊥W |b(x)

The propensity score is one balancing score. Rosenbaum and Rubin (1983) de�ne it

as a function that shows the propensity towards exposure to the active treatment given

the observed covariate, e(X) = pr(W = 1|X). An important propriety of the balancing

score is that, if the treatment assignment is strongly ignorable4 , then it is also strongly

ignorable given the balancing score. It allows so to obtain unbiased estimates of average

treatment e�ects. In a randomized experiment, the assignment treatment is known to

be strongly ignorable, and this implies to be also ignorable 5, but it is not true the

opposite. While, in observational studies, the ignorable assignment treatment is a weak

assumption (Rosenbaum, 1984). So, with regard to the unconfoundedness, we cannot

observe it from the data, we can only conduct sensitivity analysis. While the propensity

score is estimated by the observed data.

4The treatment assignment is strongly ignorable given a set of covariate X if
W |(Y (0), Y (1))|X, and 0 < pr(W = 1|X) < 1

5The assignment mechanism does not depend on the missing potential outcome, but it can depend
on the observed outcomes
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2.1 Comparison by Test

First of all, the active treatment is the variable Test when takes value 1. It represents

students who didn't take the test. The group of control is formed by students who did

the test and the variable Test take value 0.

Table 2.1: Composition of the binary treatment variable "Test", in reference of the
2014/2015 (a.y.). School of Economics and Management, University of Florence

test 0 1
869 88

In the next table, we can see the number of given exams by Test. Most of the students

who didn't take the test didn't even give an exam. On average they give 0.61 exams.

The students, who did the test, give an average of 1.96 exams.

Table 2.2: Number of given exams by student who did the test (test=0) and student's
who did it (test=1), in reference of the 2014/2015 (a.y.). School of Economics and
Management, University of Florence

0 1 2 3 4 5 6
test=0 283 158 112 114 83 69 50
test=1 60 12 11 2 2 0 1

We use the normalized di�erence using the notation of (Abadie and Imbens, 2011),

calculated as:

nor-dif =
X̄1 − X̄0√
(S2

0 + S2
1)/2

It provides a measure without a scale for the di�erence of the two distributions. We

use this measure because is useful to see how much we have to adjust for the covariates.

For each covariate, the average for the group under treatment and control is displayed,

by scrolling along the column of each covariate, and for each one, we calculate the mean.

The �rst step is the di�erence between the average of the treaties and the average of the

controls, for each covariate. In the second step, the variance is calculated for each column

of covariates in the respective treatment groups. Finally, the standardized di�erence is

obtained as the ratio of the mean di�erence and the square root of the sum of the

variances of the respective groups divided by number 2.

From table 2.3, on average, in the treated group there are more females, far-away

and late enrolment students respect to the control group. The biggest di�erence is given

by the high school degree as the average grade of the treaties is 71 compared to 78 of

the control group. Furthermore, there are fewer students treated that coming from the

scienti�c high school. As regards the Humanities and Technical variables, distributions
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are almost overlapping because the standardized di�erence is very small.

Table 2.3: Standardized di�erence for each variable between the active and control group,
in reference of the 2014/2015 (a.y.). School of Economics and Management, University
of Florence

med.t1 med.t0 ST_di�.med
gender 0.489 0.582 -0.188

residence 0.818 0.834 -0.042
late-enrolment 0.193 0.124 0.189

Humanities 0.114 0.077 0.124
Scienti�c 0.227 0.342 -0.255
Technical 0.364 0.376 -0.026

Other 0.300 0.205 0.210
HS grade 74.22 77.48 -0.286

A logistic model is used to estimate the propensity score, where the dichotomous

response variable is the variable that indicates which unit is assigned to the treatment,

and vice versa, which one is to the control group. Explanatory variables are: test,

gender, residence, late-enrolment, Humanities, Scienti�c, Technical, other, High School

Grade. The signi�cance of covariates is not of interest since the model is used to �nd the

propensity score, de�ned as the individual probability of being assigned to the treatment

and is identi�ed by the �tted values of the logistic model.

The aim is therefore to �nd good estimates of the probability of the assignment to

the treatment. If the estimates are good it is expected that the distribution of covariates

is the same between the treated group and the control group.

The balancing occurs more easily by comparing the histograms of the treated and

control group. We use also to overlap the distribution of the two groups. The distribution

of covariates is similar between the group of treaties and the controls. The treated are

represented by the blue line in �gure 2.1.

We use the matching procedure to improve the balance. Usually, it is applied in

the observational study and the treatment variable is not randomly assigned (Ho et al.,

2011). When we have a small group of unit's treated, we sample from a large group of

potential control. In this way, we form a group of control which has a similar distribution

to the treated group (Rosenbaum and Rubin, 1983). This is the reason which led us to

consider as treated the student that didn't take the test. It's easier to �nd students, in

a large pool of control, that have similar covariates as the treated.
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Figure 2.1: Distribution of covariates between the treaties (student who didn't pass the
test) and the control group (student who passed it), in the a.y. 2014/2015. School of
Economics and Management, University of Florence

In the matching, we use the propensity score as the synthesis of the covariates. We

use the packages in R MatchIt for this analysis. If Wi⊥Xi, we would not need to control

for Xi, and so the analysis is reduced to a di�erence in means of Y for the treated and

control groups (Ho et al., 2011).

Stuart (2010) de�ne the "distance" as a measure of the similarity between two indi-

viduals. The exact distance is determined as:

Dij =

0 if Xi = Xj

inf if Xi 6= Xj

Rosenbaum and Rubin (1983) showed that exact matching leads the same probability

distribution of X, for the treated and control groups, because each treated units is

matched with all possible control, which has the same value in all the covariates. But

it doesn't work very well because it produces few combinations, and discards too many

units. The propensity score is de�ned as

Dij = |ei − ej|

where ek is the propensity score for individual k (Stuart, 2010). We use the nearest

available matching on the estimated propensity score. The propensity score is estimated

by using a logit model, as the distribution of the propensity score is approximately

normal. The treated and control are randomly ordered. The process begins by matching

the �rst treated unit with the control unit which has the closest propensity score, and

then they are removed from the list of treated and control. This step is repeated for
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the unmatched treated. Rosenbaum and Rubin (1985) showed that it works very well

because it required less computation and it's useful in reducing bias.

The percent balance improvement is calculated:(
|a| − |b|
|a|

)
× 100

where a is the di�erence between the treaties mean and controls mean in the original

data, before matching, while b is the di�erence in means after matching (Ho et al., 2011).

This di�erence is done for each covariate.

By looking at the data, intuition leads us that the better choice is given by the

nearest available propensity score matching, by using the exact matching on the binary

covariates, in order to improve the balance.

Table 2.4: Synthesis matching Test : Nearest available propensity score using the exact
matching on binary covariates

Percent Balance Improvement Mean Di�.
distance 98.55
gender 100

residence 100
late enrollement 100

Humanities 100
Scienti�c 100
Technical 100

Other 100
HS grade 97.98

Sample sizes Control Treated
All 869 88

Matched 82 86
Unmatched 787 2
Discarded 0 0

In Table 2.4 we can see how the di�erence between the mean of the treated and the

mean of the control group after matching is 0, thus leading a percentage improvement

in the balance of a 100%. Only two treated remains unmatched. The matching is done

with replacement because it gets better matches. Without replacement, the order in

which we match the treated is important because if some control was already matched,

they could be the better matched for the treated units unmatched (Imbens and Rubin,
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2015). The matching with replacement allows the use of the control units more than

once. The advantage is that the bias is reduced; the problem is that we can often take

the same control unit, increasing the variability (Abadie and Imbens, 2006). The nearest

neighbour matching method in MatchIt is by default a greedy matching. It matches

the closest control for each treated unit, one at a time. We use the order speci�ed by

default is largest because by �rst it matches the units treated with the highest values of

the distance, units that are the most di�cult to pairing. This happens because we can

imagine the distribution of the propensity score of the left-handed controls compared to

the treaties. The remaining treated units are then matched. We have de�ned the option

exact on the dichotomous variable on which to perform the exact matching within the

nearest neighbour matching. Only the matches that match exactly on the covariates will

be allowed. Within the matches that match on the variables in exact, the match with

the closest distance measure will be chosen (Ho et al., 2011).

In �gure 2.2 we can observe the distribution of the propensity score between the

treaties and the controls analysed before and after marching. The situation in terms of

balancing has improved considerably.

Figure 2.2: Histogram: before and after matching on the treatment variable Test

Through the qq.plot, in the case of good balancing between treaties and controls, we

obtain points that are situated on the straight line. We use this chart as the compression

of adjusting it's faster. Figure 2.3 illustrates for each covariate the balancing before and

after the matching.

Now that we have two groups of similar students in terms of covariates, we can

compare them to identify the e�ect of the self-evaluation test. For each students, the

e�ect of treatment is Yi(1) − Yi(0). As only one outcome is observable, for the treaties
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Figure 2.3: QQplot: before and after matching on the treatment variable Test for each
covariate

we use the outcome of the matched control. We can focus on the most two estimand

most used in the literature. Using the notation of (Imbens, 2004), the �rst one is the

population average treatment e�ects (PATE), which is the di�erence of the expected

number of exams after taking or not the self-evaluation test:

τ p = E [Y (1)− Y (0)]

Alternatively, the second estimand is population average treatment e�ect on the treated:

τ pT = E [Y (1)− Y (0)|W = 1]

The �rst parameter shows the e�ect of randomly assigning students for doing or not the

self-evaluation test. We will use the second estimand as it focuses on the e�ect on those

who didn't take the test (Caliendo and Kopeinig, 2008).
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As Becker et al. (2002) illustrate in the paper, let C(i) be the set of control unit

matched to the treated unit (i), and let denote the Y T
i and Y C

j the observed outcome of

the treated and control unit. Using the nearest neighbour matching with an estimand

value of propensity score, ps, de�ne C(i) as:

C(i) = minj|pi − pj|

The number of control matched, with observation i in the set of the treated units, is

de�ned NC
i = 82, while the number of treated is NT = 86. As we used matching with

replacement, some controls are in the matched sample more than once, we de�ne the

weight as:

wij =


1

NC
i

j ∈ C(i)

0 otherwise

The ATT is obtained by averaging the di�erence between the outcome of the treated

units and the outcome of the matched control:

τM =
1

NT

∑
i∈T

[
Y T
i −

∑
j∈C(i)

wijY
C
j

]
=

1

NT

[∑
i∈T

Y T
i −

∑
i∈T

∑
j∈C(i)

wijY
C
j

]
=

1

NT

∑
i∈T

Y T
i −

1

NT

∑
j∈C(i)

wijY
C
j

We need to �nd the variance in order to calculate the con�dence interval. The necessary

assumptions for the estimate of the variances are �xed weights and independent outcomes

across the units:

V ar(τM) =
1

(NT )2

[∑
i∈T

V ar(Y T
i ) +

∑
j∈C

w2
jV ar(Y

C
j )

]
=

1

(NT )2

[
NTV ar(Y T

i ) +
∑
j∈C

w2
jV ar(Y

C
j )

]
=

1

NT )
V ar(Y T

i ) +
1

(NT )2

∑
j∈C

w2
jV ar(Y

C
j )

From the computational point of view, we can apply this formula, or, we can �t a linear

model with the respective response variables of the student's performance and with the

only test as independent variables. In the absence of covariates, the coe�cient of the

average e�ect of the treatment is an OLS estimator and it is identical to the di�erence of

the sampling averages of Y (Neyman estimator). Therefore, the coe�cient is unbiased

(Imbens and Rubin, 2015). In Table 2.5 we can see the average treatment e�ect on stu-

dent's who didn't take the test. We �t three model, each for the di�erent performance
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indicators Y1, Y3, Y5.

Table 2.5: Average treatment e�ect on the students who didn't take the test, by using the
performance indicators of the 2014/2015 (a.y.), School of Economics and Management,
University of Florence.

Outcome Coe�cient Estimate Std. Error Pr(>|t|)
Y1 test -0.289 0.085 ***0.000934
Y3 test -0.209 0.055 ***0.000183
Y5 test -0.081 0.034 *0.016855

With α = 5% all the coe�cients are statistically signi�cant. The conclusion for

the comparison by test leads to the assertion that students, who didn't take the self-

evaluation test at the School of Economics and Management, in the 2014/2015 a.y.,

have:

• a lower probability of 29% to give at least one exam than the students who did the

test

• a lower probability of 21% to give at least three exams than the students who did

the test

• a lower probability of 8% to give at least �ve exams than the students who did the

test

The test is di�erent for each faculty and it contributes to the process of orientation

towards the choice of the university course. If one student passes the test in a particular

faculty, this doesn't mean that he/she has the knowledge necessary to access directly

to another faculty. In fact, in the School of Economics and Management, students that

don't pass the test at �rst attempt have to �ll gaps with the materials indicated by the

university. Such students must pass the next test in order to take exams during the

academic year. This means that the test should always be done.
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2.2 Comparison by Test Session

The goal, in this section, is to verify if the Test Session (September or Later) can in�uence

the student's performance. The treatment variable is Test Session. It takes value 1 if

the test is done later on computer, otherwise, 0 if it is done on paper in September.

Table 2.6: Composition of the binary treatment variable Test Session, in reference of the
2014/2015 (a.y.). School of Economics and Management, University of Florence

Test Session 0 1
722 147

In the next table, we can see how many exams give students per session. On average,

students who did the test in September give 2.09 exams. Students who did it later give

on average 1.30. The di�erence between the two groups is lower than the case studied

in the previous section.

Table 2.7: Number of given exams by students who did the test in September (session=0)
and the students who did it later (session=1) , in reference of the 2014/2015 (a.y.). School
of Economics and Management, University of Florence

0 1 2 3 4 5 6
Test Session=0 212 133 95 98 75 61 48
Test Session=1 71 25 17 16 8 8 2

Table 2.8: Standardized di�erence for each variable between the active and control group,
in reference of the 2014/2015 (a.y.). School of Economics and Management, University
of Florence

med.pc med.paper ST_di�.med
gender 0.592 0.580 0.023

residence 0.728 0.856 -0.319
late-enrolment 0.245 0.010 0.391

Humanities 0.112 0.069 0.160
Scienti�c 0.347 0.341 0.013
Technical 0.259 0.400 -0.305

Other 0.279 0.190 0.211
HS grade 75.94 77.74 -0.156

Table 2.8 show the results of the normalized di�erences. On average, in the treated

group there are less resident student and fewer students that coming from the Technical

High school. There is a higher presence of students from Scienti�c and Other High

School. Furthermore, the treated group have on average a lower diploma score than the

control group.
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A logistic model is used to estimate the propensity score, where the dichotomous

response variable is the variable that indicates which unit is assigned to the treatment,

and vice versa, which one is to the control group. Explanatory variables are: test, gender,

residence, late-enrolment, Humanities, Scienti�c, Technical, other, High School Grade.

As in the previous sections, we use the nearest available propensity score matching, by

using the exact matching on the binary covariates. From the results of table 2.9, we

can see that all the treated were matched. The match works very well because all the

dichotomous variables have been matched with a balance improvement of 100% and the

HSG has a 96.72% balance improvement.

Table 2.9: Synthesis matching Test Session: Nearest available propensity score using the
exact matching on binary covariates

Percent Balance Improvement Mean Di�.
distance 99.87
gender 100

residence 100
late-enrolment 100

Humanities 100
Scienti�c 100
Technical 100

Other 100
HS grade 96.72

Sample sizes Control Treated
All 722 147

Matched 123 147
Unmatched 599 0
Discarded 0 0

In �gure 2.4 We compute the distribution of the propensity score in the treaties and

the controls before and after matching. In the histogram, we can observe that matching

has greatly improved the balance. Figure 2.5 illustrate for each covariate the balancing

before and after matching.

We proceed on calculating the treatment e�ect. For treaties, we use the outcome of

the matched control, and vice versa. In this section, we use the ATT estimand as we

are interested in the e�ect on those who did the self-evaluation later. We �t a linear

model for each responses variables, constructed in Table 1.2, with only the independent

variable Test Session. The results are shown in table 2.10.
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Figure 2.4: Histogram: before and after matching on treatment variable Test Session

Table 2.10: Average treatment e�ect on the students who did the test in November or
March, by using the performance indicators of the 2014/2015 (a.y.), School of Economics
and Management, University of Florence

Outcome Coe�cient Estimate Std. Error Pr(>|t|)
Y1 session -0.088 0.061 0.146
Y3 session -0.088 0.054 0.104
Y5 session -0.07 0.036 0.062

With α = 5% all the coe�cients are not statistically signi�cant. There are no per-

formance di�erences at the end of the year between students who did the test Later or

those who did it in September.

Matching techniques allowed the comparison between students with similar charac-

teristics. The results lead to the conclusion that the test session does not a�ect the

student's performance. The reason is not for the test period itself but is look elsewhere.

In Italy, non-enrolled subjects can participate in lessons. We suppose so that students

who did the test later have been able to participate in the lessons and therefore get a

preventive idea. This means that thanks to the lessons open to the public, students

continued to attend the lessons and study regularly waiting for the next test. This has

led to a similar performance at the end of the academic year.
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Figure 2.5: QQplot: before and after matching with propensity score estimated on the
treatment variable Type



Chapter 3

Logistic Regression

In this chapter, we use the logistic regression model to predict the student's performance

using the pre-test variables. We want to see also how much information can add the

test variables on predicting the results.

We consider the three di�erent outcomes constructed in Table 1.1 of the previous

chapter. We cannot apply the linear regression model because with the binary dependent

variable we obtain the linear probability model. The response is y = 1 if the student pass

the exam and y = 0 if he doesn't. It is called linear probability because in the conditional

expectations we can see how a unit change in Xp always result in the same change in the

probability (Scott Long, 1997)

E(yi|Xi) = [1× Pr(yi = 1|Xi)] + [0× Pr(yi = 0|Xi)] = Pr(yi = 1|Xi)

But with the binary outcome some assumptions are violated. The �rst concerns the

variance of the response:

Var(y|X) = Pr(y = 1|X)[Pr(y = 0|X)] = Xβ(1−Xβ)

which implies an heteroscedastic model. So the model will have ine�cient estimate of β

and biased standard error. Furthermore, the model predict values of y that are greater

than 1 or negative thus leading probabilistic prediction nonsensical.

To overcome these problems, we can use the generalized linear models. These models

have three part components (Agresti, 2015):

• The random component is formed by the observations y = (y1, . . . , yn)T that are

independent and identically distributed, with distribution belonging to the expo-

nential family.

• The linear predictor. The expression linear refers to the parameters, while explana-

tory variables can be non linear functions is expressed in matrix form

26
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η = Xβ

where η = (η1, . . . , ηn)T ,Xn×p is the matrix of the explanatory variables and β is

the parameter vector, β = (β1, . . . , βp).

• The linear predictor is related to E(y) through a monotone and di�erentiable link

function [g(·)]. Let µi = E(yi), i = 1, . . . , n.

g(µi) =

p∑
j=1

βjxij

The GLM are an extension of the linear model, developed thanks to the software improve-

ment. With these methods some fundamental hypotheses are attenuated or changed.

The relation between the explanatory variables and the response through a link function

is non-linear. The hypothesis of homoschedasticity and normality of the observations

are also relaxed. In classical linear model, the response variable is assumed normal dis-

tributed while in GLM the dependent variable is a random variable whose distribution

belongs to the exponential family.

In our dataset, the variables response has binomial distributions which belong to the

exponential family. There are a large choice of link functions and the three most used in

practise are (McCullagh and Nelder, 1989):

1. Logit or logistic function: g1(π) = log{π/(1− π)}

2. Probit or inverse Normal function:g2(π) = φ−1(π)

3. Complementary log-log function: g3(π) = log{−log(1− π)}

The �rst two functions are almost linearly related over the interval 0.1 ≤ π ≤ 0.9, while

complementary log-log is di�erent for values of π close to 0 or 1. As in our dataset

the observed proportion of students who give at least one exam, at least three or �ve is

within the range of [0.1; 0.9] we can exclude the third function.

%(Y1 = 1) = 75.3 %(Y3 = 1) = 40.6 %(Y5 = 1) = 15.3

In order to make a prediction logit and probit are equivalent. However, for the greater

notoriety and simplicity of interpretation we choose to adopt the logit link.

The model parameters for logistic regression has two formulations (Agresti, 2015):

πi =
exp
(∑p

j=1 βjxij
)

1 + exp
(∑p

j=1 βjxij
) or logit(πi) = log

(
πi

1− πi

)
=

p∑
j=1

βjxij
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The �rst formulations ensure that the probability will not be less than 0 or greater than

1. The parameters are estimated by maximum likelihood techniques. The estimation

equations of a GLM are not in closed form so the solution is found by an iterative process

(Menard, 2002). The default method in R uses iteratively reweighted least squares

(IWLS).

3.1 Model �tting

We work on the entire dataset with 869 students who did the self-evaluation test and en-

rolled in the in the 2014/2015 a.y., School of the Economics and Management, University

of Florence.

The response variable of interest is the amounts credits earned in the next solar

year. For this reason, the binary responses built in Table 1.1 are used as the university

performance indicators. In table 3.1 we display the coe�cients, which give the change

in log odds of the response variables for a one unit increase in the predictor variable.

There are two models for each of the three outcomes. In the �rst model there are only

pre-test variables. In the second model, we also added the test variables to observe the

signi�cance of the coe�cients.

In each model there aren't interactions because, with lrt test, they didn't add any

information, thus obtaining a parsimonious model.

Table 3.1: Logistic regression: output for each of the three binary responses constructed
in Table 1.1. First model with only pre-test variables and the second with pre-test
variables and the test-variables. In reference of the 2014/2015 (a.y.), School of Economics
and Management, University of Florence.

Y1
Pre-Test

(Intercept) ***-5.81
gender 0.06

residence **0.60
late-enrolment **-0.65

Humanities ***1.34
Scienti�c ***1.09
Technical 0.29
HS grade ***0.07

Test
Logic

Reading
Mathematics

Y1

***-5.89
0.01
*0.54

**-0.62
***1.32
***0.97

0.31
***0.07

-0.01
0.03
*0.10

Y3

***-9.76
*0.39

***0.85
**-1.01
**1.09
***1.19

0.21
***0.10

Y3

***-10.15
0.21

**0.73
**-0.95
**0.95
***0.87

0.23
***0.09

*0.11
0.04

***0.18

Y5

***-12.77
**0.67
*0.77
-0.76
*1.13

***1.66
0.17

***0.11

Y5

***-13.07
0.50
0.58
-0.63
0.95

**1.20
0.15

***0.10

0.05
0.02

***0.27
The asterisks indicate the signi�cance (0'***';0.001'**',0.01'*')
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The intercept is the estimated baseline log odds when all independent variables are set

to 0, or the reference category in case of categorical variables. The reference categories

are female, students far-away, students with regular studies at the high school, Other high

school.

Scienti�c High school, the High school grade and the Mathematics score obtained

in the self-evaluation test are always statistically signi�cant. As the number of exams

increases, in these coe�cients increases the change in log odds. For a unit increase in

Mathematics test score the log odds of Y1 increase by 0.10, for Y3 increase by 0.18 and

for Y5, increase by 0.27. The Logic test score is signi�cant only for Y3 while Reading test

score is always meaningless.

Students with an irregular career at the high school have signi�cant negative in�uence

on Y1 and Y3 respect students with a regular career. The resident students have always a

positive in�uence on the far-away but result not signi�cant only for Y5 with test scores.

Students from Humanities High school have always a positive e�ect respect the students

for Other High School, but as the number of examinations increases, the coe�cients lose

signi�cance until they result meaningless for Y5 with test score variables. The e�ect of

males on the outcomes, respect the females, increasing as increase the number of exams.

For Y1 we can see a very small e�ect, while in the models with only pre-test variables,

the coe�cient results statistically signi�cant for Y3 and Y5. When we add test scores

variables, coe�cients lose signi�cance.

3.2 ROC Curve

In our dataset we are in the presence of ungrouped data1 where each observation yi,

results from a single Bernoulli trial. We can cross-classi�es the binary response y with

the binary prediction ŷ in a classi�cation table. There are four possible outcomes:

• True Positive (TP) if y = 1 is classi�ed as ŷ = 1

• False Negative (FN) if y = 1 is classi�ed as ŷ = 0

• True Negative (TN) if y = 0 is classi�ed as ŷ = 0

• False Positive (FP) if y = 0 is classi�ed as ŷ = 1

The estimates of a true positive rate (or sensitivity) of a classi�er is:

tp rate =
Positives correctly classified

Total positives
= P (ŷ = 1|y = 1)

1There is also a second form of binary data: grouped data. Here there is a set of observations which
have the same value of the explanatory variables.
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The estimates of a false positive rate (or speci�city) of a classi�er is:

fp rate =
Negatives incorrectly classified

Total negatives
= P (ŷ = 1|y = 0)

We use the ROC graphs to see which the best trade-o� between the two rates is. On the

Y axis is plotted tp rate while on the X axis is plotted the fp rates . The point (0, 1)

represents the perfect classi�cation. The diagonal line, y = x represent a no realistic

classi�er because it guesses to get half of the positives and half of the negatives. If the

classi�er is below the diagonal, it performance worse (Fawcett, 2006).

We need to select the cut-o� π0 because the classi�cation table depends on it for the

prediction. When π0 is near 1 all the point are near(0, 0) because predictions ŷi = 0,

otherwise, when π0 is near 0 all the point are near(1, 1) because predictions ŷi = 1

(Agresti, 2015). We need to select π0 which is the better at identifying likely positives

than at identifying likely negatives. So the better predictive power is given where there

is the greater area under the ROC curve (AUC) (Fawcett, 2006).

We �t the model on the entire data set, with pre-test and test variables for each

binary responses referred to table 1.2. With pROC package we print the best cut-o�. In

table 3.2 we can see how the threshold decreases as the proportion of zeros contained in

the response variable increases.

Table 3.2: Best cuto� estimated with the Roc curve. For the two models with the
respective three binary responses constructed in Table 1.2.

Model Cuto�

Y1 (pre-test) 0.738
Y1 (pre-test and test) 0.765

Y3 (pre-test) 0.372
Y3 (pre-test and test) 0.383

Y5 (pre-test) 0.141
Y5 (pre-test and test) 0.117

In �gure 3.1 we can observe that the Roc curve moves away from the diagonal to the

top of the quadrant as the number of exams increases. For Y1 the ROC curve have a

poor predictive power and the area under the ROC curve is equalled for both models.

While, for Y3 we can observe how the area increases slightly by the inclusion into the

model of the test score variables, with a decrease in False Positive rate and an increase in

True Positive rate. Finally, for Y5 we can see an improvement in the area thanks to the

insertion of the test variables, but, the FPr increases and decreases the TPr compared

to the Y5 model with only pre-test variables.
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Figure 3.1: Roc curves for each of the three binary GLM, in reference to the predictions on
the data used to �t the model with background and test variables. School of Economics
and Management, University of Florence, 2014/2015 (a.y.).

3.3 Results

Instead of predicting from the model �tted on the entire dataset, we prefer using k-fold

cross-validation. The learning method is to divide the data set in k equal-sized parts and

the model is �tted in the K − 1 parts. We predict the kth part that we left out as the

test set and we calculate the prediction error (Hastie et al., 2009). For each the predicted

kth we choose the best cut-o� between sensitivity and speci�city, π̂0. The prediction for

the response variables yi is ŷi = 1 if π̂i > π0, otherwise ŷi = 0 if π̂i ≤ π0.

Since we are in a classi�cation problem, the prediction error is calculated as follows:

PE = 1− ACCURACY = 1−
(

TP + TN

TP + FN + TN + FP

)
This process is done for each k=10 parts. We take the average of the 10 PE values and

we use it to evaluate which model produces the lowest prediction error. Another goal
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is to verify if the addition of test variables (score on Logic, Reading and Mathematics)

leads to a decrease in prediction error.

Table 3.3: Average of the 10 prediction error for the model with only pre-test variables
and for the model with in addition the test variables. The three binary responses are
used for each model. School of Economics and Management, University of Florence,
2014/2015(a.y)

Y1 Y3 Y5
PE (pretest) 0.312 0.229 0.239

PE(pretest + test) 0.310 0.219 0.229

In table 3.3 we can see the average of the prediction error computed on each of the

one-tenth parts of the data. In the �rst model, we used only the pre-test variables and we

�tted it for each of the binary responses. In the second model in addition to the pre-test

variables, we also added test variables, score in Reading, Logic and Mathematics. The

lowest average of the estimated prediction error is always for Y3. Students who give at

least three exams are most likely to be predicted. Test variables add little information

in general. We can observe how the earning in terms of forecast error for Y1 is really

small. This is due to the di�culty of predicting students who are able to give at least

one exam based on the covariates. The addition of information about the test score

gets an improvement of 1% prediction error for students who give at least 3 exams. For

predicting students who give at least 5 exams, the improvement in forecast error is always

1%. However, with the test variables, the predicted error is 0.229 compared to the 0.219

of the Y3. This means that it is more di�cult to predict students who give at least �ve

exams because there are few students in this category, about 13.7%, on the date set.

The conclusion is that the addition of test scores information doesn't help to predict

the student's performance. The reason behind the analysis made in this chapter is that

knowing the student's score in mathematics is partly due to background variables, such

as the origin of the Scienti�c High school or the High School grade. So the test variables

give similar information already known before the students give the test. It would be

necessary to modify the form of the test as the Reading portion is not signi�cant while

Logic is only important for Y3. The part of mathematics depends on the High school

of origin. The test lacks the motivational part, which is fundamental to continuing the

studies. Many students choose the School of Economic and Management in the absence

of other opportunities. But this does not lead to great interest in the study.



Chapter 4

Random Forest

Ensembles methods are learning machines that allow improving the predictive perfor-

mance, instead of the result that would have been achieved with respect to unique learn-

ing algorithms. Recently, the interest in the research area is motivated by technological

development, that allows fast implementations. Resampling methods are used to gener-

ate di�erent hypotheses, for examples bootstrap techniques is used to generate di�erent

training sets and the learners algorithm are applied in the subset of the data. These

techniques are useful because if we use the only algorithm, like decision trees, it product

unstable results as they are sensitive to small changes in the training set (Valentini and

Masulli, 2002).

In this chapter, we use the random forest classi�er to predict the student performance

using the pre-test variables. As in the previous chapter, we want to see how much infor-

mation can add the test variables on predicting the student's performance, in addition

to the pre-test variables.

4.1 Theoretical background

A Classi�cation Tree is used to predict a qualitative response. Di�erent variables subsets

are used at di�erent tree levels instead of using all the variables contained in the data set

jointly to create a decision rule. Recursive binary splitting is used to grow a classi�cation

tree. The approach begins on the top of the tree with all the predictors and then splits

the predictor's space. Di�erent measures are used for making the binary splits:

• Classi�cation error rate represents the proportion of training observations, p̂mk, in

the mth region that are from the kth class.

E = 1−maxk(p̂mk)

• Gini Index measures the total variance across the K classes.

33
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G =
K∑
k=1

p̂mk(1− p̂mk)

• Cross-entropy

D = −
K∑
k=1

p̂mklogp̂mk

Gini index and the cross-entropy are used more for evaluating the quality of the split.

The Classi�cation error rate is used when the goal is the accuracy of the prediction.

According to the chosen split criterion, the N units are progressively subdivided into a

series of disjointed subgroups that have a degree of homogeneity greater than the initial

set. At each step of the process, the heterogeneity of the groups is reduced compared to

the previous step. The terminal nodes of the tree have a degree of homogeneity such as

it can be attributed to one of the modes of the Y response variable. In this way, we have

a classi�cation rule that allows us to classify test set observations and to calculate the

classi�cation error rate. Trees are easy to explain to the people and they can be displayed

graphically but despite these advantages, they su�er from high variance, because the �t

of each tree are very di�erent and there isn't the same level of accuracy (James et al.,

2013).

Bagging is a statistical learning method that aggregates many trees for improving the

predictive performance and for reducing the variance. From the learning set,L = (yn,xn)

where n = (1, . . . , N), bagging takes repeated bootstrap sample LB,1, . . . , LB,K and con-

struct classi�ers, h(x, Lk), that vote to form the bagged predictor, {ϕ(x, L(B))} . The

kth predictor ϕ(x, Lk,B) is based on the kth bootstrap learning set, thus de�ning K

predictors. The aim is to use {L(B)} to get a better predictor that one single predictor.

The proportion of times that the estimated class di�ers from the true class is the bagging

misclassi�cation rate (Breiman, 1996a). The Out-of-bag estimation is used to estimate

the misclassi�cation rate. Each bootstrap sample leaves out about 37% of the observa-

tions. The ith observation response is predicted by using each of the trees in which that

observation resulted in OOB. To obtain a single OOB prediction we obtain a majority

vote for a single prediction (Breiman, 1996b).

The disadvantage of bagging is the high correlation between the trees, since, the use

of all explanatory variables involves splitting the tree at the beginning with the most

in�uential variables, thus making similar trees (James et al., 2013).

One way to overcome this disadvantage is by using Random Forest. The di�erence is

in the selection of the number of explanatory variables because the process begins with

the random selection of m variable, m < p where p is the total number of explanatory
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variables (in the bagging m = p). Each new bootstrap sampling is done with replacement

from the original data set and the tree growth are not pruned.

One of the main advantages concerns the accuracy that is good as AdaBoost, if not

better. It is faster than bagging and boosting and it gives useful estimates of error, the

strength of the classi�er, correlation and variable importance. But it is relatively robust

to outliers and noise (Breiman, 2001).

Classi�cation Algorithm for Random Forest

1. For b = 1 to B:

(a) Draw a bootstrap sample Z∗ of size N from the training

data.

(b) Grow a random-forest tree Tb to the bootstrapped data,

by recursively repeating the following steps for each termi-

nal node of the tree, until the minimum node size nmin is

reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees
{
Tb
}B
1
.

To make a prediction at a new point x:

Let Ĉb(x) be the class prediction of the bth random forest tree.

Then Ĉrf (x) = mayority vote
{
Ĉb(x)

}B
1

(Hastie et al., 2009)
From the strong law of the large numbers and the tree structure, the random forest

do not over�t as more trees are added, but produce a limiting value of the generalization

error (Breiman). It can be shown through the de�nition of the margin function in a

training set drawn at random from the distribution of the random vector Y,X:

mg(X,Y ) = avkI(hk(X) = Y )−max(j 6=Y )avkI(hk(X = j) (4.1)

where I(.) is the indicator function, h1(x), . . . , hk(x) are en ensemble of classi�ers. The

margin measure how many times the average number of votes in the right class, X, Y ,

exceeds the average of each other's classes. When the margin increase, increase also the
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credibility of the classi�cation. So the error is given by:

PE∗ = PX,Y (mg(X, Y ) ≤ 0) (4.2)

Since in random forest hk(X = h(X, Lk), it follows that for all the sequences of L1, . . . , Lk,

the PE∗ converges to:

P(X,Y )(PL(h(X, L) = Y )−max(j 6=Y )PL(h((X,L) = j) ≤ 0 (4.3)

The strength of the individual classi�ers in the forest, and the correlation between them

in terms of the raw margin functions, are the two elements that a�ects the generalization

error. The strength is understood as the expected values of the margin function of a

random forest. When the number of random variables used in each tree decrease, it

reduces both the correlation and the strength. So an optimal value is found by using the

out of bag error rate in a range of di�erent values of the number of variables, and the

best number is one that minimizes the error. As the random forest are an extension of

bagging, we can use the out-of-bag method for estimate the generalization error, (PE∗)

(Breiman, 2001).

4.2 Fitted classi�er

We use the randomForest R package for the prediction of the student's performance. As

in Chapter 3, we use one model with only pre-test variables without iteration so to allow

the comparison of the results between the random forest and logistic regression. In the

second model, the test variables are added to the pre-test variables for assessing the pos-

sible addition of information. We apply the random forest classi�er on the 869 students

who did the self-evaluation test and enrolled in the 2014/2015 academic year, School of

Economics and Management, University of Florence. The student's performances are

shown by the indicators constructed in Table 1.1 which represents a number of credits

gained at the end of the next solar year. We have two models to evaluate for three binary

responses thus obtaining six models to estimate.

The �rst parameter of the random forest is ntree, which represent the number of

trees to grow. In our models we grow 500 trees, default number in random forest im-

plementation in R. The second parameter is the number of variables randomly sampled

as candidates at each split, mtry. The default values for classi�cation is
√
p where p is

number of variables in X.
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4.2.1 Imbalanced Data

Decision trees are sensitive to imbalanced classes. As Random forests are built on decision

trees, the classi�er focuses on the maximal accuracy prediction of the majority class. We

may obtain an optimal accuracy but, in case of fewer positive class in the data, we

will have all instances negative predicted. This issue is present in many real situations

on real-world applications and, for this reason, it has caught the attention of many

researchers (?). In general, sampling-based approach and cost-based approach are used

to overcome this problem. The basic idea of sampling methods is to simply adjust the

proportion of the classes in order to increase the weight of the minority class observations

within the model. It can be done with under-sampling, which randomly eliminate

chosen cases of the majority class to decrease their e�ect on the classi�er. All cases of

the minority class are kept. Through over-sampling in the minority class, all existing

observations are taken and copied. Extra observations are then added by randomly

sampling with replacement from this class. These methods can, therefore, be combined

with every appropriate classi�er. In ensembles method, di�erent techniques are used in

the literature. One extension of the over-sampling is Over-Bagging. It consists in the

combination of sampling with the bagging approach.

In this study, the random forest learner is fused with the over-sampling bagging for

imbalance correction. We use the mlr packages as it allows to integrate learners with new

functionality. We use 10-fold cross-validation. For each K− 1 fold, we grow 500 trees on

the 500 bootstrap sample. For each bootstrap sample, minority class observations are

oversampled with a given rate. We decide to triple the smaller classes. The majority

class cases are bootstrapped with replacement to increase variability between training

data sets during iterations. Then, in each tree the split consider a random sampled of m

predictors from the full set of p predictors. We use the kth fold as a test set in order to

predict the classes which had the majority vote. For Y1, Y3 the average prediction error

in 10-fold cross-validation is very high. For Y5 with only pre-test variables the PE mean

is 0.162, while, with the addition of test scores variables the PE mean is 0.154.

Many factors, such as the choice of the rate for over-sampling without criterion and

the resampling of the same data, make this method, in my opinion, not reassuring.

An idea to improve the balance is by choosing the threshold. We change the default

values of cut-o�. In the random forest, the cut-o� is a vector of length equal to a number

of classes. The "winning" class for an observation is the one with the maximum ratio of

the proportion of votes to cut-o�. The default is 1/k where k is the number of classes. In

our study, the indicators of student's performance are binary, which involve two classes.

For the predicted classes the majority vote is applied with cutoff = (k, 1−k) = (0.5, 0.5).

We choose the cut-o� values in order to keep in consideration the proportion of
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students which pass at least one exam, at least three and �ve exams, in reference with

table 1.2. Each pair of cut-o� represents a possible threshold for the classi�cation.

The idea is:

• If the proportion of y = 1 is ≥ 50% then the worst mistake we can make is the

False Negative ratio. We search for the threshold that has a minimum of FN. If

there are di�erent cut-o� which presents the same amount of FN we choose the

thresholds that have the highest accuracy value.

• If the proportion of y = 1 is < 50% then the worst mistake we can make is the

False Positive ratio. We search for the threshold that has a minimum of FP. If

there are di�erent cut-o� which presents the same amount of FP we choose the

thresholds that have the highest accuracy value.

The procedure begins with the selection of the �rst pair of cut-o�. We de�ne the resam-

pling with the 10-fold cross-validation and we specify the classi�cation random forest

learner with the predict.type set to predict probabilities, which give the matrix of class

probabilities for the kth fold used as a test. For each kth fold we calculate the relative

index across the 10-fold cv, for the respective cut-o�.

Table 4.1: Improve of the probability thresholds for class imbalances by selection of the
best cut-o� among the 10-fold cross validation. The procedure is done for each variables
response for the model with pre-test variables and for the model with pre-test and test
variables.

Model Best cut-o�

Y1 with pre-test variables (.25,.75)
Y1 with pre-test and test variables (.35,.65)

Y3 with pre-test variables (.65,.35)
Y3 with pre-test and test variables (.55,.45)

Y5 with pre-test variables (.90,.10)
Y5 with pre-test and test variables (.70,.30)

From table 1.2 the proportion of Y1 = 1 is 67.4%. We generate 9 cuto� vectors in

order to form a 9 × 2 matrix. The cut-o� is a sequence from 0.1 to 0.50 for the �rst

column, by an increment of 0.05. For the second column, we made a sequence from 0.90

to 0.50 with an increment of 0.05. From table 1.2 the proportion of Y3 = 1 is 36.4% and

for Y5 = 1 is 13.7%. We generate 9 cut-o� vectors in order to form a 9× 2 matrix. The

cut-o� is a sequence from 0.50 to 0.90 for the �rst column, by an increment of 0.05. For

the second column, we made a sequence from 0.50 to 0.10 with an increment of 0.05.

We make this process for each dataset used to estimate the respectively six models.

We can see how close are the best cut-o� chosen for the random forest with the cut-o�
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estimated in ROC curve, from table 3.2. Since In logistic regression we draw the ROC

curve among the observed response variables and the predicted probabilities, the excess

of the threshold indicates the probability of assigning ŷ = 1, in the random forest we

consider the majority vote for the class. The random forest cut-o� can be compared

if we observe the second element of the cut-o� vector chosen. The di�erence concern

the prediction since for the random forest we use the same cut-o� in the 10-fold cross

validation, for each model. For the logistic regression, we chose the best cut-o� between

sensitivity and speci�city, π̂0. each the predicted kth.

For every model, we use 500 trees,mtry =
√
p and the respective cut-o�. In table 4.2

we can see the estimation of the False positive and False negative index from the confusion

matrix. The random forest confusion matrix was constructed with the respective cut-o�

in Table 4.1. The confusion matrix, for models estimated with logistic regression, was

constructed with the ROC curve. The big di�erence concern the FN for Y1 and for Y5.

Since Y3 represent the most balanced class, the index is similar to the two methods.

Table 4.2: Comparison for classi�er �tted on entire dataset: False Positive rate and False
Negative rate between random forest and logistic regression. The output for the two
models with the respective three binary responses constructed in Table 1.2.In reference
of the 2014/2015 (a.y.), School of Economics and Management, University of Florence

FPrf FNrf FPL FNL

Y1 (pre-test) 0.512 0.200 0.180 0.452
Y1 (pre-test and test) 0.403 0.326 0.124 0.517

Y3 (pre-test) 0.150 0.452 0.271 0.285
Y3(pre-test and test) 0.165 0.415 0.237 0.282

Y5 (pre-test ) 0.093 0.571 0.232 0.218
Y5 (pre-test and test) 0.084 0.605 0.272 0.151

4.2.2 Variable importance

We use the Variables Importance measures for interpreting the results as we have a large

number of trees. The Mean Decrease Accuracy is based on a permutation of the vari-

ables in the OOB data. For each tree, the prediction error on the out-of-bag portion of

the data is recorded. After the permutation of the variables is done the same process of

recording. The di�erence between the two is then averaged over all trees, and normalized

by the standard deviation of the di�erences. If the standard deviation of the di�erences

is equal to 0 for a variable, the division is not done. So we can see how worse the model

performs without each variable, so a high decrease in accuracy would be expected for

very predictive variables. The second measure is the total decrease in node impurities,

which is measured by Gini index, from splitting on the variable, averaged over all trees.
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Figure 4.1: Plot for variable importance measures. The most important variables on
predicting number of exams passed is High School grade. Follows test-score variables.

In all the six models the most important variables is High School grade (votomat).

Gini index show that the test variables have an important role in growing the trees,

especially for Y3 and Y5. When we �t the model with only the pre-test, the gini index

give them low values, while with the decrease Accuracy the important variables have

di�erent role for the di�erent response binary in reference.
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4.2.3 Error rate across the 500 decision tree

In the next plot, we can see the error rate across the 500 decision tree, for the di�erent

classes (coloured) and out-of-bag samples (black) over the amount of tree.

Figure 4.2: Error rate across the 500 decision tree

Despite the �rst cut-choice criterion has focused on decreasing false negatives, we can

observe for Y1 that the error rate for y1 = 0 is much higher than y1 = 1. Instead, the

situation is reversed for Y3 and Y5, where y = 1 is most di�cult to assign. Furthermore,

the inclusion of test variables decreases the error level for Y1 and Y3. The plot seems to

indicate that after 100 decision trees for Y1, there is not a signi�cant reduction in error
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rate, while, Y3 and Y5 needs between 200 and 400 decision trees.

4.2.4 Margin function

We plot the margin histogram of predictions from a random forest classi�er. The margin

of a data point is de�ned as the proportion of votes for the correct class minus maximum

proportion of votes for the other classes. Thus under majority votes, positive margin

means correct classi�cation and vice versa.

Figure 4.3: Histogram of Margin function for each model �tted with random forest
classi�er.
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Values greater than 0 correspond to correct prediction. The model with test-score

variables are right-skewed, thus indicating that the majority of observations was correctly

classi�ed. The worst concern about Y1 with only the pre-test variables.

4.3 Results

We can compare random forests predictions with logistic regression by doing ten repe-

titions of 10-fold cross-validation, using the errorest functions in the ipred package . In

the implementation we include each cut-o� de�ned in 4.1 as we can include additional

parameter to model. In the �rst model we used only pre-test variables. In the second

model we included also the variables

Table 4.3: Average of the 10 prediction error for the random forest classi�er, with only
pre-test variables and with in addition the test variables. The three binary responses
are used for each model. Random forest classier is implemented with default number
of trees, default mtry and the respective cuto� in Table 4.1. School of Economics and
Management, University of Florence, 2014/2015(a.y)

Y1 Y3 Y5
PE (pretest) 0.300 0.265 0.1791

PE(pretest + test) 0.349 0.257 0.1611

The lowest average in prediction error is always for Y5 which means that students

who give at least �ve exams are most likely to be predicted. We get a 2% improvement

by adding test variables, compared to the logistic regression for which we had a 1%

improvement. This means that the criteria used for de�ning the thresholds were good

for handling the class imbalance.

The addition of information about the test score gets an improvement of 1% prediction

error for students who give at least 3 exams. Another di�erence with logistic regression

concerns Y1. Here we can observe how the inclusion of test variables get worse the

prediction error.

Thanks to the variable importance we saw how adding test variables are considered

important for tree growth and with the margin function, we observed as the majority of

observations were correctly classi�ed for all performance indicators. We've found that

they improve the prediction error but the improvement rate is really low considering the

context. We don't consider to be satisfactory the gain of 2% in predicting the student's

performance. We, therefore, con�rm what we said in the conclusions of logistic regression

analysis. The score in the self-evaluation test depend on the pre-test variables, so it gives

similar information.



Conclusions

This study was focused on the self-evaluation test of the School of Economics and Man-

agement, University of Florence, academic year 2014/2015. The aim was to verify the

capacity of the self-evaluation test to predict student's performance at the end of the

�rst year. Two problems were assessed. The �rst concerns di�erences in performance

between students who had to take the test and students who were exempted. In the

second problem, we evaluated the predictive ability of the test for students who took the

test.

The �rst performance comparison was made between students who were exempted

from the test and those who had to do it. We used the nearest available propensity score

matching with exact matching on the binary covariates, with replacement, in order to

obtain two groups similar in terms of covariates. On average, the student's who didn't

take the test have a lower probability of 29% to give at least one exam as compared to

students who did the test. Furthermore, they have a lower probability of 21% and 8%

to give respectively three and �ve exams. The conclusion of this part of the analysis is

that exempted students from the test have worse performances than those who did it.

Performance does not depend on the test itself. The di�erence is due to the fact that

the exempted students are di�erent from the others.

Next, we investigated if di�erent test sessions lead to di�erent performance. We

compared students who made the self-evaluation test in September and those who made

it in the second session (November or March). We used the same techniques of nearest

available propensity score matching with exact matching on the binary covariates. The

results of the analysis tell us that there aren't performance di�erences at the end of the

year between students who did the test in September or those who did it later. Since all

people can attend the lessons, this has allowed non-enrolled students to know better the

subject and wait for the next test.

In the second part we evaluated the predictive ability. First we considered logistic

regression. We used two sets of explanatory variables. In the �rst there are only pre-test

variables while in the second, test score variables were included in order to see how much

44
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information they can add for predicting the results. The predictive ability was assessed

using 10-fold cross-validation (CV). For each predicted kth part, we have chosen the best

cut-o� between sensitivity and speci�city using the ROC curve. The largest average of

the prediction error (0.31) regards students who pass at least one exams, for both sets

of explanatory variables. For students who give at least �ve exams, the average of the

prediction errors(PE) with only pre-test variables was 0.239 while if we add the test score

variables, the average of PE improves of 1%, 0.229. We obtain the lowest average of PE

with only pre-test variables on predicting students who passed at least three exams,

with 0.229. In the second set of variables, the PE improves to 0.219 for the prediction of

students who passed at least three exams. We got a 1% improvement in the predicted

error by inserting test score variables, but it doesn't mean that the self-evaluation test

helps to predict students performances. The test score gives similar information already

known before that student gives the self-evaluation test.

A random forest classi�er was implemented for the prediction of the student's per-

formance. As in logistic regression, we used one model with only pre-test variables and

a second model where test variables were included. For each model, the number of trees

and the number of variables randomly sampled as candidates at each split are set with

default values, respectively 500 and square root of the total number of explanatory vari-

ables. The cut-o� was chosen to minimize the error rates based on 10-fold CV. In variable

importance plots, the most important variable is High School grade. Gini index shows

that the test variables have an important role in growing the trees, especially for the indi-

cators the indicator of passing at least 3 and 5 exams. With margin function we saw that

the model with test-score variables are right-skewed, thus indicating that the majority

of observations was correctly classi�ed. The worst concern about the indicator of pass-

ing at least one exam with only the pre-test variables. We can compare random forests

predictions with logistic regression by doing ten repetitions of 10-fold cross-validation.

The lowest average in prediction error is always for students who passed at least 5 ex-

ams, 0.179 with only pre-test variables and 0.161 for the model which include the test

score variables. We got a 2% improvement by adding test variables improvement. The

addition of information about the test score gets an improvement of 1% prediction error

for students who give at least 3 exams. For students who gives at least one exam, the

inclusion of test variables gets worse the prediction error.

In reference to the methodology used, we observe that Variable Importance plot in

random forest allows the comparison between continuous and binary covariates, in the

same scale of measurement. We can see which variables are more important in predicting

the outcomes. In logistic regression, we can only observe which independent variables

are statistically signi�cant but we cannot make a comparison between the two di�erent
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types of covariates.

Besides, independent variables no statistically signi�cant added in the logistic regres-

sion model do not compromise error prediction. In the random forest, the inclusion of

new variables can improve or worsen the prediction error as, in each tree, the split con-

siders a random sample of m predictors from the full set of predictors. Random forest

is a powerful method for prediction but it may have unsatisfactory performance for un-

balanced outcomes. Logistic regression is a standard method that can handle this issue

through easier computational techniques. In this study, the logistic standard method

has similar performance over the more complex random forest method.

In conclusion, the addition of test scores variables yield a modest gain in the prediction

ability, in the range of 1% − 2%. Thus, the information provided by the pre-enrolment

test is largely redundant.
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