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Outline

• Marginal Structural Models for causal inference in a longitudinal

setting (sequential treatment)

• Estimation via Inverse Probability-to-treatment Weighting (IPW)

• Latent class extension to deal with unobserved confounding (LC-IPW)

• Simulation study: IPW vs LC-IPW

• Application: effect of wage subsidies on employment (Finnish firms)
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The context

• Longitudinal data with several occasions (time points or intervals)

• Wish to assess the causal effect of a sequential treatment on an

outcome measured at the end of the period

• Treatment assignment at a given occasion may depend on the

sequence of previous assignments, as well as on time-varying

confounders (i.e. variables affecting both treatment assignment and

outcome)
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Basic notation

• random sample of n subjects

• t = 1, . . . , T measurement occasions (time points or intervals)

• Y : outcome (measured after the last occasion)

• St: binary indicator of treatment at occasion t, with

S1:t = (S1, . . . , St)
′

• V column vector of pre-treatment covariates (measured before the

first occasion)

• Xt column vector of time-varying covariates at occasion t, with

X1:t = (X ′1, . . . ,X
′
t)
′
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Causal DAG

Two occasions with a pre-treatment observed confounder V and a time-varying

confounder X1

PROBLEM: should condition on X1 because it is a confounder, should not condition

on X1 because it is a post-treatment variable
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Marginal structural models (MSM)

• A solution to adjust for (observed) time-varying confounders:

Marginal Structural Models (MSM) + Inverse

Probability-to-treatment Weighting (IPW) (Robins, Hernan and

Brumback, 2000)

• The framework is based on potential outcomes Y (s1:T ) (with Y

denoting the observed outcome)

T binary treatments ⇒ 2T potential outcomes

• A natural specification of a MSM is

E(Y (s1:T )) = β0 + g(s1:T )
′β1

. For example, g(s1:T ) = s+ =
∑
t st, in this case a single parameter

β1 represents the average causal effect of the treatment
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Inverse probability-to-treatment weighting (IPW)

• The causal parameters of a MSM can be consistently estimated using

a weighted regression (IPW package in R)

• Each subject i is weighted by the inverse of the probability of its

observed treatment sequence:

wi =
1∏T

t=1Pr(Sit = sit | si,1:t−1,xi,1:t−1,vi)

• Probabilities estimated through a pooled logistic regression (a

standard logistic regression applied to the subject-occasion dataset)

• Higher efficiency is obtained with stabilized weights:

swi =

∏T
t=1Pr(Sit = sit | si,1:t−1)∏T

t=1Pr(Sit = sit | si,1:t−1,xi,1:t−1,vi)
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Identification assumptions

• Stable Unit Treatment Value Assumption (SUTVA) ⇒ no

interference among units

• Positivity or Random assignment: the conditional probability of being

assigned to treatment is neither zero nor one

• Sequential Ignorability Assumption (SIA): conditionally on the

observed history up to occasion t− 1, the treatment assignment at

occasion t is independent of the potential outcomes

St⊥Y (all) | S1:t−1,X1:t−1,V t = 1, . . . , T.
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Unobserved confounding

• Often some of the confounders are unobserved

• The IPW estimator is no more consistent in case of unobserved

confounders due to violation of the Sequential Ignorability

Assumption (SIA)

• We extend the IPW method to derive a consistent estimator of causal

effects in the presence of a pre-treatment unobserved confounder U

• We assume that U is a discrete variable with values c = 1, . . . , k

corresponding to latent classes

• The number of latent classes k and their probabilities

πc = Pr(U = c) are parameters to be estimated ⇒ the approach is

– Typeset by FoilTEX – 9



Inverse probability-to-treatment weighted estimator L. Grilli [10/26]

flexible enough to satisfactorily approximate also continuous

unobserved confounders

• We relax the ignorability assumption (SIA) by requiring that the

independence holds within the latent classes induced by the

unobserved confounder U ⇒ Latent Class Sequential Ignorability

Assumption (LC-SIA):

St⊥Y (all) | S1:t−1,X1:t−1,V , U t = 1, . . . , T.

• Under LC-SIA the standard IPW estimator may be biased, but it is

possible to correct it by computing the weights using probabilities

conditioned on U :

Pr(Sit = sit | si,1:t−1,xi,1:t−1,vi, Ui = ci).
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LC-IPW: a new estimator to account for unobserved
confounding

We propose a two-step estimation procedure:

1. fit an auxiliary latent class model to assign subjects to latent classes

2. fit the MSM using weights computed with the latent-class-specific

probabilities

We have written a MATLAB code, but estimation could be carried out by

existing software (step 1: latent class (mixture) modelling; step 2:

weighted logistic regression)
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Step 1: auxiliary latent class model

• In order to assign subjects to latent classes, we fit a latent class

model for the treatment indicators and the observed covariates

• The joint distribution of the observed variables is written as a finite

mixture over the latent classes (c = 1, . . . , k) and each component of

the mixture is recursively factorized

• f(st | S1:t−1,X1:t−1,V, c) ⇒ logistic regression model with specific

parameters for every combination of occasion t and latent class c

• f(V|c) and f(Xt | S1:t,X1:t−1,V, c) ⇒ modeled according to the

nature of the variables (e.g. for continuous variables we can use a

multivariate normal regression model)
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• The parameters of the auxiliary latent class model are estimated with

maximum likelihood using an EM algorithm; the number of support

points k is chosen by a fit index, e.g. the Normalized Entropy

Criterion (NEC) of Celeux and Soromenho (1996)

• Once the parameters have been estimated, every subject is assigned

to the latent class with the highest posterior probability
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Step 2: weighted regression

• The second step of the proposed LC-IPW method entails fitting the

MSM with a modified IPW procedure where the weight of each

subject is computed conditionally on the assigned latent class

• The (stabilized) weights are

swi,ĉi =

∏T
t=1Pr(Sit = sit | si,1:t−1, Ui = ĉi)∏T

t=1Pr(Sit = sit | si,1:t−1,xi,1:t−1,vi, Ui = ĉi)

• The probabilities are estimated using logistic models after assigning

the latent classes

• Standard errors and confidence intervals for the parameters of the

MSM are obtained via non-parametric bootstrap
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Simulation study: design

• Model (for T = 4 or T = 8 occasions)

. continuous outcome Y

. sequential binary treatment St

. pre-treatment continuous covariate V (confounder if and only if φ2 6= 0)

. time-varying continuous covariate Xt (confounder if and only if φ2 6= 0)

. unobserved pre-treatment covariate U (confounder if and only if φ1 6= 0)

logitPr(Sit = 1) =

{
−1 + uiφ1(4/T ) + viφ2(4/T ), t = 1,

−1 + uiφ1(4/T ) + xi,t−1φ2(4/T )− si,t−1, t = 2, . . . , T,

Xit =

{
−0.25 + ui/2 + vi + sit + εit, t = 1,

−0.25 + ui/2 + xi,t−1 + sit + εit, t = 2, . . . , T − 1,

Yi = ui/2 + xi,T−1 + siT − 0.25 + εiT ,

where εit are iid N(0, 0.25) and Vi are iid N(0, 1).

• Parameters for confounding: φ1 ∈ {−0.5, 0, 0.5}, φ2 ∈ {−0.5, 0, 0.5}
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• Alternative distributions of the unobserved pre-treatment covariate U :

. LC2: Ui discrete Uniform on -1,1

. LC3-type1: Ui discrete Uniform on −
√
1.5,0,

√
1.5

. LC3-type2: Ui discrete Uniform on -2,0,2

. Normal: Ui standard Normal

. Uniform: Ui continuous Uniform in the interval [−
√
3,
√
3]

(distributions with mean 0 and variance 1, except LC3-type2 with variance 8/3)

• Regardless of the distribution of Ui, the MSM for the outcome is

E(Y (s1:T )) = β0 + s+β1, where β1 = 1 for any T ∈ {4, 8}

• Number of scenarios: 36 (2× 2× 3× 3 values of n, T , φ1, φ2)

• Sample size n = 1000 or n = 4000 Number of simulated samples: 1000

• Estimation methods: (i) OLS (unweighted) regression, (ii) IPW regression, (iii)

proposed LC-IPW with a number of latent classes k chosen by NEC

– Typeset by FoilTEX – 16



Simulation study L. Grilli [17/26]

Median Bias and MAE for U discrete (LC2)

Median Bias MAE

T = 4 T = 8 T = 4 T = 8

φ1 φ2 Method 1000 4000 1000 4000 1000 4000 1000 4000

-0.5 -0.5 IPW -0.585 -0.536 -0.486 -0.364 0.590 0.538 0.520 0.396

LC-IPW -0.155 -0.095 -0.185 -0.079 0.232 0.148 0.290 0.176

-0.5 0.0 IPW -0.546 -0.541 -0.411 -0.409 0.546 0.541 0.411 0.409

LC-IPW -0.015 -0.011 -0.005 0.000 0.044 0.023 0.038 0.018

-0.5 0.5 IPW -0.525 -0.527 -0.491 -0.502 0.525 0.527 0.491 0.502

LC-IPW 0.006 0.001 0.014 0.008 0.060 0.030 0.088 0.044

0.0 -0.5 IPW -0.052 -0.023 -0.116 -0.040 0.122 0.074 0.202 0.110

LC-IPW -0.066 -0.028 -0.106 -0.037 0.127 0.071 0.199 0.109

0.0 0.0 IPW 0.005 0.001 0.005 -0.002 0.045 0.022 0.053 0.027

LC-IPW 0.000 0.001 0.004 0.001 0.029 0.014 0.028 0.014

0.0 0.5 IPW 0.027 0.018 0.025 0.012 0.108 0.055 0.143 0.078

LC-IPW 0.043 0.021 0.047 0.016 0.091 0.052 0.135 0.071

0.5 -0.5 IPW 0.455 0.454 0.316 0.271 0.455 0.454 0.316 0.271

LC-IPW -0.013 -0.003 -0.051 -0.022 0.075 0.039 0.127 0.065

0.5 0.0 IPW 0.489 0.484 0.405 0.404 0.489 0.484 0.405 0.404

LC-IPW 0.024 0.012 0.002 0.003 0.053 0.026 0.046 0.020

0.5 0.5 IPW 0.531 0.495 0.576 0.509 0.533 0.496 0.584 0.511

LC-IPW 0.161 0.107 0.169 0.091 0.209 0.140 0.244 0.140
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Simulation study: main findings

• The LC-IPW estimator outperforms IPW essentially in all cases:

. As sample size n increases ⇒ IPW stable, LC-IPW improves

. As number of occasions T increases ⇒ no monotone pattern

(worse or better depending on type of confounding φ1, φ2)

• In terms of MAE, LC-IPW is slightly better than IPW even when U is

not a confounder but a pure predictor of outcome (φ1 = 0),

consistently with results on over-adjustment in inverse probability

weighting by Rotnitzky, Li and Li (2010) and other simulations by

Lefebvre, Delaney and Platt (2008)

• Results are confirmed for alternative distributions of U both discrete

and continuous
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Application to wage subsidies

• Dataset about n = 1640 Finnish firms (manufactures and services)

between 20 and 200 employees that applied for wage subsidies in the

period 1995-2002 (T = 8 occasions)

• The aim of the policy is to fill the gap between the wage that the

firm is willing to pay and the unionized wage level

• Observations were extracted from the registers compiled by he

Finnish Tax Authority

• Wage subsidies are the most common type of subsidy (required at

least once by 65% of the firms in the sample)
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• Available variables (measured at every year):

. employment (number of employees)

. wage (total and per employee)

. fixed capital

. sales

. profit

• Treatment variable St: indicator taking the value 1 if the firm

receives a wage subsidy in year t

• Outcome Y : employment at the end of the period

• Potential confounders Xt: all the variables observed at end of year t

(possibly including lagged values)
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Descriptive statistics

• Sample distribution of the subsidies:

year # firms %

1995 582 35.49

1996 448 27.32

1997 491 29.94

1998 450 27.44

1999 383 23.35

2000 293 17.87

2001 242 14.76

2002 232 14.15

#subsidies % firms % cum.

0 34.94 34.94

1 18.54 53.48

2 15.18 68.66

3 10.24 78.90

4 7.44 86.34

5 6.16 92.50

6 4.09 96.59

7 1.71 98.29

8 1.71 100.00
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• We considered several specifications for the MSM, here are the

results of the following:

E(Y (s1:8)) = β0 + s+β1

where

. Y (s1:8) = number of employees at the end of the period

. s+ = number of years receiving subsidy (0,1,. . . ,8)

. β1 = causal effect (average change in employment for each year

receiving a subsidy)

• To compute the weights for the standard estimator (IPW), the

treatment indicators St are modeled by a logistic regression with a

time dummy for each year and several covariates at t− 1 and t− 2

(i.e. we added lagged values)

– Typeset by FoilTEX – 22



Application to wage subsidies L. Grilli [23/26]

• Covariates:

. treatment indicator (wage subsidy)

. log(employment)

. log(wage per employee)

. log(fixed capital)

. log(sales)

. sign(profit)|profit|0.25

• To compute the weights for the proposed estimator (LC-IPW), the

treatment indicators St are modeled by a logistic regression as before

with the addition of latent classes

. the latent class is assigned to each subject through an auxiliary

model for the confounders (latent class multivariate normal

regression with a common variance-covariance matrix)
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• Results for the IPW estimator

Parameter Estimate 95% Conf. interval

β0 67.958 63.306 72.365

β1 3.932 2.207 6.052

(confidence intervals based on non-parametric bootstrap)

• Results for the LC-IPW estimator (number of classes k = 4 chosen by

the NEC criterion):

Parameter Estimate 95% Conf. interval

β0 70.280 65.032 75.385

β1 2.156 0.257 4.499
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Final remarks

• Compared to standard IPW, the proposed LC-IPW method has

. higher complexity: it requires to formulate a latent class auxiliary

model which also involves the distribution of the confounders

. better performance: it properly corrects for unobserved confounding

and it may be efficient even in case of no unobserved confounding

• Further developments:

. Sensitivity of the parameter estimates on the specification and

estimation of the auxiliary model (e.g. how to choose the number

of classes)

. Using the LC approach with other methods, e.g. longitudinal

propensity score (Achy-Brou, Frangakis and Griswold 2010)

. Accounting for time-varying unobserved confounders using a latent

Markov model
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