

Our application: effectiveness of degree programmes Out Joint analysis of the careers and the job opportunities of university students Why • 1992's cohort of freshmen of the University of Florence • it in component of the University of Florence • two distinct degree programmes, Economics and Political Sciences • it in component

Our application: effectiveness of degree programmes

Why do we need a joint analysis?

- employment status is observed only for graduated students, while the effect of interest concerns all enrolled students
- it is possible that the two d.p. "select" the indivudals in a different way, so a comparison based only on graduated students is not fair

L. Grilli & F. Mealli - SIS 2004

	Da	ala		
10/11 frashmar	n belona :	to the ev	aminod	1002's
cohort 1068 i	n <i>Econor</i>	nics and	873 in A	Political
CONDUCT TOOD I	II Econori	Mics and	010 11 1	Unticar
Sciences By	the end	of the v	<i>lear</i> 200	00 the
Sciences. By status of the s	the end	of the y	year 200 wing	00 the
<i>Sciences</i> . By status of the s	the end tudents is	of the y the follo	year 200 wing:	00 the
<i>Sciences</i> . By status of the s	the end tudents is Dropped	of the y the follo Graduated	year 200 owing: Still	00 the Total
Sciences. By status of the s Degree Programme	the end tudents is Dropped	of the y s the follo Graduated	year 200 owing: Still enrolled	00 the Total
Sciences. By status of the s Degree Programme Economics	the end tudents is Dropped 545	of the y s the follo Graduated 270	year 200 pwing: <u>Still</u> enrolled 253	00 the Total
Sciences. By status of the s Degree Programme Economics	the end tudents is Dropped 545 51.03%	of the y s the follo Graduated 270 25.28%	year 200 pwing: <u>Still</u> enrolled 253 23.69%	00 the Total
Sciences. By status of the s Degree Programme Economics Political Sciences	the end tudents is Dropped 545 51.03% 532	of the y s the follo Graduated 270 25.28% 176	year 200 owing: <u>still</u> enrolled 253 23.69% 165	00 the Total 1068 873

	Dat	ta		
After the merge wit	h the survey	data the situ	ation is:	
Degree	Graduated	Interviewed	Permanent	
Programme			job	
Economics	270	186	96	
		68.89%*	51.61%**	\sim
Political Sciences	17.0	99	36	
+++++++++++++++++++++++++++++++++++++++	++++++	50.23%	30.20%	1
 Interviewed/Graduated 	d **Pern	nanent job/Inter	viewed	
All interviewed grad status. Apart from 2 of the target of the due to missing con	duates respo 1 students w surveys), al tact	onded to the who graduated most all miss	question o I before 1998 ing interview	n jo 3 (o vs a

Data						
Covariate	Economics (n=1068)	Political Science (n=873)				
Female	0.41	0.54				
Residence in Florence	0.23	0.31				
Gymnasium	0.34	0.45				
Late enrollment	0.06	0.22				
High grade	0.37	0.25				
Covariates are important si	nce the treatment					

			Princi	pal s	trata					
	In our case both Z and S are dichotomous \rightarrow 4 possible strata									
	Z	GG	GN	NG	NN					
11	1	G	G	Ν	N	G=Graduated				
11	0	G	Ν	G	Ν	N=Not graduated				
	Principal versions Principal	strata an of the in strata an	e defined termediat e not infl	by the v e variabl uenced b	values of e S (cour by Z (nor	the two potential hterfactual) S)				
	The mer observed principal	nbership 1 covaria stratum	indicator te (in gen an indivio	of the pr eral data lual beloi	incipal st cannot r ngs to)	ata is a partially reveal which				

Causal inference with principal strata

Principal causal effect of Z on Y:

a comparison of p(Y(1)) vs. p(Y(0))

for the individuals of a given principal stratum

Causal effects across principal strata are nonsense

It may be that the causal effect is defined only for some principal strata: *in our case only for the GG stratum*

L. Grilli & F. Mealli - SIS 2004

Bounds under	Stochas	tic Do	mina	nce a	ind	π_{cc}	$=\pi_{\rm N}$	c +	$\pi_{\rm CN}$
						00			
	Prob. of principal strata					Bounds		Indexes	
1 1 1 1 1 1 1 1 1		CC	NG	GN	NN	Lower	Upper	Det.	Width
Туре	Frequency	00	- · · · · · ·						1 1 1
Type Baseline	Frequency 305	0.07	0.02	0.05	0.85	-0.21	0.26	0.11	0.24
Type Baseline Symnasium	305 194	0.07	0.02 0.06	0.05	0.85	-0.21 -0.10	0.26 0.31	0.11 0.52	0.24
Type Baseline Gymnasiùm Female	305 194 140	0.07 0.18 0.08	0.02 0.06 0.02	0.05 0.12 0.05	0.85 0.65 0.84	-0.21 -0.10 -0.07	0.26 0.31 0.43	0.11 0.52 0.71	0.24 0.20 0.25
Type Baseline Gymnasium Female High grade	305 194 140 118	0.07 0.18 0.08 0.19	0.02 0.06 0.02 0.06	0.05 0.12 0.05 0.13	0.85 0.65 0.84 0.63	-0.21 -0.10 -0.07 -0.05	0.26 0.31 0.43 0.43	0.11 0.52 0.71 0.78	0.24 0.20 0.25 0.24
Type Baseline Gymnasium Female High grade Residence in Florence	194 140 118 85	0.07 0.18 0.08 0.19 0.08	0.02 0.06 0.02 0.06 0.05	0.05 0.12 0.05 0.13 0.03	0.85 0.65 0.84 0.63 0.84	-0.21 -0.10 -0.07 -0.05 -0.29	0.26 0.31 0.43 0.43 0.23	0.11 0.52 0.71 0.78 -0.12	0.24 0.20 0.25 0.24 0.26

$\Sigma U U$		Initial model	Final model	\square
	Number of parameters	27	21	
	Deviance (-2logL)	2231.8	2231.8	
10	Principal strata submodel (π 's)			
E C	α_{OG}^{π}	-4.403 (0.449)	-4.402 (0.448)	
Su	α_{GN}^{\star}	-2.644 (0.749)	-2.647 (0.752)	
- e	and a state of the	-3.206 (0.836)	-3.207 (0.835)	
5	$\beta_{GG,gunnariusv}^{\pi}$	1.275 (0.157)	1.275 (0.157)	
, Š	$\mathcal{B}_{GV,gravitarium}^{\pi}$	-5.757 (n.a.)	- 00-	
2	$\beta^{\pi}_{NG,gramming}$	-15.041 (n.a.)	500-	
a l	$eta^{*}_{GO, high_pressel}$	1.204 (0.146)	1.205 (0.146)	
2	$oldsymbol{eta}^{\pi}_{GN,high_grinde}$	1.113 (0.653)	1.113 (0.652)	
, in	$eta^{s}_{ m NG, high_genalic}$	-8.092 (114.022)	- 20	
at	R ^{att} GG. organitar_encodiment	2.024 (0.425)	2.023 (0.425)	
5	$eta_{{ m GN},{ m regatar}-{ m enviolment}}^{\pi}$	-0.012 (0.788)	-0.009 (0.792)	
S	B ^M _{NG} regular_entrofinited	-8.140 (64.473)	- 20	
a	$\beta^{\pi}_{GG, female}$	0.117 (0.137)	0.117 (0.137)	
	$\beta_{GN, formalic}^{\pi}$	-0.617 (0.753)	-0.622 (0.755)	
<u>2</u>	P ^{re} _{NG, female}	0.988 (1.112)	0.991 (1.111)	
	$\beta^{\pi}_{GG,Flagmach}$	0.280 (0.144)	0.280 (0.144)	
	RGN, Floringer	-13.499 (559.599)	- 20	
	B [#] NG, Flingner	-10.353 (533.855)		

	Initial	model	Final model		
Number of parameters		27		21	
Deviance (-2logL)		2231.8		2231.8	
Outcome submodel (γ 's)					
a'r	1.257	(1.240)	1.262	(1.241)	
a	-1.357	(1.561)	-1.365	(1.568)	
$\alpha'_{i,G^{W}}$	0.593	(1.185)	0.596	(1.185)	
$\alpha_{0,NG}^{\gamma}$	0.498	(1.057)	0.484	(1.058)	
	-0.405	(0.374)	-0.410	(0.374)	
B ^y high_grade	-0.035	(0.262)	-0.036	(0.263)	
B ^y regular_eniralmint	-0.933	(0.979)	-0.932	(0.979)	
$\beta_{female}^{\prime\prime}$	0.072	(0.272)	0.070	(0.272)	
$\beta_{\text{Florence}}^{\gamma}$	0.106	(0.333)	0.104	(0.333)	

Probability	00000	00100	00110	00101	01100	10100	11100	ии
π _{oQi}	1.1	8.0	9.1	10.9	20.3	24.9	52.5	62
π_{GN2}	6.3	6.0	3.3	0.0	14.0	0.0	0.0	0
π_{NGi}	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0
$\pi_{_{NN^2}}$	89.0	86.0	87.6	89.1	65.7	75.1	47.5	37
Kraci	77.9	58.2	59.9	60.7	57.3	48.0	47.1	51
Y0.663	64.5	41.7	43.4	44.2	40.8	32.2	31.4	35
YLOVI	61.9	39.0	40.7	41.5	38.1	29.8	29.0	32
Za,NG3	20.3	9.1	9.7	10.0	8.9	6.3	6.1	7
Causal effect Y1,001 - Y0,001	13.5	16.5	16.5	16.4	16.5	15.8	15.7	16

Principal strata submodel results

- The estimated proportion of students belonging to the *GG* group varies a lot with the covariates, from a minumum of 1.1% to a maximum of 62.2%
- the proportion of students belonging to the *GN* and *NG* groups (i.e. the students able to graduate in only one degree programme) tends to diminish as the *GG* stratum grows even if the *NN* stratum goes down

Principal strata submodel results

- the two degree programmes have a differential effect on the probability of graduation only for students having a weak background. Orientation policies should then be designed especially for this kind of students.
- the assumption of relative majority of the *GG* stratum used in the construction of the conditional bounds generally holds, though with the exception of the individuals who enrolled late.

L. Grilli & F. Mealli - SIS 2004

Outcome submodel results

- the causal effect on the GG group (on the logit scale) is estimated as 0.666 (s.e. 0.301), so it is significantly different from zero at the 5% level
- the reliability and also the substantive importance of the causal effect depends on the size of the *GG* stratum: for example, the causal effect for the *GG* group for the baseline individual has little meaning

Grilli & F. Mealli - SIS 2004

Outcome submodel results

- the assumption of stochastic dominance holds
- The level of the probability of being employed varies a lot with the covariates:

L. Grilli & F. Mealli - SIS 2004

- 47.1% to 77.9% for Economics
- 31.4% to 64.5% for Political Science

Further developments

. Grilli & F. Mealli - SIS 2004

- Sensitivity analysis
- Bayesian analysis
- Model for the missing outcomes.
- Implications for policy