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Motivation /1
Regression analysis with data from observational studies 
is often affected by the problem of endogeneity

In multilevel (mixed) models, this problem can concern 
error terms at any level: level 1 (e.g. student), level 2 (e.g. 
school), level 3 (e.g. district) …

We explore level 2 endogeneity in two-level models, i.e. 
random effects correlated with covariates, an issue well 
known in the setting of panel data due to the famous 
Hausman test (in panel data level 1 are waves, level 2 are 
subjects)

This type of endogeneity arises from a wrong equality 
restriction on the between-cluster and within-cluster 
slopes 
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Motivation /2
Solution: allow distinct between and within slopes through 
the addition of the cluster mean as a further covariate

BUT the use of the sample cluster mean instead of the 
population cluster mean entails a measurement error
that yields a biased estimator of the between-cluster slope

Measurement error stemming from the use of cluster 
means is overlooked in the literature

We propose a correction to obtain unbiased estimates 
and evaluate its performance 
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The framework

Assume a 2-level hierarchy with
j=1,2,…,J level 2 units (clusters)
i=1,2,…,nj level 1 units 

• Panel (typically: J large, nj small)
• Clustered cross-section (typically: J small, nj large)

Consider two variables
Xij covariate at level 1
Yij response at level 1

We want to study endogeneity issues in a random intercept 
model for Yij | Xij we must specify a model also for Xij

We first focus on 
balanced designs (nj=n) 
to obtain simple 
formulae, then we 
generalize
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The data generating model for X
We adopt a variance component model

Assumptions
Xj

B iid with mean μX and variance τX
2 >0

Xij
W iid with mean 0 and variance σX

2 >0
Xj

B
┴ Xij

W (independent components)

But  XB and XW are unobservable!
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The data generating model for Y | X

Model (2a) allows for different between and within effects
βB ≠ βW

We assume:
– XW and XB are independent of the errors
– Errors at different levels are independent
– At both levels, iid errors ( independent clusters)

In many settings, between and within effects are 
conceptually different and may even have opposite 
signs, so it is important to distinguish among them

(1a)

2
|

( ) B Wj Y X X
Var u τ=

W B
ij W ij B j j ijY X X u eα β β= + + + +

7Grilli & Rampichini - CLADAG 2008

The data generating model for Y | X
Alternative parameterization of the data generating model 

B
ij W ij j j ijY X X u eβ δα= + + + +

is known as B W contextual coefficientβ βδ = −

(1b)

In educational research the contextual coefficient is often 
found to be significant, meaning that the context has an 
effect on the individual outcomes.

For example, if X is the prior student achievement, XB is the school 
mean prior achievement, a proxy of the quality of the context.  If the 
contextual effect is not null, two students with the same prior 
achievement will obtain different final achievements depending on 
the school attended.  
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Working model

ij W ij j j ijY X X z eα δβ= + + + +

It can be shown that the within slope βW is unbiasedly 
estimated, while the contextual coefficient δ is attenuated

Due to measurement error, the sample cluster mean         is endogenous

(2)

jX

( )B
j jX Xmeasured by

2( )j j XCov z X nδσ, = − /

The inclusion of the sample cluster mean
• avoids level 2 endogeneity due to omission of a relevant regressor
• but still entails level 2 endogeneity due to measurement error

To avoid level 2 endogeneity we must include the cluster mean, as in 
model (1b). Since the population cluster mean XB is unobservable, we 
measure it through the sample cluster mean: 
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Attenuation of the contextual coefficient δ
Measurement-error-attenuated 
contextual coefficient Xmδ δλ=

Measurement error vanishes iff δ = 0, i.e. βB=βW
Anyway δm is close to δ when λX ≈ 1

λX takes values in (0,1) and is an increasing function of:

the variance ratio τX
2 /σX

2 (model parameters) 

the cluster size n (sample design)

Values of λX can be far from 1, e.g.

Reliability 
coefficient

12

2 2 2 2

( ) 11
( ) ( )
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j X
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Measurement error correction via λX
The measurement error induced by the use of the sample 

cluster mean can be corrected with the data at hand
1. Use the working model to estimate:  

(attenuated)

(inflated)

2. Estimate τX
2 and σX

2, and thus λX, by standard methods
3. Recover unbiased estimates:

2 2 2 2
| , | ,

ˆ ˆˆ ˆ ˆ(1 )B W B W X c XY X X c Y X X m
τ τ λ δ τ= − −

ˆ ˆ ˆ/c m Xδ δ λ=

Measurement error bias may be more serious on                 than on δ !

( )2 2 2 2
| , |

1B W B WX XY X X m Y X X
τ λ τ τδ= − +

2
| B WY X X

τ

m Xδ δλ=

ij ijY Xη β= + +…  W ijij jY X Xα β δ= + + +…  δ 
=βB−βW β τ2

Y|X βW δ 2
| B WY X X

τ  
-2 0.61 3.57 1.00 -1.33 2.32 

-1.5 0.62 2.26 1.00 -1.00 1.75 
-1 0.70 1.49 1.00 -0.67 1.33 

-0.5 0.84 1.11 1.00 -0.33 1.08 
0 1.00 1.00 1.00 0.00 1.00 

0.5 1.16 1.12 1.00 0.33 1.09 
1 1.30 1.50 1.00 0.67 1.34 

1.5 1.37 2.28 1.00 1.00 1.76 
2 1.39 3.59 1.00 1.33 2.34 

 

True 
values:
λX=2/3
βW=1

Data 
structure:
J=1000
n=2

+ 
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2
|

1B WY X X
τ =

No endogeneity

Simulation 1. Generate data under ‘true’ model (1b) with varying δ
2. Fit models A and B (MC means on 1000 replicates, REML)

Model A without cluster 
mean (omitted regressor)

Model B with cluster mean 
(measurement error)

Even if δ ≠0, when the cluster size increases (n→∞ and thus λX→1): 
the slopes are unbiased in both models
the residual cluster variance is unbiased in model B but inflated in model A
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Variance and MSE of the corrected estimator

The sampling variance of the corrected estimator of δ

can be easily computed using the Taylor approximation 
of the variance of a ratio (simulations show that the 
approximation is good)

The correction cancels the bias, but inflates the sampling 
variance; simulations show that in most cases it is 
worthwhile in terms of MSE:

( ) ( )ˆ ˆ ˆ/c m XVar Varδ δ λ=

( ) ( ) ( ) ( )ˆ ˆ ˆ ˆbut in most casesc m c mVar Var MSE MSEδ δ δ δ> <
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Correction via λX in unbalanced designs

The reliability varies with the cluster size 
several  reliability values

How summarize them? 
reliability with average n vs average reliability

Simulations show that
As the degree of unbalancedness increases:
– stronger attenuation (lower attenuation factor) 
– the reliability with average n is constant, so it is not useful 
– the average reliability decreases

The average reliability tends to be larger than the true 
attenuation factor, but in most cases the correction is 
satisfactory
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Correction via λX when sampling from 
clusters of finite size

Need to adjust the estimators of the variance components to 
account for finite population modify the reliability 

Simulations show that
the modified reliability is a good approximation of the 
attenuation of the contextual effect due to measurement 
error, thus the corrected estimator has a good performance.
Failing to use the modified reliability leads to an 
overcorrection that becomes remarkable for sampling 
fractions of 0.25 or more. 
The corrected estimator of the contextual effect has a lower 
MSE than the uncorrected estimator, even if the gap 
diminishes as the sampling fraction increases.
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Correction via λX: pros and cons
Pros
– very simple procedure

– applied after running standard multilevel software (no need to use 
software for IRT or SEM)

– easy to apply to results published by other researchers
– with prior information on the ICC of the covariate, the amount of 

attenuation can be evaluated when planning the sampling design

Cons
– the sampling variance of the corrected estimator increases 

need to evaluate if the correction is worthwhile in terms of MSE

– exact only for balanced designs (even if quite good in most 
unbalanced designs)

– difficult to apply when there are many regressors
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The structural model approach
The bias stemming from covariate measurement error can be 
avoided by fitting a structural model that includes a 
measurement model for the covariate via simultaneous 
estimation of:
– measurement model for the covariate X 
– regression model for the response Y

Main advantages of the structural model approach:
– standard errors that account for measurement error, so the inferential 

procedures are correct, e.g. it is straightforward to perform a likelihood
ratio test for the level 2 variance of Y 

– easy to extend to complex models, such as models with several 
covariates, random slopes and categorical responses
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Structural model approach: simulations
Some simulations show the performance of the ML estimation 
algorithm implemented in Mplus (Muthén and Muthén, 2007).
The structural estimator is more efficient than the reliability-
adjusted estimator: e.g. for the sample design J = 200 and n = 10 
the reduction of the MSE is about 5%. 
A detailed simulation study on the properties of the structural 
estimator is carried out by Lüdtke et al. (2007). 
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