Measurement error in multilevel models with sample cluster means

Leonardo Grilli

Carla Rampichini

grilli@ds.unifi.it

rampichini@ds.unifi.it

Dipartimento di Statistica "Giuseppe Parenti" Università di Firenze

SFC - CLADAG 2008 Caserta, 11-13 June 2008

Motivation /2

- Solution: allow distinct between and within slopes through the addition of the cluster mean as a further covariate
- BUT the use of the sample cluster mean instead of the population cluster mean entails a measurement error that yields a biased estimator of the between-cluster slope
- Measurement error stemming from the use of cluster means is overlooked in the literature
- We propose a correction to obtain unbiased estimates and evaluate its performance

Motivation /1

- Regression analysis with data from observational studies is often affected by the problem of endogeneity
- In multilevel (mixed) models, this problem can concern error terms at any level: level 1 (e.g. student), level 2 (e.g. school), level 3 (e.g. district) ...
- We explore level 2 endogeneity in two-level models, i.e. random effects correlated with covariates, an issue well known in the setting of panel data due to the famous Hausman test (in panel data level 1 are waves, level 2 are subjects)
- This type of endogeneity arises from a wrong equality restriction on the between-cluster and within-cluster slopes

Grilli & Rampichini - CLADAG 2008

We first focus on balanced designs $(n_i=n)$

to obtain simple formulae, then we

generalize

The framework

Assume a 2-level hierarchy with

- j=1,2,...,J level 2 units (clusters)
- $i=1,2,\ldots,n_i$ level 1 units
 - Panel (typically: J large, n_i small)
 - Clustered cross-section (typically: *J* small, *n*, large)

Consider two variables

- X_{ii} covariate at level 1
- Y_{ii} response at level 1

We want to study endogeneity issues in a random intercept model for $Y_{ii} \mid X_{ii} \rightarrow$ we must specify a model also for X_{ii}

Grilli & Rampichini - CLADAG 2008

Grilli & Rampichini - CLADAG 2008

The data generating model for X

We adopt a variance component model

$$X_{ij} = X_j^B + X_{ij}^W$$

Assumptions

- X_i^B iid with mean μ_X and variance $\tau_X^2 > 0$
- X_{ii}^{W} iid with mean 0 and variance $\sigma_{X}^{2} > 0$
- $X_i^B \perp X_{ii}^W$ (independent components)

But X^B and X^W are unobservable!

$$X_j^B$$
 can be measured by the sample cluster mean $\overline{X}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} X_{ij} = X_j^B + \overline{X}_j^W$

 $m{X}_{ij}^W$ can be measured by the deviation $ilde{X}_{ij} = m{X}_{ij} - ar{m{X}}_j = m{X}_{ij}^W - ar{m{X}}_j^W$

Grilli & Rampichini - CLADAG 2008

5

The data generating model for $Y \mid X$

$$Y_{ij} = \alpha + \beta_W X_{ij}^W + \beta_B X_j^B + u_j + e_{ij}$$
 (1a)

$$Var(u_j) = \tau_{Y|X^B X^W}^2$$

- Model (2a) allows for different between and within effects
 - $\beta_B \neq \beta_W$ In many settings, between and within effects are conceptually different and may even have opposite signs, so it is important to distinguish among them
- We assume:
 - $-X^{W}$ and X^{B} are independent of the errors
 - Errors at different levels are independent
 - At both levels, iid errors (→ independent clusters)

Grilli & Rampichini - CLADAG 2008

6

The data generating model for $Y \mid X$

Alternative parameterization of the data generating model

$$Y_{ij} = \alpha + \beta_W X_{ij} + \delta X_j^B + u_j + e_{ij}$$
 (1b)

 $\delta = \beta_B - \beta_W$ is known as *contextual coefficient*

- In educational research the contextual coefficient is often found to be significant, meaning that the context has an effect on the individual outcomes.
- For example, if X is the prior student achievement, X^B is the school mean prior achievement, a proxy of the *quality of the context*. If the *contextual effect* is not null, two students with the same prior achievement will obtain different final achievements depending on the school attended.

Working model $\left(X_{j}^{B}\right)$ measured by \overline{X}_{j}

To avoid level 2 endogeneity we must include the cluster mean, as in model (1b). Since the population cluster mean X^B is unobservable, we measure it through the **sample cluster mean**:

$$Y_{ij} = \alpha + \beta_W X_{ij} + \frac{\delta \overline{X}}{j} + z_j + e_{ij}$$
 (2)

Due to ${\it measurement\ error},$ the sample cluster mean $\ \overline{X}_{j}$ is endogenous

$$Cov(z_j, \overline{X}_j) = -\delta \sigma_X^2 / n$$

It can be shown that the within slope β_W is unbiasedly estimated, while the contextual coefficient δ is attenuated

The inclusion of the sample cluster mean

- avoids level 2 endogeneity due to omission of a relevant regressor
- but still entails level 2 endogeneity due to measurement error

Grilli & Rampichini - CLADAG 2008

Grilli & Rampichini - CLADAG 2008

Attenuation of the contextual coefficient δ

Measurement-error-attenuated contextual coefficient

$$\delta_m = \lambda_X \delta$$

Measurement error vanishes iff $\delta = 0$, i.e. $\beta_B = \beta_W$ Anyway δ_m is close to δ when $\lambda_X \approx 1$

Reliability coefficient

$$\lambda_X = \frac{Var(X_j^B)}{Var(\overline{X}_j)} = \frac{\tau_X^2}{\tau_X^2 + \sigma_X^2/n} = \left(1 + \frac{1}{(\tau_X^2/\sigma_X^2)n}\right)^{-1}$$

 λ_{x} takes values in (0,1) and is an increasing function of:

- the variance ratio τ_X^2/σ_X^2 (model parameters)
- the cluster size *n* (sample design)

Values of λ_x can be far from 1, e.g.

$$\lambda_X = 2/3$$
 if $\begin{cases} n=2 & \text{and} & \tau_X^2 = \sigma_X^2 & \text{(e.g. panel)} \\ n=20 & \text{and} & \tau_X^2 = 0.1\sigma_X^2 & \text{(e.g. cross-section)} \end{cases}$

Grilli & Rampichini - CLADAG 2008

Measurement error correction via λ_x

The measurement error induced by the use of the sample cluster mean can be corrected with the data at hand

1. Use the *working* model to estimate:

$$\delta_m = \lambda_x \delta$$
 (attenuated)

$$au_{Y|X^{B}X^{W},m}^{2} = (1 - \lambda_{X}) \delta^{2} \tau_{X}^{2} + \tau_{Y|X^{B}X^{W}}^{2}$$
 (inflated)

- 2. Estimate $\tau_{\rm X}^2$ and $\sigma_{\rm X}^2$, and thus $\lambda_{\rm X}$, by standard methods
- 3. Recover unbiased estimates:

$$\begin{aligned} \hat{\delta}_c &= \hat{\delta}_m / \hat{\lambda}_X \\ \hat{\tau}_{Y|X^B X^W, c}^2 &= \hat{\tau}_{Y|X^B X^W, m}^2 - (1 - \hat{\lambda}_X) \hat{\delta}_c^2 \hat{\tau}_X^2 \end{aligned}$$

Measurement error bias may be more serious on $\ au_{_{Y|X}{}^{B}X^{W}}^{2}\$ than on δ !

Grilli & Rampichini - CI ADAG 2008

10

Simulation

- 1. Generate data under 'true' model (1b) with varying δ
- 2. Fit models A and B (MC means on 1000 replicates, REML)

Model A without cluster mean (omitted regressor)

Model B with cluster mean (measurement error)

	$\delta = \beta_B - \beta_W$	$Y_{ij} = \eta + \beta X_{ij} + \dots$		$Y_{ij} = \alpha + \beta_w X_{ij} + \delta \overline{X}_j + \dots$			
		β	$\tau^2_{Y/X}$	$eta_{\scriptscriptstyle W}$	δ	$ au_{Y X^BX^W}^2$	
+ endogeneity	-2	0.61	3.57	1.00	-1.33	2.32	
	-1.5	0.62	2.26	1.00	-1.00	1.75	
	-1	0.70	1.49	1.00	-0.67	1.33	
	-0.5	0.84	1.11	1.00	-0.33	1.08	
No endo	geneity ()	1.00	1.00	1.00	0.00	1.00	
+ endogeneity	0.5	1.16	1.12	1.00	0.33	1.09	
	1	1.30	1.50	1.00	0.67	1.34	
	1.5	1.37	2.28	1.00	1.00	1.76	
	2	1.39	3.59	1.00	1.33	2.34	

True values: $\lambda_X = 2/3$ $\beta_W = 1$ $\tau_{Y|X^BX^W}^2 = 1$

Data structure: J=1000 n=2

Even if $\delta \neq 0$, when the cluster size increases $(n \rightarrow \infty \text{ and thus } \lambda_{\chi} \rightarrow 1)$:

- the slopes are unbiased in both models
- the residual cluster variance is unbiased in model B but inflated in model A

Variance and MSE of the corrected estimator

- The sampling variance of the corrected estimator of δ

$$|Var(\hat{\delta}_c) = Var(\hat{\delta}_m / \hat{\lambda}_X)|$$

can be easily computed using the Taylor approximation of the variance of a ratio (simulations show that the approximation is good)

 The correction cancels the bias, but inflates the sampling variance; simulations show that in most cases it is worthwhile in terms of MSE:

$$Var(\hat{\delta}_c) > Var(\hat{\delta}_m)$$
 but in most cases $MSE(\hat{\delta}_c) < MSE(\hat{\delta}_m)$

1

Correction via λ_X in unbalanced designs

- The reliability varies with the cluster size
 - → several reliability values
- How summarize them? reliability with average n vs average reliability

Simulations show that

- As the degree of unbalancedness increases:
 - stronger attenuation (lower attenuation factor)
 - the reliability with average *n* is constant, so it is not useful
 - the average reliability decreases
- The average reliability tends to be larger than the true attenuation factor, but in most cases the correction is satisfactory

Grilli & Rampichini - CLADAG 2008

13

Correction via λ_X when sampling from clusters of finite size

 Need to adjust the estimators of the variance components to account for finite population → modify the reliability

Simulations show that

- the modified reliability is a good approximation of the attenuation of the contextual effect due to measurement error, thus the corrected estimator has a good performance.
- Failing to use the modified reliability leads to an overcorrection that becomes remarkable for sampling fractions of 0.25 or more.
- The corrected estimator of the contextual effect has a lower MSE than the uncorrected estimator, even if the gap diminishes as the sampling fraction increases.

Grilli & Rampichini - CLADAG 2008

Correction via λ_X : pros and cons

Pros

- very simple procedure
- applied after running standard multilevel software (no need to use software for IRT or SEM)
- easy to apply to results published by other researchers
- with prior information on the ICC of the covariate, the amount of attenuation can be evaluated when planning the sampling design

Cons

- the sampling variance of the corrected estimator increases ->
 need to evaluate if the correction is worthwhile in terms of MSE
- exact only for balanced designs (even if quite good in most unbalanced designs)
- difficult to apply when there are many regressors

The structural model approach

- The bias stemming from covariate measurement error can be avoided by fitting a structural model that includes a measurement model for the covariate via simultaneous estimation of:
 - measurement model for the covariate X
 - regression model for the response Y
- Main advantages of the structural model approach:
 - standard errors that account for measurement error, so the inferential procedures are correct, e.g. it is straightforward to perform a likelihood ratio test for the level 2 variance of Y
 - easy to extend to complex models, such as models with several covariates, random slopes and categorical responses

Grilli & Rampichini - CLADAG 2008

Grilli & Rampichini - CLADAG 2008

Structural model approach: simulations

- Some simulations show the performance of the ML estimation algorithm implemented in Mplus (Muthén and Muthén, 2007).
- The structural estimator is more efficient than the reliability-adjusted estimator: e.g. for the sample design J = 200 and n = 10 the reduction of the MSE is about 5%.
- A detailed simulation study on the properties of the structural estimator is carried out by Lüdtke et al. (2007).

Table 9: Structural model approach: MC mean, s.e. and MSE of $\hat{\delta}_s$ for $\delta = 1$ and $\lambda_X = 0.667$ (1000 replications).

				$\widehat{\delta_s}$				
n	J	τ_X^2	ICC	MC Mean	MC s.e.	$s.e.(\widehat{\delta}_s)\dagger$	MSE	
2	1000	1.0	0.5000	0.9992	0.0778	0.0709	0.0060	
10	200	0.2	0.1667	1.0006	0.2204	0.2134	0.0485	
20	100	0.1	0.0909	1.0067	0.4453	0.4149	0.1981	

True values: $\mu_X = 1$, $\sigma_X^2 = 1$; $\alpha = 0$, $\beta_W = 1$, $\delta = 1$, $\tau_{Y|X^BX^W}^2 = \sigma_{Y|X^BX^W}^2 = 1$ † MC mean of the s.e. calculated by Mplus.

Grilli & Rampichini - CLADAG 2008

17

Thanks for your attention!

Your comments are welcome!

Ask the authors for a draft copy of the paper:

Leonardo Grilli grilli@ds.unifi.it
Carla Rampichini rampichini@ds.unifi.it

References

- Ebbes P., Bockenholt U. and Wedel M. (2004). Regressor and random-effects dependencies in multilevel models, Statistica Neerlandica, 58, 161–178.
- Fielding A. (2004). The Role of the Hausman Test and whether Higher Level Effects should be treated as Random or Fixed. *Multilevel Modelling Newsletter*, 16(2), 3–9.
- Kim J. S. and Frees E. W. (2007). Multilevel Modeling with Correlated Effects.
 Psychometrika, in press.
- Lüdtke O., Marsh H.W., Robitzsch A., Trautwein U., Asparouhov T., Muthén
 B. (2007) The Multilevel Latent Covariate Model: A New, More Reliable Approach to Group-Level Effects in Contextual Studies. Submitted paper.
- Neuhaus J.M. and McCulloch C.E. (2006). Separating between- and withincluster covariate effects by using conditional and partitioning methods. *Journal of* the Royal Statistical Society B, 68, 859-872.
- Snijders T. A. B. and Berkhof J. (2007). Diagnostic checks for multilevel models. In Jan de Leeuw (Ed.), Handbook of Multilevel Analysis. New York: Springer, to appear.

Grilli & Rampichini - CLADAG 2008

18