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1.   Efron-Feldman data

Subset of data from LRC-CPPT, a placebo-controlled double-blinded 
randomized clinical trial designed to study the effectiveness of 
cholestyramine for lowering cholesterol levels
data on 335 men: 164 active pills of the drug 171 placebo pills

binary indicator for treatment assignment 
proportion of compliance (based on pills taken)
continuous outcome variable: average decrease in the cholesterol
level during the study (average 7.3 years)

Drug group                           Placebo group
observed compliance to 

placebo
larger than

observed compliance to 
drug

(adverse side-effects of 
the drug)

EF imputed the missing 
compliances using the 

percentiles (equipercentile
equating assumption)



2.   Modelling strategy

EF: EFRON & FELDMAN (1991): analysis of a randomized trial with partial 
non-compliance [Compliance as an Explanatory Variable in Clinical Trials, 
JASA 86, 9-17.]
FRANGAKIS & RUBIN (2002): principal stratification 

general framework to deal with non-compliance
earliest applications for all-or-none compliance ( discrete strata)

JR: JIN & RUBIN (2008): new analysis of Efron & Feldman data using 
continuous principal strata [Principal Stratification for Causal Inference With 
Extended Partial Compliance, JASA 103, 101-111.]
BARTOLUCCI & GRILLI (2010): new analysis of Efron & Feldman data 
following the approach of Jin & Rubin but with a different modeling strategy

Treatment indicator Zi (1=drug, 0=placebo)

Potential outcomes (under Strong access monotonicity)

Compliance: di placebo, Di drug

Outcome: Yi
(0) placebo, Yi

(1) drug

Principal stratification

(di,Di) principal strata (continuous)

E(Yi
(1) - Yi

(0) | di,Di) Principal Causal Effect (PCE)

Regression models for the outcomes

Yi
(0) on di and Di Yi

(1) on di and Di

3.   Copula for the joint distribution of the compliances

di and Di are never jointly observed but some information on 
their correlation is induced by the equations for the outcomes
JR used a parametric specification consistent with Negative 
side-effect monotonicity: Di ≤ di

Critical issues:
How much information is available on the correlation between the
compliances? How sensitive is the inference on the causal effect to 
the model on the compliances?

We use a copula for the distribution of (di,Di) A copula is a 
flexible way to define a joint distribution from the marginals
We use a Plackett copula which has a single association 
parameter ψ

0 < ψ < 1 negative association
ψ = 1 independence
ψ > 1 positive association

Advantages of using a copula instead of a parametric density:
no constraints on the marginal distributions
association captured by a single parameter (to be estimated or 
used in a sensitivity analysis)



4.   Model fitting via EM

1. Compute the univariate empirical distribution functions of the 
two compliances di and Di

2. For a set of values of the association parameter ψ
i. Estimate the joint distribution function of (di,Di) using the copula 
ii. Maximize the likelihood via EM

3. Plot the profile likelihood for ψ

We begin with a general form with quadratic terms, interactions and 
heteroskedasticity and select via LR test

FINAL MODEL FOR THE MEANS
E(Yi

(0)|di,Di)= −0.269 +11.243di

E(Yi
(1)|di,Di)= −0.269 +11.243di −21.878Di + 73.359(di×Di)

Principal Causal Effect:   PCE(di,Di) = (−21.878+73.359di) Di

The PCE depends on the dose of the drug Di and the slope is
positive, except when di <0.298 (but this is rare: 12.3% of the 
subjects in the placebo arm)
steeper at higher levels of the placebo compliance di

This allows us to see how the different values of ψ are supported by 
the data and check for local maxima

5.  Maximum likelihood results

Good agreement with Jin and Rubin

At the median point (di=0.89, Di=0.70) 
our ML estimate of PCE is 30.4 with 
bootstrap CI (22.5, 39.2)

Point estimate of ψ is 17.727 

Independence between di and Di (i.e. 
ψ=1) is rejected (p-value<0.001)

Pearson correlation between di and Di
is 0.689

Principal Causal Effects (PCE) surface 
(ψ = ML estimate = 17.727)

Profile log-likelihood for the 
Plackett association parameter



6.   Association between the compliances

We relax the negative side-effect monotonicity (i.e. Di ≤ di)

21.6% of the points go beyond the diagonal, corresponding to 
individuals with Di > di

Random draws from the bivariate distribution of the compliances

Jin and Rubin (2008) Bartolucci and Grilli (2010)

7.   Sensitivity analysis

The Plackett parameter ψ determining the association between 
drug and placebo compliances has scarce empirical support and 
it is identified thanks to the regression equations (which cannot 
be tested separately)

The estimate of the PCE depends on the estimate of ψ : it is not 
advisable to base the inference exclusively on the point 
estimate of ψ
We perform a sensitivity analysis to assess how the PCE 
depends on ψ (we let it vary in its profile likelihood interval):

at the median point (di=0.89, Di=0.70): PCE ∈(27.4, 34.8) 

at the Q1-Q3 point (di=0.59, Di=0.95):  PCE ∈(14.0, 29.5)

this couple of compliances is unlikely (far from the bulk of the
data) greater sensitivity, in addition to greater sampling 
variance: the bootstrap CI is very large (−10.8, 34.7)

Principal Causal Effects are reliably estimated at drug and 
placebo compliance levels near the sample medians, while 
inference at unlikely compliance levels appears to be unduly 
affected by model assumptions


