
June 15, 2007 13:41 WSPC - Proceedings Trim Size: 9in x 6in Derangfinale

1

AN ANALYSIS OF A SIMPLE ALGORITHM

FOR RANDOM DERANGEMENTS

DONATELLA MERLINI and RENZO SPRUGNOLI and MARIA CECILIA VERRI

Dipartimento di Sistemi e Informatica

Viale Morgagni, 65 - Firenze (Italy)

E-mail: [merlini,sprugnoli]@dsi.unifi.it, mariacecilia.verri@unifi.it

We consider the uniform generation of random derangements, i.e., permuta-

tions without any fixed point. By using a rejection algorithm, we improve

the straight-forward method of generating a random permutation until a de-

rangement is obtained. This and our procedure are both linear with respect to

the number of calls to the random generator, but we obtain an improvement of

more than 36%. By using probability generating functions we perform an exact

average analysis of the algorithm, showing that our approach is rather general

and can be used to analyze random generation procedures based on the same

rejection technique. Moreover, emphasis is given to combinatorial sums and a

new interpretation of a known infinite lower triangular array is found.

Keywords: Derangements, rejection algorithms, probability generating func-

tions.

1. Introduction

We consider the random, uniform generation of derangements, i.e., permu-

tations without any fixed point. They were introduced during the XVIII

century and Euler [3] describes the corresponding counting problem in this

way: “Data serie quotcunque litterarum a, b, c, d, e etc., quorum numero sit

n, invenire quot modis earum ordo immutari possit, ut nulla in eo loco

reperiatur, quem initio occupaverat”. Another famous formulation is as fol-

lows. Ten mathematicians arrive at the Faculty Club and leave their hats

at the wardrobe. When they go out, everyone takes a hat at random; math-

ematicians are notoriously absent-minded. What is the probability that no

one takes his own hat? If we mark the mathematicians and their hats with

the numbers from 1 to 10, on exit the Club we obtain a permutation in the

symmetric group S10, and a mathematician who takes his own hat is a fixed

point. Therefore, the required probability is D10/10!, where Dn = |Dn| if

June 15, 2007 13:41 WSPC - Proceedings Trim Size: 9in x 6in Derangfinale

2

Dn is the set of derangements over [1..n]. Another interesting application

of the concept of derangements concerns the stable marriage or ménage

problem (see, e.g., [4]).

The random, uniform generation of derangements is very simple. Since

Dn ≈ n!/e, the obvious procedure of generating a random permutation and

check if it is a derangement or not, and generating a new permutation in the

negative case, is straight-forward and guarantees a linear time complexity,

at least on the average; actually, as we will see, the average complexity is

µ1 ≈ e(n − 1). We measure complexity as the number of calls to random,

the function that generates a random integer in a given interval; as we shall

see in procedures generate1 and generate2, a fixed number of operations

is related to each call; therefore, the procedures are also linear in time.

Other methods are also feasible. The general approach, proposed by Fla-

jolet et al. [5], consists in giving a formal definition of the class D of derange-

ments as the permutations only containing cycles of length greater than 1

(a fixed point is just a cycle of a single element): D := set{cycle>1{Z}}.

Then the definition is transformed into a routine generating the random

derangements in a uniform way. Ruskey [9] claims to use the recurrence

Dn = (n − 1)Dn−1 + (n − 1)Dn−2 for generating all the derangements in

Dn in linear amortized time.

Our approach generates single derangements and is based on a rejection

technique, as introduced in [1]. The method is rather general, as we observe

at the end of Section 2, and the generation routine is very fast, with an

average complexity µ2 ≈ (e − 1)(n − 1). Besides, it works without using

any pre-compiled table and occupies minimum space, just the n elements

of the permutation. Finally, in order to study its complexity, we use some

triangular arrays which are known in the literature, but for which we give

a different and more direct interpretation.

Actually, the random generation of derangements is not only important

for its own, but it is the basis for other generations, very useful in the

simulation of the behavior of several structures. For example: 1) permuta-

tions of n objects with exactly k < n fixed points; 2) permutations of n

objects having their first (last) fixed point at position k; 3) if we define a

k-disposition of n objects as the first k objects in a permutation of the n

objects (see [7]), problems analogous to 1) and 2) can be considered, and

solved in a similar way.

In Section 2 we present our algorithms and the probability generating

functions (p.g.f.) which will be used to perform their average case complex-

ity analysis. In Section 3 we discuss the concept of the first fixed point in

June 15, 2007 13:41 WSPC - Proceedings Trim Size: 9in x 6in Derangfinale

3

a permutation and develop the corresponding mathematical properties. Fi-

nally, in Section 4 we use these properties to compute the average number

of calls to random and the corresponding variance of our main algorithm.

2. Derangements

By a classical application of the inclusion-exclusion principle, it is almost

immediate to prove:

Dn = n!

(

1 −
1

1!
+

1

2!
− · · · +

(−1)n

n!

)

=

[

n!

e

]

, (1)

where [x] denotes the integer number closest to x. The sequence

is A000166 in Sloane’s encyclopedia [11] and the first values are

(1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496) corresponding to the exponential

generating function: D(t) = e−t/(1 − t). When dealing with approximate

or asymptotic values, another expression for Dn, obtained from (1), can be

more appropriate:

Theorem 2.1. The derangement numbers satisfy the following formula:

Dn =
n!

e

(

1 −
e(−1)n+1

(n + 1)!
+ · · ·

)

. (2)

By (1), a simple procedure to generate a random derangement is:

proc generate1(n);

repeat generate a random permutation π ∈ Sn until π ∈ Dn;

end proc

The procedure to generate a random permutation will be called shuffle

and is well-known (see, e.g., Knuth [8, Vol. 2]). It requires n − 1 calls to

random(m), the function that generates a random integer in the interval

[1..m]. In general, we define the complexity of a procedure as the number

of calls to random, so that the complexity of shuffle is n−1. It is intuitive

from (1) that the complexity of the procedure generate1 is e(n − 1) on

the average, but we can obtain more precise results by using probability

generating functions (see, e.g., [4,10]).

Theorem 2.2. The average complexity and the variance of the procedure

generate1 are µ1 = e(n − 1) and σ2
1 = e(e − 1)(n − 1)2.

Proof. Let P1(t) =
∑∞

k=0 qktk be the p.g.f. relative to the procedure

generate1, where the term qktk denotes the fact that a derangement is

June 15, 2007 13:41 WSPC - Proceedings Trim Size: 9in x 6in Derangfinale

4

generated with probability qk after k calls to random. By (1) we have that

a random permutation π ∈ Sn is a derangement with probability 1/e and is

not with probability (e− 1)/e. The procedure performs a (possibly empty)

sequence of non-derangements generations, followed by the generation of a

derangement, each one with n − 1 calls to shuffle. Therefore:

P1(t) =

∞
∑

k=0

(

e − 1

e
tn−1

)k
1

e
tn−1 =

tn−1

e − (e − 1)tn−1
.

From this expression we have µ1 = P ′(1) = e(n − 1) and by performing

a differentiation again α1 = P ′′(1) = e(n − 1)(2en − n − 2e); a simple

computation finally yields σ2
1 = α1 + µ1 − µ2

1 = e(e − 1)(n − 1)2.

The procedure generate1 is linear in time, but, since e ≈ 2.718, we can

hope to find a faster procedure, also if we cannot go under n − 1; in fact,

all the elements in the permutation π (except possibly the last) must be

generated, since they can be placed in any position. The method of early

refusal (see, e.g., [1]) consists in stopping a generation as soon as it is clear

that the generated object cannot be legal. In our case, when we generate

the element k and it should be placed in position k, we obtain a fixed point

and we are sure that the resulting permutation is not a derangement. This

observation results in a new procedure, which has to be merged with the

procedure shuffle.

proc generate2(n);

found := false;

while not found do

for j:=1 to n do v[j] := j end for;

j := n; fixed := false; over := false;

while not over do p := random(j);

if v[p] = j then fixed := true; over := true

else a := v[j]; v[j] := v[p]; v[p] := a end if;

j := j - 1; if j = 1 then over := true end if

end while;

if not fixed and v[1] <> 1 then found := true end if

end while;

end proc

By this construction, we stop at the last fixed point; by symmetric reasons,

we will analyze the procedure considering the first fixed point. In order to

analyze the behavior of generate2 we need some new definitions. Given a

June 15, 2007 13:41 WSPC - Proceedings Trim Size: 9in x 6in Derangfinale

5

permutation π ∈ Sn, then π belongs to Dn or π has a first fixed point (f.f.p.),

i.e., a fixed point at position k, while every position j, with j < k, is not

fixed. For example, the permutation (3 7 5 4 1 6 2) has two fixed points, 4

and 6, and 4 is its f.f.p.. Let Fn,k be the set of all π ∈ Sn such that π has its

f.f.p. at position k; by abuse of language, we set Fn,0 = Dn. Let us denote

by pk (understanding the index n) the probability that a permutation π

has its f.f.p. at position k. Clearly pk = |Fn,k|/n! for k = 0, 1, . . . , n so that

p0 is the probability that π is a derangement.

Theorem 2.3. The p.g.f. corresponding to generate2 is:

P2(t) =
p0t

n−1

1 − (p1t + p2t2 + · · · + pn−1tn−1 + pntn−1)

Proof. To generate a derangement, we actually generate a sequence of

false derangements, i.e., permutations with some fixed point. At the first

fixed point we abandon the generation and start from scratch. Therefore,

if this f.f.p. is at a position j, the cost of the generation is j calls to random

with probability pj , so that the contribution to the p.g.f. is pjt
j . The only

exception is for j = n, because the generation of the last element is obliged,

and the contribution is pntn−1. Finally, we generate the derangement, the

cost of which is n − 1 with probability p0. Therefore, the p.g.f. is:

P2(t) =

∞
∑

j=0

(p1t + p2t
2 + · · · + pn−1t

n−1 + pntn−1)jp0t
n−1

from which the desired formula immediately follows. (This is indeed a p.g.f.;

since p0 + p1 + · · · + pn = 1 we also have P2(1) = 1).

Once we have found the p.g.f., we are able to compute the average

number of calls to random and the corresponding variance.

Theorem 2.4. The average number of calls to random performed by the

procedure generate2 is:

µ2 = n − 1 −
pn

p0
+

1

p0

n
∑

k=1

kpk. (3)

The corresponding variance is:

σ2
2 =

(

1

p0

n
∑

k=1

kpk

)2

+
1

p0

n
∑

k=1

k2pk − 2
pn

p2
0

n
∑

k=1

kpk +

(

pn

p0

)2

− (2n − 1)
pn

p0
.

June 15, 2007 13:41 WSPC - Proceedings Trim Size: 9in x 6in Derangfinale

6

Proof. By differentiating the p.g.f. P2(t) we get the following numerator:

(n − 1)p0t
n−2 − (n − 1)p0t

n−2(p1t + p2t
2 + · · · + pn−1t

n−1 + pntn−1)+

+p0t
n−1(p1 + 2p2t + · · · + (n − 1)pn−1t

n−2 + (n − 1)pntn−2)

while the denominator is obviously (1− (p1t + · · ·+ pn−1t
n−1 + pntn−1))2.

Now we set t = 1 and the denominator becomes p2
0. In the numerator we

add and subtract pn in order to complete the last sum and get:

P ′
2(1) =

n − 1

p0
−

n − 1

p0
(1−p0)+

1

p0

n
∑

k=1

kpk −
pn

p0
= n−1−

pn

p0
+

1

p0

n
∑

k=1

kpk.

With the help of Maple, we differentiate P ′
2(t) and compute α2 = P ′′

2 (1);

by applying formula σ2
2 = α2 + µ2 − µ2

2 we obtain the assert.

Note: Let us consider the general problem of the random generation of

a combinatorial object defined as the sequence of elementary items. If we

use the method of early refusal, the previous theorem gives the expected

complexity of the procedure, in the case that the last generated item is

determined by the previous ones, as happens in our problem. Therefore,

(3) is much more general than expected; it is sufficient that we interpret

the probability pk as the probability that the procedure is interrupted after

the generation of the item in position k (1 ≤ k ≤ n).

3. The triangle of First Fixed Points

The problem is now to determine the values p1, p2, . . . , pn or, equivalently,

the dimension of the sets Fn,1,Fn,2, . . . ,Fn,n. We have:

Theorem 3.1. The number of permutations in Sn+1 having k + 1 as f.f.p.

is:

Fn+1,k+1 = |Fn+1,k+1| =
k

∑

j=0

(−1)j

(

k

j

)

(n − j)! k = 0, 1, 2, . . . , n. (4)

Proof. For k = 0 the formula gives |Fn+1,1| = n!; in fact, we have π(1) =

1 as f.f.p., while the other elements can form any permutation, and so

we actually have n! permutations in Fn+1,1. Let us now consider k = 1;

we obviously have n! permutations with position 2 as a fixed point. In

this way, however, we also count the permutations having 1 as a fixed

point, so we must subtract permutations having both 1 and 2 as fixed

points. Therefore we find Fn+1,2 = n! − (n − 1)! which agrees with (4).

June 15, 2007 13:41 WSPC - Proceedings Trim Size: 9in x 6in Derangfinale

7

This reasoning suggests to apply the principle of inclusion and exclusion.

In general, there are n! permutations in Sn+1 having k +1 as a fixed point.

In this way we include permutations having two fixed points: one at position

k+1 and the other at a position j, 1 ≤ j ≤ k; therefore, we should eliminate

(n − 1)! permutations for every value of j, that is
(

k
1

)

times; so we have

n!−
(

k
1

)

(n− 1)! permutations. Again, we have excluded permutations with

three fixed points: one at position k+1, one at position j and a third one at

position r, with 1 ≤ j < r ≤ k. Since there are
(

k
2

)

possibilities of choosing

j and r, we have obtained n!−
(

k
1

)

(n− 1)! +
(

k
2

)

(n− 2)!. By continuing, we

obtain the desired expression.

Table 1. Permutations in Sn having k as their f.f.p.

n/k 1 2 3 4 5 6 7

1 1

2 1 0

3 2 1 1

4 6 4 3 2

5 24 18 14 11 9

6 120 96 78 64 53 44

7 720 600 504 426 362 309 265

In Table 1 we give the upper part of the infinite triangle (Fn,k)n,k∈N0
,

where N0 = N \ {0}. This triangle is already known in Combinatorics and

corresponds to sequence A047920 in [11], where a paper by J. D. H. Dickson

[2] is quoted, old as 1879. Formula (4) is ascribed to Philippe Deleham, while

the property of Theorem 3.2 is due to Henry Bottomley. Our approach

furnishes a more direct combinatorial interpretation of these numbers: Fn,k

is the number of permutations in Sn having their f.f.p. at position k.

Theorem 3.2. The infinite triangle (Fn,k)n,k∈N0
is completely defined by

the initial conditions Fn,1 = (n − 1)!, (n = 1, 2, . . .) and by the relation:

Fn+1,k+1 = Fn+1,k − Fn,k k = 1, 2, . . . , n.

Proof. By simple properties of binomial coefficients, we have:

Fn+1,k −Fn,k =

k−1
∑

j=0

(−1)j

(

k − 1

j

)

(n− j)!−

k−1
∑

j=0

(−1)j

(

k − 1

j

)

(n−1− j)! =

=
k

∑

j=0

(−1)j

((

k − 1

j

)

+

(

k − 1

j − 1

))

(n − j)! =
k

∑

j=0

(−1)j

(

k

j

)

(n − j)!

June 15, 2007 13:41 WSPC - Proceedings Trim Size: 9in x 6in Derangfinale

8

which corresponds to Fn+1,k+1, as desired.

This theorem gives the link to the numerical interpretation of the trian-

gle. It is just the array of the successive differences of factorial numbers (see

column 1 in Table 1). This fact and the formula for derangements explain

why derangement numbers appear on the main diagonal: Fn,n = Dn−1.

Now we give an asymptotic value and a good approximation of Fn+1,k+1:

Theorem 3.3. For the numbers Fn+1,k+1 we have:

Fn+1,k+1 = n!e−k/n

(

1 −
k(n − k)

2n2(n − 1)
+ O

(

k2(n − k)

n4

))

.

Proof. Let us expand the formula for Fn+1,k+1:

Fn+1,k+1 = n! − k(n − 1)! +

(

k

2

)

(n − 2)! −

(

k

3

)

(n − 3)! + · · · =

= n!

(

1 −
k

n
+

k(k − 1)

2n(n − 1)
−

k(k − 1)(k − 2)

6n(n − 1)(n − 2)
+ · · ·

)

.

Since e−k/n = 1 − k
n + k2

2n2 − k3

6n3 + · · · , we compute:

Fn+1,k+1−n!e−k/n = n!

(

−
k(n − k)

2n2(n − 1)
+

k(n − k)(3nk − 2n − 2k)

6n3(n − 1)(n − 2)
+ · · ·

)

and the result follows from this expression.

This is a good approximation and, because of k(n − k), it is better for

small and large k’s and worse for k ≈ n/2. As a consequence we have:

Corollary 3.1. In every row of the infinite triangle (Fn,k)n,k∈N the values

are decreasing for increasing k.

The row sums of the triangle are easily found:

Theorem 3.4. For the row sums of the triangle (Fn,k)n,k∈N we have
∑n

k=1 Fn,k = n! − Dn.

Proof. A permutation is a derangement or has some fixed point; therefore

n! = Dn +
∑n

k=1 Fn,k.

As we established in the previous section, we need the weighted row

sums Sn =
∑n

k=1 kFn,k. Table 2 illustrates the triangle (kFn,k)n,k∈N .

June 15, 2007 13:41 WSPC - Proceedings Trim Size: 9in x 6in Derangfinale

9

Table 2. The weighted version of Table 1

n/k 1 2 3 4 5 6 7

1 1

2 1 0

3 2 2 3

4 6 8 9 8

5 24 36 42 44 45

6 120 192 234 256 265 264

7 720 1200 1512 1704 1810 1854 1855

Theorem 3.5. If Sn are the row sums of the triangle of Table 2, we have:

Sn = (n + 1)!

n+1
∑

j=2

(−1)j(j − 1)

j!
.

Proof. Let Sn =
∑n

k=1 kFn,k; by (4) and changing the order of summation:

Sn+1 =
n

∑

k=0

(k +1)
k

∑

j=0

(−1)j

(

k

j

)

(n− j)! =
n

∑

j=0

(−1)j(n− j)!
n

∑

k=j

(k +1)

(

k

j

)

.

The internal sum is easy (see, e.g., [6, Formula (5.10)]):

n
∑

k=j

(k + 1)

(

k

j

)

= (j + 1)
n

∑

k=j

(

k + 1

j + 1

)

= (j + 1)

(

n + 2

j + 2

)

.

Therefore we have:

Sn+1 =
n

∑

j=0

(−1)j(n − j)!(j + 1)

(

n + 2

j + 2

)

= (n + 2)!
n

∑

j=0

(−1)j(j + 1)

(j + 2)!

and the statement of the theorem follows immediately.

To find the average number of calls to random, by Theorem 2.4, we need

the preceding row sums with a certain precision:

Theorem 3.6. The asymptotic value of the row sums Sn is:

Sn =
e − 2

e
(n + 1)! + (−1)n+1 −

2(−1)n+1

n + 2
+ O

(

1

n2
.

)

(5)

Proof. The development is rather standard:

Sn = (n + 1)!

n+1
∑

k=2

(−1)k(k − 1)

k!
= (n + 1)!

(

n
∑

k=1

(−1)k+1

k!
−

n+1
∑

k=2

(−1)k

k!

)

.

June 15, 2007 13:41 WSPC - Proceedings Trim Size: 9in x 6in Derangfinale

10

Now we have:
n

∑

k=1

(−1)k+1

k!
=

(

1 −
1

e

)

+
(−1)n+1

(n + 1)!
+

(−1)n+2

(n + 2)!
+ · · ·

n+1
∑

k=2

(−1)k

k!
=

(

1 − 1 +
1

e

)

+
(−1)n+2

(n + 2)!
+ · · ·

Sn ≈ (n + 1)!

(

e − 1

e
+

(−1)n+1

(n + 1)!
+

(−1)n+2

(n + 2)!
+ · · · −

1

e
+

(−1)n+2

(n + 2)!
+ · · ·

)

and this is equivalent to the formula in the assert.

For the sake of completeness, we give a recurrence for (Sn)n∈N :

Theorem 3.7. The sequence (Sn)n∈N is defined by the initial condition

S0 = 0 and the recurrence relation Sn+1 = (n + 2)Sn + (n + 1)(−1)n, or,

by the exponential generating function: S(t) = (1 − e−t − t2e−t)/(1 − t)2.

Proof. Let us consider Theorem 3.5 for Sn+1:

Sn+1 = (n + 2)



(n + 1)!

n+1
∑

j=2

(−1)j(j − 1)

j!



 +
(n + 2)!(−1)n(n + 1)

(n + 2)!
.

This is equivalent to the recurrence relation in the assert; by transforming

it in terms of the exponential generating function S(t) =
∑

n≥0 Sntn/n! we

obtain the differential equation: S′(t) = tS′(t) + 2S(t) − te−t + e−t, which

corresponds to the function in the statement of the theorem.

4. Mean and variance

We begin to compute the pieces appearing in the formula of Theorem 2.4:

Theorem 4.1. The approximate value of pn/p0 is:

pn

p0
=

Dn−1

Dn
=

1

n
−

(−1)n

n · n!
+ · · · =

1

n

(

1 −
e(−1)n

n!
+ · · ·

)

.

Proof. We use the approximate value for Dn found in Theorem 2.1:

Dn−1

Dn
=

(n − 1)!

e

(

1 −
e(−1)n

n!
+ · · ·

)

·
e

n!

(

1 +
e(−1)n+1

(n + 1)!
+ · · ·

)

=

=
1

n

(

1 −
e(−1)n

n!
+

e(−1)n+1

(n + 1)!
+ · · ·

)

=
1

n

(

1 −
e(−1)n

n!
+ O

(

1

(n + 1)!

))

June 15, 2007 13:41 WSPC - Proceedings Trim Size: 9in x 6in Derangfinale

11

as desired.

By using (2) and (5) we compute (
∑

k kpk)/p0 = Sn/Dn:

Theorem 4.2. We have the following approximate value:
∑

k kpk

p0
= (e−2)(n+1)

(

1 +
e(e − 1)

e − 2

(−1)n+1

(n + 1)!
+

e(e − 1)

e − 2

(−1)n+2

(n + 2)!
+ · · ·

)

.

Consequently, by taking the principal values, we find our main result:

Theorem 4.3. The average number of calls to random performed by pro-

cedure generate2 is µ2 = (e − 1)(n − 1) + 2(e − 2) − 1
n + O(n−n).

In order to compute the variance, since (
∑

k k2pk)/p0 is equal to

(
∑

k k2Fn,k)/Dn, we need the following result:

Theorem 4.4. We have:

n
∑

k=1

k2Fn,k = (n + 2)!

n−1
∑

k=0

(−1)k(k + 2)(k + 1)

(k + 3)!
− (n + 1)!

n−1
∑

k=0

(−1)k(k + 1)

(k + 2)!

and, consequently,
∑n

k=1 k2Fn,k ≈ 2e−5
e (n + 2)! − e−2

e (n + 1)!.

Proof. By considering n + 1 and by changing the order of summation in
∑n

k=0(k + 1)2
∑k

j=0(−1)j
(

k
j

)

(n − j)! we obtain:

n
∑

j=0

(

(−1)j(n + 3)!(j + 2)(j + 1)

(j + 3)!
−

(−1)j(n + 2)!(j + 1)

(j + 2)!

)

;

at this point, it is sufficient to change j Ã k. By Theorems 3.5 and 4.2 the

second sum is
∑

k kFn,k ≈ (e−2)(n+1)!/e, while for the first sum we have:

n−1
∑

k=0

(−1)k(k + 2)(k + 1)

(k + 3)!
=

n−1
∑

k=0

(−1)k (k + 3)(k + 2) − 2(k + 3) + 2

(k + 3)!
=

=

n−1
∑

k=0

(−1)k

(k + 1)!
− 2

n−1
∑

k=0

(−1)k

(k + 2)!
+ 2

n−1
∑

k=0

(−1)k

(k + 3)!
.

In order to obtain the principal value, we extend these sums to infinity:

n−1
∑

k=0

(−1)k

(k + 1)!
≈ 1 −

1

e
,

n−1
∑

k=0

(−1)k

(k + 2)!
≈

1

e
,

n−1
∑

k=0

(−1)k

(k + 3)!
≈

1

2
−

1

e
.

By summing, we have
(

1 − 1
e

)

− 2 · 1
e + 2 ·

(

1
2 − 1

e

)

= 2 − 5
e = 2e−5

e .

June 15, 2007 13:41 WSPC - Proceedings Trim Size: 9in x 6in Derangfinale

12

We are now in a position to compute the principal value of the variance:

Theorem 4.5. For the variance relative to the procedure generate2 we

have: σ2
2 ≈ (e2 − 2e − 1)(n − 1)2 + (4e2 − 7e − 7)(n − 1) + (4e2 − 8e − 4).

Proof. Let us develop the various terms in the formula of Theorem 2.4:
(

1
p0

∑

k kpk

)2

≈ (e − 2)2(n + 1)2;

1
p0

∑

k k2pk ≈ (2e − 5)(n + 2)(n + 1) − (e − 2)(n + 1);

−2 · pn

p2

0

∑

k kpk ≈ −2 · (n−1)!
e · e2

n!2 · e−2
e · (n + 1)! ≈ −2(e − 2);

p2

n

p2

0

≈ 1
n2 ; (2n − 1) · pn

p0

≈ 2n−1
n ≈ 2.

Putting all these contributions together we obtain the assert.

Acknowledgements

We wish to thank the referees for their helpful comments.

References

1. E. Barcucci, R. Pinzani, and R. Sprugnoli. The random generation of directed
animals. Theor. Comp. Sci, 127(2):333–350, 1994.

2. J. D. H. Dickson. Discussion of two double series arising from the number of
terms in determinants of certain forms. Proc. London Math. Soc., 10:120–122,
1879.

3. L. Euler. Solutio quaestionis curiosae ex doctrina combinationum. Opera Om-

nia, 7(1):435–440, 1779.
4. P. Flajolet and R. Sedgewick. Analytic combinatorics. http://algo.inria.

fr/flajolet/Publications/books.html.
5. Ph. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the random

generation of combinatorial structures. Theor. Comp. Sci, 132:1–35, 1994.
6. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics.

Addison-Wesley, New York, 1989.
7. D. Hanson, K. Seyffarth, and J. H. Weston. Matchings, derangements, ren-

contres. Math. Magazine, 56:224–229, 1983.
8. D. E. Knuth. The art of computer programming. Addison-Wesley, 1973.
9. F. Ruskey. The Combinatorial Object Server. http://www.theory.csc.

uvic.ca/~cos/.
10. R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms.

Addison-Wesley, Reading, MA, 1996.
11. N. Sloane. On-line Encyclopedia of Integer Sequences. http://www.

research.att.com/~njas/sequences.

