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Abstract. We study some combinatorial properties related to the prob-
lem of tablature for stringed instruments. First, we describe the problem
in a formal way and prove that it is equivalent to a finite state automa-
ton. We define the concepts of distance between two chords and tablature

complexity in order to study the problem of tablature in terms of music
performance. By using the Schützenberger methodology we are then able
to find the generating function counting the number of tablatures having
a certain complexity and we can study the average complexity for the
tablatures of a music score.

1 Introduction

The music perfomance process involves several representation levels [13], such
as physical, perceptual, operational, symbolic, structural. Consequently, a per-
formance environment should be concerned at least in:

1. getting a score in input (symbolic level);
2. analysing it, like a human performer would do (structural);
3. modelling the constraints posed by body-instrument interaction (operational);
4. manipulating sound parameters (physical).

In particular, in the present paper we focus our attention on a problem present in
both structural and operational levels, and very relevant for string instrument,
namely the problem of tablature. Some instruments, such as the piano, have only
one way to produce a given pitch. To play a score of music on a piano, one needs
only to read sequentially the notes from the page and depress the corresponding
keys in order. Stringed instruments, however, require a great deal of experience
and decision making on the part of the performer. A given note on the guitar
may have as many as six different positions on the fretboard on which it can
be produced. A fretboard position is described by two variables, the string and
the fret. To play a piece of music, the performer must decide upon a sequence
of fretboard positions that minimize the mechanical difficulty of the piece to at
least the point where it is physically possible to be executed. This process is
time-consuming and especially difficult for novice and intermediate players and,



2

as a result, the task of reading music from a page, as a pianist would, is limited
only to very advanced guitar players. To address this problem, a musical notation
known as tablature was devised. A tablature describes to the performer exactly
how a piece of music is to be played by graphically representing the six guitar
strings and labeling them with the corresponding frets for each note, in order.
Fingering is the process that, given a sequence of notes or chords (set of notes
to be played simultaneously), yields to assigning to each note one position on
the fretboard and one finger of the left hand. Fingering and tablature problem
has been studied from many points of view (see, e.g., [12,14,18]).

In this paper, we study some combinatorial properties of tablature problem.
This problem can be described by a finite state automaton (or, equivalently, by
a regular grammar) to which we can apply the Schützenberger methodology (see
[8,9,15,16] for the theory and [6,7,11] for some recent applications). We define
the concepts of distance between two chords and tablature complexity to study
the problem of tablature in terms of the music performance. It is then possible
to compute the average complexity of a tablature. In particular, we prove the
following basic results:

1. every tablature problem is equivalent to a finite state automaton (or to a
regular grammar);

2. an algorithm exists that finds the finite state automaton corresponding to a
tablature problem;

3. by using the Schützenberger methodology we find the generating function
Ξ(t) =

∑
n

Ξntn counting the number Ξn of tablatures with complexity n.

The concept of complexity introduced in this paper takes into consideration
the total movement of the hand on the fretboard during the execution. This
quantity is certainly related to the difficulty of playing a score of music but,
of course, many other measures could be considered. Moreover, the difficulty
depends on the artist who plays the song.

We will show an example taken from Knocking on Heaven’s Door by Bob
Dylan.

2 Stringed Instruments, Tablature and Symbolic Method

A note is a sign used in music to represent the relative duration and pitch of
sound. A note with doubled frequency has another but very similar sound, and
is commonly given the same name, called pitch class. The span of notes within
this doubling is called an octave. The complete name of a note consists of its
pitch class and the octave it lies in. The pitch class uses the first seven letters of
the latin alphabet: A, B, C, D, E, F, and G (in order of rising pitch). The letter
names repeat, so that the note above G is A (an octave higher than the first
A) and the sequence continues indefinitely. Notes are used together as a musical
scale or tone row. In Italian notation, the notes of scales are given in terms of
Do - Re - Mi - Fa - Sol - La - Si rather than C - D - E - F - G - A - B. These
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names follow the original names reputedly given by Guido d’Arezzo, who had
taken them from the first syllables of the first six musical phrases of a Gregorian
Chant melody Ut queant laxis, which began on the appropriate scale degrees.

In this section we define in a formal way the problem of the tablature of a
stringed instrument score. In order to do this, we take into consideration the set
of the notes defined in the MIDI standard (see [4,5]), which uses the note-octave
notation. In fact, this set contains a range of integer numbers k = {0, ..., 127},
where every element represents a note of an octave.

Table 1. A representation of notes in the MIDI standard

Octave Note numbers

Do Do# Re Re# Mi Fa Fa# Sol Sol# La La# Si

C C# D D# E F F# G G# A A# B

0 0 1 2 3 4 5 6 7 8 9 10 11
1 12 13 14 15 16 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30 31 32 33 34 35
3 36 37 38 39 40 41 42 43 44 45 46 47
4 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 71
6 72 73 74 75 76 77 78 79 80 81 82 83
7 84 85 86 87 88 89 90 91 92 93 94 95
8 96 97 98 99 100 101 102 103 104 105 106 107
9 108 109 110 111 112 113 114 115 116 117 118 119
10 120 121 122 123 124 125 126 127

A string instrument (or stringed instrument) is a musical instrument that
produces sounds by means of vibrating strings.

Definition 1 (String Instrument). We define a string instrument with m

strings SIm as a pair (Sm, nf ) where:

– Sm = (note1, · · · , notem) ∈ km represents the notes of the corresponding
strings;

– nf ∈ N represents the number of frets in this instrument.

Example 1. For convention, the enumeration of the strings begins from the high-
est note to the most bass note. Therefore, we can define the classical guitar [3]
as follows:

E

A

D

G

B

E

note/fret I II III ··· XIX
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S6 = (64, 59, 55, 50, 45, 40)

nf = 19

instead for the bass guitar [1] we have:

E

A

D

G

note/fret I II III ··· XXII

S4 = (31, 26, 21, 16)

nf = 22

In music and music theory a chord is any collection of notes that appear
simultaneously, or near-simultaneously over a period of time. A chord consists
of three or more notes. Most often, in European influenced music, chords are
tertian sonorities that can be constructed as stacks of thirds relative to some
underlying scale. Two-note combinations are typically referred to as dyads or
intervals. For the sake of simplicity, we use the following:

Definition 2 (Chord). We say that ξ is a chord, if it belongs to 2k.

Example 2. A famous chord is the G Major (or Sol Major). It is characterized
by the following notes:

D, G, B (or Re, Sol, Si in Italian notation).

Using the previous definitions, ξ = {50, 55, 59} corresponds to a G Major on the
fourth octave. In the same way, C Major (formed by C, E, G) on the fourth
octave is representable with ξ = {48, 52, 55}, whereas ξ = {60} is a simple note
C (or Do) on the fifth octave.

Definition 3 (Chord for a String Instrument). Let SIm= (Sm, nf ) be a
string instrument with m strings and ξ = {a1, . . . , aj} a chord with j ≤ m. ξ is
a chord for SIm iff there exists an injective function f : ξ → {1, . . . ,m} such
that ∀i = 1, . . . , j we have 0 ≤ ai −notef(ai) ≤ nf . We indicate with ΓSI the set
of these chords.

A chord progression (also chord sequence, harmonic progression or sequence) is
a series of chords played in order. In this paper, we give the following:

Definition 4 (Chord Progression). Given a string instrument SIm, we call
chord progression for the instrument SIm, every finite sequence ξ1, ..., ξn such
that ∀i = 1, . . . , n we have ξi ∈ ΓSI .
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Example 3. If we use a classical guitar, a chord progression can be defined as
follows:

C Major, A Minor, D Minor, G 7th
(or Do Major, La Minor, Re Minor, Sol 7th)

where:

Chord name Notes of chord Numeric representation
C Major C, G, C, E (or Do, Sol, Do, Mi) {48, 55, 60, 64}
A Minor A, A, C, E (or La, La, Do, Mi) {45, 57, 60, 64}
D Minor D, A, D, F (or Re, La, Re, Fa) {50, 57, 62, 65}
G 7th G, G, B, F (or Sol, Sol, Si, Fa) {43, 55, 59, 65}

While standard musical notation represents the rhythm and duration of each
note and its pitch relative to the scale based on a twelve tone division of the
octave, tablature (or tabulatura) is instead operationally based, indicating where
and when a finger should be depressed to generate a note, so pitch is denoted
implicitly rather than explicitly. Tablature for plucked strings is based upon
a diagrammatic representation of the strings and frets of the instrument. In a
formal way, we give the following:

Definition 5 (Position). Given an intrument SIm with m strings, we call
position the following function TAB:

TAB : Ns → Nf ∪ {¤}

where

– Ns = {1, . . . ,m} is the set of strings in the instrument SIm;

– Nf = {1, . . . , nf} is the set of frets in the instrument SIm;

– ¤ is the null position.

Example 4. We can also describe a position using a graphic representation. In
this way, we represents only the notes that the musician must pluck. For exam-
ple, given a classical guitar we can represent the chord progression described in
the Example 3 as follows:

E

A

D

G

B

E

note/fret I II III ···

C Major (Do Major)
E

A

D

G

B

E

note/fret I II III ···

A Minor (La Minor)
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E

A

D

G

B

E

note/fret I II III ···

D Minor (Re Minor)
E

A

D

G

B

E

note/fret I II III ···

G 7th (Sol 7th)

We use the gray dots to indicate that the string must be used without fret
pressure.

Definition 6 (Tablature). Given a string instrument SIm, we call tablature
a finite sequence of position TAB1, ..., TABn.

A position will be realizable on a string instrument SI, iff a common hand
can realize such position on SI. Otherwise, the position will be bad for the
instrument. Given an instrument SI, let TSI be the set of the positions on SI.
TSI = T̂SI

⋃
T̃SI where T̂SI is the set of the realizable positions and T̃SI is the

set of the bad positions.

Definition 7 (Expansion function). Given an instrument SIm we define the
expansion function as follows:

δ : ΓSI → 2T̂SI

where ∀ξ ∈ ΓSI we have
δ(ξ) = {TAB[ξ] | TAB[ξ] ∈ T̂SI corresponds to the chord ξ}

With the previous definition we understand that, given a string instrument, we
can associate a set of positions to the same chord. Extending the concept, we
can associate to a specific chord progression a set of tablatures.

Example 5. Given a classical guitar we can play the same C Major defined in
the Example 3 using the following positions:

E

A

D

G

B

E

note/fret I II III ···

C Major (Do Major)
E

A

D

G

B

E

note/fret III IV V ···

C Major (Do Major)
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E

A

D

G

B

E

note/fret V III IX X ···

C Major (Do Major)
E

A

D

G

B

E

note/fret V V I V II V III

C Major (Do Major)

Proposition 1 (Automaton of chord progression). Given a string instru-
ment SIm and a chord progression ξ1, ..., ξn, we can define a deterministic finite
state automaton A = (q0,0, Ω,Ωf , z) which represents the set of all possible
tablatures for the progression in SIm, where:

– q0,0 is the initial state;

– Ω is the set of the states;

– Ωf ⊆ Ω is the set of the final states;

– z is the transition function with z : Ω × T̂SI → Ω.

Proof. We associate the null position to the initial state. Moreover, |Ω−{q0,0}| =
n∑

i=1

|δ(ξi)| where ∀ξi we introduce the subset of states {qi,0, . . . , qi,|δ(ξi)|−1}. The

transition function will be z = {(qi−1,j , TAB
[ξi]
k , qi,k)}i,j,k∈N with TAB

[ξi]
k ∈

δ(ξi).

Example 6. We take into consideration the sequence C, E and G in the fourth
octave, in other words Do = {48}, Mi = {52}, Sol = {55}. Using the classical
guitar and the expansion function on these notes, we have the following positions:

δ({48}) = {〈(1,¤), (2,¤), (3,¤), (4,¤), (5,3), (6,¤)〉,

〈(1,¤), (2,¤), (3,¤), (4,¤), (5,¤), (6,8)〉}

δ({52}) = {〈(1,¤), (2,¤), (3,¤), (4,2), (5,¤), (6,¤)〉,

〈(1,¤), (2,¤), (3,¤), (4,¤), (5,7), (6,¤)〉

〈(1,¤), (2,¤), (3,¤), (4,¤), (5,¤), (6,12)〉}

δ({55}) = {〈(1,¤), (2,¤), (3,¤), (4,¤), (5,¤), (6,¤)〉,

〈(1,¤), (2,¤), (3,¤), (4,5), (5,¤), (6,¤)〉

〈(1,¤), (2,¤), (3,¤), (4,¤), (5,10), (6,¤)〉

〈(1,¤), (2,¤), (3,¤), (4,¤), (5,¤), (6,15)〉}

where every pair (c, t) indicate the string and the fret number respectively. In
this way we obtain the following automaton:
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q0,0

q1,1

q1,0

q2,2

q2,1

q2,0

q3,3

q3,2

q3,1

q3,0

null position Do Mi Sol

Definition 8 (Distance between two positions). Given a string instrument
SIm = (Sm, nf ), we define the distance function as follows:

d : T̂SI × T̂SI→{1, ..., nf}

where ∀ TAB1, TAB2 ∈ T̂SI we set

λ1 = min {fret 6= ¤ | ∃j = 1, . . . ,m such that TAB1(j) = fret},
λ2 = min {fret 6= ¤ | ∃j = 1, . . . ,m such that TAB2(j) = fret},

then d(TAB1, TAB2) = |λ1 − λ2|. If ∀j TAB1(j) = ¤ or TAB2(j) = ¤ then
d(TAB1, TAB2) = 0.

Example 7. We take into consideration the following positions:

E

A

D

G

B

E

note/fret I II III ···

D Minor (Re Minor)
E

A

D

G

B

E

note/fret V V I V II V III

C Major (Do Major)

In this case the distance between the two positions is equal to four.

The concept of distance is important to determinate the complexity of a tabla-
ture. In fact, a greater distance requires a great deal of experience on the part
of the performer. Therefore, we give the following:

Definition 9 (Tablature complexity). Given a string instrument SIm, let
TAB1, . . . , TABn be a tablature for this instrument. We call complexity of the
tablature the following quantity:
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n−1∑
j=1

d(TABj , TABj+1).

Proposition 2. Given a string instrument SIm and a chord progression ξ1, . . . , ξj

for the instrument, let A be its associated automaton. We can obtain the follow-
ing generating function:

Ξ(t) =
∑
n

Ξntn

which counts the number Ξn of tablatures having complexity equal to n.

Proof. We use the Schützenberger’s methodology (or the symbolic method) to
associate the indeterminate t to the distance between two sequential positions.

Therefore, when we change the position from TAB
[ξi]
k to TAB

[ξi+1]
h , the tran-

sition qi,k → qi+1,h becomes a term of the generating function Ξi,k(t) in the

form td(TAB
[ξi]

k
,TAB

[ξi+1]

h
)Ξi+1,h(t) where d(TABi,k, TABi+1,h) is the distance

between the two positions. By solving the obtained equations system in the
unknown Ξ0,0(t) = Ξ(t) we have the desired generating function.

Example 8. A very famous song is Knocking on Heaven’s Door by Bob Dylan
(see [2]). This song is a good example, because every strophe is characterized by
the following chord progression:

G Major, D Major, A Minor, G Major, D Major, C Major

or, in Italian notation:

Sol Major, Re Major, La Minor, Sol Major, Re Major, Do Major.

Table 2. Knocking on Heaven’s Door by Bob Dylan

Introduction
G Major, D Major, A Minor, G Major, D Major, C Major

G Major D Major A Minor

Mama, take this badge off of me

G Major D Major C Major

I can’t use it anymore.

G Major D Major A Minor

It’s gettin’ dark, too dark for me to see

G Major D Major C Major

I feel like I’m knockin’ on heaven’s door.
· · ·
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We want to study the complexity of a single strophe of this song. Using the
Definition 5 we can give the following realizable positions (you can find C Major
positions in Example 4):

G Major (or Sol Major) = {67, 59, 55, 43}

E={40}

A={45}

D={50}

G={55}

B={59}

E={64}

note/fret I II III ···

E

A

D

G

B

E

note/fret III IV V ···

D Major (or Re Major) = {66, 62, 57, 50}

E

A

D

G

B

E

note/fret I II III ···

E

A

D

G

B

E

note/fret V V I V II ···

E

A

D

G

B

E

note/fret X XI XII ···

E

A

D

G

B

E

note/fret V II V III IX X

A Minor (or La Minor) = {64, 60, 57, 45}

E

A

D

G

B

E

note/fret I II III ···

E

A

D

G

B

E

note/fret V V I V II ···

Using Proposition 1 we can generate the following automaton:
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q0,0

q1,1

3

q1,0

3

q2,3

7

q2,2

10

q2,1

5

q2,0

2

q3,1

5

q3,0

1

q4,1

3

q4,0

3

q5,3

7

q5,2

10

q5,1

5

q5,0

2

q6,3

5

q6,2

8

q6,1

3

q6,0

1
null

position
G Major D Major A Minor G Major D Major C Major

In the previous figure, for all qi,k we have written also the

min{fret 6= ¤ | ∃j = 1, . . . ,m such that TAB
[ξi]
k (j) = fret}.

These values are necessary to compute the distance between two positions. More-
over, we can observe as, in this simple case, there are 512 different tablatures for
the same chord progression. Using Proposition 2 we obtain the following system
of equations:

Ξ0,0(t) = Ξ1,0(t) + Ξ1,1(t)

Ξ1,0(t) = tΞ2,0(t) + t2Ξ2,1(t) + t7Ξ2,2(t) + t4Ξ2,3(t)

Ξ1,1(t) = tΞ2,0(t) + t2Ξ2,1(t) + t7Ξ2,2(t) + t4Ξ2,3(t)

Ξ2,0(t) = tΞ3,0(t) + t3Ξ3,1(t)

Ξ2,1(t) = t4Ξ3,0(t) + Ξ3,1(t)

Ξ2,2(t) = t9Ξ3,0(t) + t5Ξ3,1(t)

Ξ2,3(t) = t6Ξ3,0(t) + t2Ξ3,1(t)

Ξ3,0(t) = t2Ξ4,0(t) + t2Ξ4,1(t)

Ξ3,1(t) = t2Ξ4,0(t) + t2Ξ4,1(t)

Ξ4,0(t) = tΞ5,0(t) + t2Ξ5,1(t) + t7Ξ5,2(t) + t4Ξ5,3(t)

Ξ4,1(t) = tΞ5,0(t) + t2Ξ5,1(t) + t7Ξ5,2(t) + t4Ξ5,3(t)

Ξ5,0(t) = t + t + t6 + t3

Ξ5,1(t) = t4 + t2 + t3 + t0

Ξ5,2(t) = t9 + t7 + t2 + t5

Ξ5,3(t) = t6 + t4 + t + t2

By solving in Ξ0,0(t) we obtain:
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Ξ0,0(t) = 24t6 + 28t8 + 16t9 + 48t10 + 16t11 + 32t12 + 28t13 + 40t14 + 12t15 +
40t16 + 16t17 + 36t18 + 12t19 + 44t20 + 8t21 + 28t22 + 12t23 + 24t24 + 4t25 +

12t26 + 4t27 + 12t28 + 8t30 + 4t32 + 4t34

This generating function counts the number of tablatures for each complexity.
For example, the term 24t6 indicates the existence of 24 different tablatures with
complexity equal to 6 to execute the chord progression. These 24 solutions cor-
respond to tablatures requiring the shortest total movement of the hand on the
fretboard. From the generating function we also find that the average complexity
and the variance are: Ξ = 16.25 and σ = 141, 195. This means that if we play
the song with a random tablature we make a total hand jump corresponding to
16 frets, on the average.

Example 9. We can use the previous proposition also with infinite sequence of
chords. In fact, in this example we define a very simple string instrument SI =
((48, 49), nf ) as follows:

C]

C

note/fret I II III ···

We study the tablatures of the following infinite notes progression:

C = {48},D = {50}, C,D,C,D, ...

In this case note C has only one position, but note D has two positions.

C]

C

note/fret I II III ···

C (or Do)

C]

C

note/fret I II III ···

D (or Re)
C]

C

note/fret I II III ···

D (or Re)

We have the following system of equations:

Ξ0,0(t) = 1 + Ξ1,1

Ξ1,1(t) = tΞ2,0(t) + t2Ξ2,1

Ξ2,0(t) = Ξ0,0(t)

Ξ2,1(t) = Ξ0,0(t)

We set the term 1 in Ξ0,0(t) because we can consider the initial state as a final
state. By solving the system, we obtain:
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Ξ0,0(t) = 1 + tΞ0,0(t) + t2Ξ0,0(t)

and this equation corresponds to the generating function of Fibonacci’s numbers
Fn, in fact:

Ξ0,0(t) =
1

1 − t − t2
= 1 + t + 2t2 + 3t3 + 5t4 + O(t5).

Therefore, in this example, there are Fn different tablatures with complexity n.

3 Conclusion

In this paper we introduce the problem of tablatures for stringed instruments and
explain some combinatorial properties. We don’t present an exhaustive study, in
fact there are some questions which require a further study. In the Example 8 we
have 24 tablatures with lowest complexity. Which one is the better? A tablature
can be considered better also in terms of the mechanical difficulty of any single
position. This concept is linked with the problem of fingering. In a next paper
we will study this kind of problems.

References

1. Bass guitar. http://en.wikipedia.org/wiki/Bass guitar.
2. Bob Dylan: Knockin’ on heaven’s door.

http://www.bobdylan.com/songs/knockin.html.
3. Classical guitar. http://en.wikipedia.org/wiki/Classical guitar.
4. Midi committee of the association of musical electronic industry.

http://www.amei.or.jp.
5. Midi manufacturers association. http://www.midi.org.
6. D. Baccherini. Behavioural equivalences and generating functions. preprint, 2006.
7. D. Baccherini and D. Merlini. Combinatorial analysis of tetris-like games. preprint,

2005.
8. Ph. Flajolet and R. Sedgewick. The average case analysis of algorithms: complex

asymptotics and generating functions. Technical Report 2026, INRIA, 1993.
9. Ph. Flajolet and R. Sedgewick. The average case analysis of algorithms: counting

and generating functions. Technical Report 1888, INRIA, 1993.
10. J. R. Goldman. Formal languages and enumeration. Journal of Combinatorial

Theory, Series A, 24:318–338, 1978.
11. D. Merlini, R. Sprugnoli, and M. C. Verri. Strip tiling and regular grammar.

Theoretical Computer Science, 242,1-2:109–124, 2000.
12. M. Miura, I. Hirota, N. Hama, and M. Yanigida. Constructiong a System for

Finger-Position Determination and Tablature Generation for Playing Melodies on
Guitars. System and Computer in Japan, 35(6):755–763, 2004.

13. R. F. Moore. Elements of computer music, volume XIV, 560 p. Prentice-Hall,
1990.

14. S. Sayegh. Fingering for String Instruments with the Optimum Path Paradigm.
Computer Music Journal, 13(6):76–84, 1989.

15. M. P. Schützenberger. Context-free language and pushdown automata. Informa-

tion and Control, 6:246–264, 1963.



14

16. R. Sedgewick and P. Flajolet. An introduction to the analysis of algorithms.
Addison-Wesley, 1996.

17. T. A. Sudkamp. Languages and machines. Addison-Wesley, 1997.
18. D. R. Tuohy and W. D. Potter. A genetic algorithm for the automatic generation

of playable guitar tablature. Proceedings of the International Computer Music

Conference, 2004.
19. H. S. Wilf. Generatingfunctionology. Academic Press, 1990.


