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Books

Many of the statistical analyses encountered to date consist of a single response variable and one

or more explanatory variables. In this latter case, multiple regression, we regressed a single response

(dependent) variable on a number of explanatory (independent) variables. This is occasionally referred

to as “multivariate regression” which is all rather unfortunate. There isn’t an entirely clear “canon” of

what is a multivariate technique and what isn’t (one could argue that discriminant analysis involves a

single dependent variable). However, we are going to consider the simultaneous analysis of a number

of related variables. We may approach this in one of two ways. The first group of problems relates

to classification, where attention is focussed on individuals who are more alike. In unsupervised

classification (cluster analysis) we are concerned with a range of algorithms that at least try to

identify individuals who are more alike if not to distinguish clear groups of individuals. There are also

a wide range of scaling techniques which help us visualise these differences in lower dimensionality. In

supervised classification (discriminant analysis) we already have information on group membership,

and wish to develop rules from the data to classify future observations.

The other group of problems concerns inter-relationships between variables. Again, we may be

interested in lower dimension that help us visualise a given dataset. Alternatively, we may be interested

to see how one group of variables is correlated with another group of variables. Finally, we may be

interested in models for the interrelationships between variables.

This book is still a work in progress. Currently it contains material used as notes to support a

module at the University of Plymouth, where we work in conjunction with Johnson and Wichern

(1998). It covers a reasonably established range of multivariate techniques. There isn’t however a

clear “canon” of multivariate techniques, and some of the following books may also be of interest:

Other Introductory level books:

• Afifi and Clark (1990)

• Chatfield and Collins (1980)

• Dillon and Goldstein (1984)

• Everitt and Dunn (1991)
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• Flury and Riedwyl (1988)

• Johnson (1998)

• Kendall (1975)

• Hair et al. (1995)

• et al. (1998)

• Manly (1994)

Intermediate level books:

• Flury (1997) (My personal favourite)

• Gnanadesikan (1997)

• Harris (1985)

• Krzanowski (2000) ?Krzanowski and Marriott (1994b)

• Rencher (2002)

• Morrison (2005)

• Seber (1984)

• Timm (1975)

More advanced books:

• Anderson (1984)

• Bilodeau and Brenner (1999)

• Giri (2003)

• Mardia et al. (1979)

• Muirhead (York)

• Press (1982)

• Srivastava and Carter (1983)
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Some authors include contingency tables and log-linear modelling, others exclude Cluster analysis.

Given that multivariate methods are particularly common in applied areas such Ecology and Psychol-

ogy, there is further reading aimed at these subjects. It is quite possible that they will have very

readable descriptions of particular techniques.

Whilst this book is still an alpha-version work in progress, the aim is

(a) To cover a basic core of multivariate material in such a way that the core mathematical principles

are covered

(b) To provide access to current applications and developments

There is little material included yet for (b) (although sketch notes are being worked on). Comments,

feedback, corrections, co-authors are all welcome.
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Chapter 1

Multivariate data

1.1 The nature of multivariate data

We will attempt to clarify what we mean by multivariate analysis in the next section, however it is

worth noting that much of the data examined is observational rather than collected from designed

experiments. It is also apparent that much of the methodology has been developed outside the

statistical literature. Our primary interest will be in examining continuous data, the only exception

being categorical variables indicating group membership. This may be slightly limiting, but we will

also tend to rely on at least asymptotic approximations to (multivariate) normality, although these

are not always necessary for some techniques. The multivariate normal distribution is a fascinating

subject in its own right, and experience (supplemented with some brutal transformations) indicates

it is a reasonable basis for much work. Nevertheless, there is considerable interest in robust methods

at the moment and we refer to some of theseapproaches where possible.

1.2 The role of multivariate investigations

If we assume that linear and generalised linear models (and their descendants) are the mainstay

of statistical practice, there is a sense in which most statistical analysis is multivariate. However,

multivariate analysis has come to define a canon of methods which could be characterised by their

use of the dependence structure between a large number of variables. This canon has not yet been

firmly established; we attempt one definition of it here but omit some methods others would include

and include some methods others would omit. We would suggest that multivariate analysis has

either the units as a primary focus, or involves an assessment primarily of the variables. When

considering the units, we usually refer to techniques for classification; supervised classfication if we

1
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already understand the grouping and unsupervised classification where we have no a priori knowledge

of any groupings within our observed units. The multivariate methodology at the core of supervised

classification is discriminant analysis, although the machine learning community has developed many

other approaches to the same task. We will consider these techniques in the light of hypothesis

tests (Hotelling’s T2 test and Multivariate Analysis of Variance) which might help us determine

whether groupings within our data really are distinct. Unsupervised classification has traditionally

been associated with cluster analysis, a wide range of algorithms which attempt to find structure in

data. It is perhaps cluster analysis that is the most often contested component of our multivariate

canon - some authorities prefer approaches based less on automated algorithms and rather more on

statistical models and would argue for approaches such as mixture models and perhaps latent class

analysis. Given the reliance of cluster analysis on distance measures, we will also consider scaling

techniques as a method of visualising distnace.

In considering the relationship between variables, we will spend some time exploring principal com-

ponents, the most misused of all multivariate techniques which we consider primarily as a projection

technique. Some coverage will also be given to canonical correlation, an attempt to understand the

relationship between two sets of variables. Finallly, we will consider factor analysis, a much contested

technique in statistical circles but a much used one in applied settings.

In order to make some sense of these techniques, we will present a brief overview of linear algebra as

it pertains to the techniques we wish to explore, and will present some properties of the multivariate

normal distribution.

1.3 Summarising multivariate data (presenting data as a

matrix, mean vectors, covariance matrices

A number of datasets will be used thoughout the course, where these are not available within R itself

they will be posted in the student portal. For now, consider the USArrests data. This was published

by McNeil, D. R. (1977) “Interactive Data Analysis”, Wiley, and gives Arrest rates in 1973 (derived

from World Almanac and Book of facts 1975. and Urban population rates derived from Statistical

Abstracts of the United States 1975. We therefore consider data on “Murder” (arrests per 100,000),

Assault (arrests per 100,000), Rape (arrests per 100,000) and the percentage of the population living

in urban areas in each state.

1.3.1 Data display

A matrix is a convenient way of arranging such data.

c©Paul Hewson 2
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....................State Murder Assault Rape UrbanPop(%)

Alabama 13.2 236 21.2 58
Alaska 10.0 263 44.5 48
Arizona 8.1 294 31.0 80
Arkansas 8.8 190 19.5 50
California 9.0 276 40.6 91
Colorado 7.9 204 38.7 78
Connecticut 3.3 110 11.1 77
Delaware 5.9 238 15.8 72
Florida 15.4 335 31.9 70
Georgia 17.4 211 25.8 60
Hawaii 5.3 46 20.2 83
. . . . . . . . . . . .


Note in total that there are 50 states, (this display had been cut off after the 11th row, Hawaii), and

that there are four variables. Have a look at the USArrests data itself, and the associated helpfile:

> ?USArrests

> summary(USArrests)

> USArrests

1.4 Graphical and dynamic graphical methods

1.4.1 Chernoff’s Faces

One of the more charismatic ways of presenting multivariate data was proposed by Chernoff, H. (1973)

“The use of faces to represent statistical association”, JASA, 68, pp 361-368. (see www.wiwi.uni-

bielefeld.de/ wolf/ for the R code to create these). If you have loaded the mvmmisc.R file, you can

get these by typing:

> faces(USArrests}

However, there are more useful ways of investigating multivariate data. Slightly less wild, there are

star plots, which depict the data as beams. There are as many beams as there are variables, and the

length of the beam reflects the value of the variable.

> stars(USArrests)

c©Paul Hewson 3
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Figure 1.1: US Arrest data presented as Chernoff’s faces
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Figure 1.2: Scatter plot of Murder rate against Assault rate for US States in 1973

1.4.2 Scatterplots, pairwise scatterplots (draftsman plots)

Scatterplots should already be familiar as a means of exploring the relationship between two variables.

> attach(USArrests)
> plot(Murder, Assault)
> par(las = 1) ## Horizontal axis units on y axis
> plot(Murder, Assault, main = "Scatter plot", pch = 16)
> detach(USArrests)

However, we have more than two variables of interest. A set of pairwise scatterplots (sometimes

called a draftsman plot) may be of use:

> pairs(USArrests, pch = 16)

There other useful functions available. For example what does splom do? (Look up >?splom).

> library(lattice)
> splom(~USArrests)

1.4.3 Optional: 3d scatterplots

This bit is optional: feel free to have a go if you want to find out about installing R libraries.

There are facilities in R for making 3d effect scatterplots: you need to download and install an

c©Paul Hewson 5
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Figure 1.3: Pairwise scatter plots for three US arrest rates and percent of population living in
Urban areas

additional library, and when you load the library you need to tell R where to find it. It is just possible

to envisage the three dimensions on the printed page.

> install.packages("scatterplot3d", lib = "u:/STAT3401/mvm")
> library(scatterplot3d, lib.loc = "u:/STAT3401/mvm/")
> data(trees)
> s3d <- scatterplot3d(USArrests[,-3], type="h", highlight.3d=TRUE,

angle=55, scale.y=0.7, pch=16, main = "USArrests")

1.4.4 Other methods

Other useful methods will be considered in the lab-session, such as glyphs and arrows. For example

there is a rather simple glyph plot available here:

glyphs(Assault, Murder, Rape, UrbanPop)

The idea of the glyph is that two of the variables are represented as the x and y co-ordinates (as

usual), but a futher variable can be represented by the angle of the arrow, and a fourth variable as

the length of the arrow.

Interactive graphics offer these facilities, and many more. There are programs such as GGobi

(www.ggobi.org) which allow extensive multivariate investigation such as linked / brushed plots

and “grand tours”.
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scatterplot3d Black Cherry Trees
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Figure 1.4: 3d scatterplot of US arrests

Profiles

Just as much ingenuity was extended before modern colour systems. Another approach is Andrews

Curves, described as a function between −π < t < π

fx(t) = x1/
√

2 + x2 sin 2 + x3 cos t+ x4 sin 2t+ x5 cos 2t+ . . .

You may like to consider at some stage (perhaps not today) how you could write an R function that

plots Andrew’s curves? (there’s a function in the mvmmisc.R file).

Try creating a matrix of data values from Fisher’s Iris data, and a column of species names. Then

call up the andrews curves function:

> iris.data <- iris[,-5]
> iris.species <- iris[,5]
> andrews.curves(iris.data, iris.species)

However, a simpler profile plots is available from the MASS library:

> library(MASS)
> parcoord(USArrests)

The idea is that not only are the values of each individual variable represented, but also the patterns

of different individuals can be seen.
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Figure 1.5: Andrews Curves of US arrests data

If you now try looking at Fisher’s Iris data (the [,-5] drops the species column which is a factor and

cannot be plotted)

> parcoord(iris[,-5])

You can also tell parcoord() to colour the profiles in according to the species.

> parcoord(iris[,-5], col = as.numeric(iris[,5]))

1.5 Animated exploration

This shows an rgl with ellipsoids.

You can use the help system to find more information on the datasets (e.g. type > ?longley).
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Figure 1.6: rgl animated view of first three variables of flea beetle data
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Chapter 2

Matrix manipulation

It is convenient to represent multivariate data by means of n×p matrix such as X. We could consider

the USArrests data in this way. We follow the convention of using n to denote the number of rows

of individuals who have been observed, and p to denote the number of columns (variables). We will

formalise some some aspects from linear algebra that will be important in understanding multivariate

analysis. These are very brief notes, there is a wealth of readable material on linear algebra as well

as material specific for statistical applications such as Healy (2000) and Schott (1997). There is also

an interesting presentation from a more geometric perspective in Wickens (1995) which supplements

more algebraic presentations of matrix concepts.

2.1 Vectors

Consider a vector x ∈ Rp, by convention this is thought of as a column vector:

x =


x1

x2

...

xn



A row vector such as
(
x1 x2 . . . xn

)
will be denoted by xT .

A vector is a basic unit of numbers within R , but the R objects don’t entirely conform to a formal
mathematical definition (look at the way vecctor recycling works for example) and some caution is
needed. The following instruction:

11
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> x <- c(3.289, 4.700, 10.400)

assigns the values to the object x creating the following R vector:

x =

 3.289
4.700

10.400


The default print method in R gives these in the most compact form:

> x
[1] [1] 3.289 4.700 10.400

but forcing this into a matrix object with as.matrix() confirms its dimensionality:

> as.matrix(x)
[,1]

[1,] 3.289
[2,] 4.700
[3,] 10.400

and taking the transpose of this vector using t() does produce a row vector as expected:

> t(x)
[,1] [,2] [,3]

[1,] 3.289 4.7 10.4

2.1.1 Vector multiplication; the inner product

We first define the inner product of two vectors. For x,y ∈ Rp this gives a scalar:

〈x,y〉 = xTy =
p∑
j=1

xjyj = yTx

In other words, we find the product of corresponding elements of each vector (the product of the first

element of the row vector and the first element of the column vector), and then find the sum of all

these products:
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(
x1 x2 . . . xn

)


y1

y2

. . .

yn

 = x1y1 + x2y2 + . . .+ xnyn︸ ︷︷ ︸
One number; the sum of all the individual products

To give a simple example, with xT = (4, 1, 3, 2) and y =


1
−1

3
0

 we have:

(
4 1 3 2

)
×


1
−1

3
0

 = 4× 1 + 1× (−1) + 3× 3 + 2× 0︸ ︷︷ ︸ = 12

In R the inner product can be simply obtained using %*%, for example:

> x <- c(4, 1, 3, 2)
> y <- c(1, -1, 3, 0)
> t(x) %*% y

[,1]
[1,] 12

which returns the answer as a scalar. Note that using * without the enclosing %% yields a vector of

the same length of x and y where each element is the product of the corresponding elements of x

and y, and may do other unexpected things using vector recycling.

2.1.2 Outer product

Note that if xTy is the inner product of two vectors x and y, the outer product is given by xyT .

For vectors, it can be computed by x %*% t(y); but as we will find later, outer product operations

are defined for arrays of more than one dimension as x %o% y and outer(x,y)

2.1.3 Vector length

An important concept is the length of a vector, also known as the Euclidean norm or the modulus.

It is based on a geometric idea and expresses the distance of a given vector from the origin:
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|x| = 〈x,x〉1/2 =

 p∑
j=1

x2
j

1/2

A normalised vector is one scaled to have unit length, for the vector x this can be found by taking
1
|x|x which is trivial in R :

> z <- x / sqrt(t(x) %*% x)
> z
[1] 0.7302967 0.1825742 0.5477226 0.3651484
> t(z) %*% z ## check the length of the normalised vector

[,1]
[1,] 1

2.1.4 Orthogonality

Two vectors x and y, of order k × 1 are orthogonal if xy = 0. Furthermore, if two vectors x and y

are orthogonal and of unit length, i.e. if xy = 0, xTx = 1 and yTy = 1 then they are orthonormal.

More formally, a set {ei} of vectors in Rp is orthonormal if

eTi ej = δij =

{
0, i 6= j

1, i = j

Where δij is referred to as the Kronecker delta.

2.1.5 Cauchy-Schwartz Inequality

〈x,y〉 ≤ |x| |y|, for all x,y ∈ R

with equality if and only if x = λy for some λ ∈ R. Proof of this inequality is given in many

multivariate textbooks such as Bilodeau and Brenner (1999). We won’t use this result itself, but will

actually consider the extended Cauchy-Scwartz inequality later.

2.1.6 Angle between vectors

The cosine of the angle between two vectors is given by:

cos(θ) =
〈x,y〉
|x| |y|
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It can be conveniently calculated in R :

> cor(x,y)

2.2 Matrices

We now consider some basic properties of matrices, and consider some basic operations on them that

will become essential as we progress. Consider the data matrix X, containing the USArrests data,

a 50× 4 matrix, i.e. with n = 50 rows refering to States and p = 4 columns refering to the variables

measuring different arrest rates. To indicate the order of this matrix it could be described fully as

X50,4; this convention is followed in R as a call to dim(USArrests) will confirm. Each element in

this matrix can be denoted by xij where i denotes the particular row (here state) and j the particular

column (here arrest rate). Hence x6 3 = 38.7.

In order to create a matrix in R the dimension has to be specified in the call to matrix(). It should
be very carefully noted that the default is to fill a matrix by columns, as indicated here:

> mydata <- c(1,2,3,4,5,6)
> A <- matrix(mydata, 3,2)
> A

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

If this is not convenient, R can be persuaded to fill matrices by rows rather than by columns by

including the argument byrow = TRUE in the call to matrix. It is also possible to coerce other

objects (such as data frames) to a matrix using as.matrix() and data.matrix(); the former

producing a character matrix if there are any non-numeric variables present, the latter coercing

everything to a numeric format.

2.2.1 Transposing matrices

Transposing matrices simply involves turning the first column into the first row. A transposed matrix

is denoted by a superscripted T , in other words AT is the transpose of A.

If A =

 3 1
5 6
4 4

 then AT =

(
3 5 4
1 6 4

)
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As with vectors, transposing matrices in R simply requires a call to t(), the dimensions can be

checked with dim().

> Atrans <- t(A)
> Atrans

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
> dim(Atrans)
[1] 2 3

2.2.2 Some special matrices

Symmetric matrices

We mention a few “special” matrix forms that will be encountered. We firstly note that symmetric

matrices are symmetric around the diagonal i = j. For matrix A, it is symmetric whenever aij = aji.

The correlation matrix and the variance-covariance matrix are the most common symmetric matrices

we will encounter, we will look at them in more detail later, for now note that we can obtain the

(symmetric) correlation matrix as follows:

> cor(USArrests)

Murder Assault UrbanPop Rape

Murder 1.00000000 0.8018733 0.06957262 0.5635788

Assault 0.80187331 1.0000000 0.25887170 0.6652412

UrbanPop 0.06957262 0.2588717 1.00000000 0.4113412

Rape 0.56357883 0.6652412 0.41134124 1.0000000

Diagonal Matrices

Given it’s name, it is perhaps obvious that a diagonal matrix has elements on the diagonal (where

i = j) and zero elsewhere (where i 6= j). For example, the matrix A given as follows:

A =

 13 0 0
0 27 0
0 0 16


is a diagonal matrix. To save paper and ink, A can also be written as:

A = diag
(

13 27 16
)
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It is worth noting that the diag() command in R , as shown below, lets you both overwrite the
diagonal elements of matrix and extract the diagonal elements depending how it is used:

> mydataD <- c(13, 27, 16)
> B <- diag(mydataD)
> B

[,1] [,2] [,3]
[1,] 13 0 0
[2,] 0 27 0
[3,] 0 0 16
> diag(B)
[1] 13 27 16

It is also worth noting that when “overwriting”, the size of the matrix to be over-written can be

inferred from the dimensionality of diagonal.

Identity Matrix

One special diagonal matrix is the identity matrix, which has a value of 1 at each position on the

diagonal and 0 elsewhere. Here, all we need to know is the size. So I4 tells us that we have the

following matrix:

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


This can be created in a variety of ways in R , such as I4 <- diag(rep(1,4))

Ones

We also need to define a vector of ones; 1p, a p× 1 matrix containing only the value 1. There is no
inbuilt function in R to create this vector, it is easily added:

> ones <- function(p){
Ones <- matrix(1,p,1)
return(Ones)

}
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Zero matrix

Finally, 0 denotes the zero matrix, a matrix of zeros. Unlike the previously mentioned matrices this

matrix can be any shape you want. So, for example:

02 3 =

(
0 0 0
0 0 0

)

2.2.3 Equality and addition

A little more care is needed in defining basic mathematical operations on matrices. Considering the

two matrices A and B, we consider their equality A = B if any only if:

• A and B have the same size, and

• the ijth element of A is equal to the ijth element of A for all 1 ≤ i ≤ r and 1 ≤ j ≤ n

A consequence of this is that the following two matrices are equal: 138.8149 187.52 394.86
187.5200 267.00 559.00
394.8600 559.00 1200.00

 =

 138.8149 187.52 394.86
187.5200 267.00 559.00
394.8600 559.00 1200.00


(which seems like an obvious and fussy thing to say) but the following two zero matrices are not

equal:  0 0 0
0 0 0
0 0 0

 6= ( 0 0 0
0 0 0

)

Adding and subtracting are fairly straightforward. Provided A and A have the same size, A +B

and A −B are defined by each of these operations being carried out on individual elements of the

matrix. For example:(
1 3 5
2 4 6

)
+

(
0 2 3
−1 −2 −3

)
=

(
1 + 0 3 + 2 5 + 3

2 +−1 4 +−2 6 +−3

)
=

(
1 5 8
1 2 3

)

and (
1 3 5
2 4 6

)
−

(
0 2 3
−1 −2 −3

)
=

(
1 1 2
3 6 9

)

Addition and subtraction are straightforward enough in R :
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> A <- matrix(c(1,2,3,4,5,6),2,3)
> A

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
> B <- matrix(c(0,-1,2,-2,3,-3),2,3)
> B

[,1] [,2] [,3]
[1,] 0 2 3
[2,] -1 -2 -3
> A + B

[,1] [,2] [,3]
[1,] 1 5 8
[2,] 1 2 3
> A - B

[,1] [,2] [,3]
[1,] 1 1 2
[2,] 3 6 9

Matrix addition follows all the normal arithmetic rules, i.e.

Commutative law A + B = B + A

Associative law A + (B + C) = (A + B) + C

Matrix multiplication however follows vector multiplication and therefore does not follow the same

rules as basic multiplication.

2.2.4 Multiplication

A scalar is a matrix with just one row and one column, i.e. a single number. In other words, 0.4 could

be a scalar or a 1 × 1 matrix. It’s worth re-capping that multiplication by a scalar is easy enough,

we just multiply every element in the matrix by the scalar.

So if k = 0.4, and

A =

(
1 5 8
1 2 3

)

we can calculate kA as:

kA = 0.4×

(
1 5 8
1 2 3

)
=

(
0.4 2 3.2
0.4 0.8 1.6

)
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When multiplying two matrices, it should be noted first that they must be conformable. The number

of columns in the first matrix must match the number of rows in the second. As matrix multiplication

has been defined, the result will be a matrix with as many rows as the first matrix and as many columns

as the second. For example, with our vectors above in section 2.1.1 , we had A1 4 ×B4 1 = C1 1.

More generally multiplication proceeds with matrix size as follows: Am n ×Bn p = Cm p.

It may help to think about the vector operations and extend them to matrices. There are other

ways of thinking about matrix multiplication, most multivariate text books have an appendix on

matrix algebra and there are vast tomes available covering introductory linear algebra. However, one

explanation of matrix multiplication is given here. We want to find A×B where

A =

 1 5
1 2
3 8

 and B =

(
1 4
3 2

)

If A is of size m× n it could be considered as consisting of a row of vectors aT1 ,a
T
1 , . . . ,a

T
m, which

in this case corresponds to aT1 = (1, 5),aT2 = (1, 2) and aT3 = (3, 8). Likewise, we can consider B

consisting of b1 =

(
1
4

)
and b1 =

(
3
2

)
. In other words, we are trying to multiply together:

A =

 aT1

aT2

aT3

 and B =
(
b1 b2

)

We can define the multiplication operation for matrices generally as:

AB =


aT1

aT2

. . .

aTm


(
b1 b2 . . . bp

)
=


aT1 b1 aT1 b2 . . . aT1 bp

aT2 b1 aT2 b2 . . . aT1 bp
...

...
...

aT3 b1 aT3 b2 . . . aTmbp



In other words, we need to multiply row i of A by column j of B to give element ij of the result.

For example, note that aT1 b1 =
(

1 5
)( 1

4

)
= 1× 1 + 5× 3 = 16. Carrying out this operation

on our matrices above gives:

AB =

 1 5
1 2
3 8

( 1 4
3 2

)
=

 16 14
7 8

27 28
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In R , we only need to use the %*% operator to ensure we are getting matrix multiplication:

> A <- matrix(c(1,1,3,5,2,8),3,2)
> A

[,1] [,2]
[1,] 1 5
[2,] 1 2
[3,] 3 8
> B <- matrix(c(1,3,4,2),2,2)
> B

[,1] [,2]
[1,] 1 4
[2,] 3 2
> A %*% B

[,1] [,2]
[1,] 16 14
[2,] 7 8
[3,] 27 28

Note that you can’t multiply non-conformable matrices; this is one place in R where you get a clearly
informative error message:

> B %*% A
Error in B %*% A : non-conformable arguments

It is particularly important to use the correct matrix multiplication argument. Depending on the ma-
trices you are working with (if they both have the same dimensions), using the usual * multiplication
operator will give you the Hadamard product, the element by element product of the two matrices
which is rarely what you want:

> C <- matrix(c(1,1,3,5),2,2)
> C %*% B ## correct call for matrix multiplication

[,1] [,2]
[1,] 10 10
[2,] 16 14
> C * B ## Hadamard Product!!!

[,1] [,2]
[1,] 1 12
[2,] 3 10

We saw earlier that matrix addition was commutative and associative. But as you can imagine, given

the need for comformability some differences may be anticipated between conventional multiplication

and matrix multiplication. Generally speaking, matrix multiplication is not commutative (you may

like to think of exceptions):
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(non-commutative) A×B 6= B×A

Associative law A× (B×C) = (A×B)×C

And the distributive laws of multiplication over addition apply as much to matrix as conventional

multiplication:

A× (B + C) = (A×B) + (A×C)

(A + B)×C = (A×C) + (B×C)

But there are a few pitfalls if we start working with transposes. Whilst

(A + B)T = AT + BT

note that:

(A×B)T = BT ×AT

Trace of a matrix

The trace of a matrix is the quite simply the sum of its diagonal elements. This is an interesting

concept in many ways, but it turns out in one specific context, when applied to the covariance matrix,

this has an interpretation as the total sample variance. There is no inbuilt function in R to calculate

this value, you need to use sum(diag(X))

Note that if you have two conformable matrices A e.g.

 2 5
0 7
4 3

 and B e.g.

(
4 2 1
6 3 2

)
,

trace(AB) = trace(BA)

2.3 Crossproduct matrix

Given the data matrix X, the crossproduct, sometimes more fully referred to as the “sum of squares
and crossproducts” matrix is given by XTX. The diagonals of this matrix are clearly the sum
of squares of each column. Whilst this can be computed in R using X %*% t(X) there are some
computational advantages in using the dedicated function crossprod(X) For example, coercing the
USArrests data to a matrix we can obtain the sum of squares and crossproducts matrix for these
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data as follows:

B <- crossprod(as.matrix(USArrests))

So if X is the USArrests data,

XTX =


3962.20 80756.00 25736.20 9394.32

80756.00 1798262.00 574882.00 206723.00
25736.20 574882.00 225041.00 72309.90
9394.32 206723.00 72309.90 26838.62


If we define some sample estimators as follows:

x̄ =
1
n

n∑
i=1

xi =
1
n
XT1 (2.1)

So for example we can find the sample mean for the USArrests data as:

> n <- dim(USArrests)[1] ## extract n; here 50
> one <- ones(n)
> 1/n * t(USArrests) %*% one
> mean(USArrests) ## check results against in-built function

We can use matrix algebra to obtain an unbiased estimate of the sample covariance matrix S as

follows:

S =
1

n− 1

n∑
i=1

(xi − x̄)T (xi − x̄)

=
n∑
i=1

xi

n∑
i=1

xTi − x̄x̄T

=
1

n− 1
XTX − x̄x̄T

=
1

n− 1

(
XTX − 1

n
XT11TX

)

From this, we can define the centering matrix H:

H = I − 1
n

11T

and so arrive at an alternative expression for S using this centering matrix:
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S =
1

n− 1
XTHX (2.2)

Idempotent matrices

It may be noted that H is idempotent, i.e. H = HT and H = H2.

In calculating H in R it might be clearer to set the steps out in a function:

centering <- function(n){
I.mat <- diag(rep(1, n))
Right.mat <- 1/n * ones(n) %*% t(ones(n))
H.mat <- I.mat - Right.mat
return(H.mat)
}

And our matrix method for finding an estimate of the sample covariance using this centering procedure
can also be set out in a function:

S.mat <- function(X, H){
n <- dim(X)[1] ## number of rows
H.mat <- centering(n)
S <- 1/(n-1) * t(X) %*% H.mat %*% X
return(S)
}

So, to estimate the sample covariance with this function we need to make sure our data are in the
form of matrix. We also compare the results with the inbuilt function cov():

X <- as.matrix(USArrests)
S.mat(X)
cov(USArrests)

It may be worth clarifying the information contained in the matrix we have just obtained. The

covariance matrix (more fully referred to as the variance-covariance matrix) contains information on

the variance of each of the variables as well as information on pairwise covariance. We will formalise

our understanding of estimators later, but for now note that it could be considered as an estimate of:

Σ = V


X1

X2

X3

X4

 =


var(X1) cov(X1, X2) cov(X1, X3) cov(X1, X4)
cov(X2, X1) var(X2) cov(X2, X3) cov(X2, X4)
cov(X3, X1) cov(X3, X2) var(X3) cov(X3, X4)
cov(X4, X1) cov(X4, X2) cov(X4, X3) var(X4)


c©Paul Hewson 24



Multivariate Statistics Chapter 2

For the US Arrests data, as we have seen:

S =


18.97 291.06 4.39 22.99

291.06 6945.17 312.28 519.27
4.39 312.28 209.52 55.77

22.99 519.27 55.77 87.73



2.3.1 Powers of matrices

We set out some definitions of matrix powers as they will come in useful later.For all matrices, we

define A0 = I, the identity matrix and A1 = A. We will next define A2 = AA (if you think

about it a bit you could see that A must be a square matrix, otherwise we couldn’t carry out this

multiplication). Using these definitions for matrix powers means that all the normal power arithmetic

applies. For example, Am × An = An × Am = Am+n. If you look closely, you can also see

that the powers of a matrix are commutative which means that we can do fairly standard algebraic

factorisation. For example:

I−A2 = (I + A)(I−A)

which is a result we can use later.

2.3.2 Determinants

The determinant of a square p× p matrix A is denoted as |A|. Finding the determinant of a 2× 2
matrix is easy:

|A| = det

(
a11 a21

a12 a22

)
= a11a22 − a12a21

For matrices of order > 2, partitioning the matrix into “minors” and “cofactors” is necessary. Consider

the following 3× 3 matrix.

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a13



Any element aij of this matrix has a corresponding square matrix formed by eliminating the row (i)

and column (j) containing aij . So if we were considering a11, we would be interested in the square

matrix A−11 =

(
a22 a23

a32 a13

)
. The determinant of this reduced matrix, |A−11| is called the minor
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of a11, and the product cij = (−1)i+j |A−ij | = −11+1|A−11| = |A11| is called the cofactor of a11.

The determinant of A can be expressed as the sum of minors and cofactors of any row or column of

A.

Thus:

|A| = Σpj=1aijcij

and as can be seen, this can get terribly recursive if you’re working by hand! Working an example

through:

IfA =

 3 4 6
1 2 3
5 7 9



Then |A|= ai1ci1 + ai2ci2 + ai3ci3. If i = 1 then:

c11 = (−1)1+1

∣∣∣∣∣ 2 3
7 9

∣∣∣∣∣ = (18− 21) = −3

c11 = (−1)1+2

∣∣∣∣∣ 1 3
5 9

∣∣∣∣∣ = −(9− 15) = 6

c11 = (−1)1+1

∣∣∣∣∣ 1 2
5 7

∣∣∣∣∣ = (7− 10) = −3

So |A| = 3(−3) + 4(6) + 6(−3) = −3.

In R , det() tries to find the determinant of a matrix.

> D <- matrix(c(5,3,9,6),2,2)
> D

[,1] [,2]
[1,] 5 9
[2,] 3 6
> det(D)
[1] 3
> E <- matrix(c(1,2,3,6),2,2)
> E

[,1] [,2]
[1,] 1 3
[2,] 2 6
> det(E)
[1] 0

Some useful properties of determinants:
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• The determinant of a diagonal matrix (or a triangular matrix for that matter) is the product of

the diagonal elements. (Why?).

• For any scalar k, |kA| = kn|A|, where A has size n× n.

• If two rows or columns of a matrix are interchanged, the sign of the determinant changes.

• If two rows or columns are equal or proportional (see material on rank later), the determinant

is zero.

• The determinant is unchanged by adding a multiple of some column (row) to any other column

(row).

• If all the elements or a column / row are zero then the determinant is zero.

• If two n× n matrices are denoted by A and B, then |AB| = |A|.|B|.

The determinant of a variance-covariance has a rather challenging interpretation as the generalised

variance.

2.3.3 Rank of a matrix

Rank denotes the number of linearly independent rows or columns. For example:

 1 1 1
2 5 −1
0 1 −1


This matrix has dimension 3× 3, but only has rank 2. The second column a2 can be found from the

other two columns as a2 = 2a1 − a3.

If all the rows and columns of a square matrix A are linearly independent it is said to be of full rank

and non-singular.

If A is singular, then |A| = 0.

2.4 Matrix inversion

If A is a non-singular p×p matrix, then there is a unique matrix B such that AB = BA = I, where

I is the identity matrix given earlier. In this case, B is the inverse of A, and denoted A−1.
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Inversion is quite straightforward for a 2× 2 matrix.

If A =

(
a11 a12

a21 a22

)
then A−1 =

1
|A|

(
a22 −a12

−a21 a11

)

More generally for a matrix of order n× n, the (j,k)th entry of A−1 is given by:

[
|A−jk|
|A|

](−1)j+k

,

where A−jk is the matrix formed by deleting the jth row and kth column of A. Note that a singular

matrix has no inverse since its determinant is 0.

In R , we use solve() to invert a matrix (or solve a system of equations if you have a second matrix

in the function call, if we don’t specify a second matrix R assumes we want to solve against the

identity matrix, which mean finding the inverse).

> D <- matrix(c(5,3,9,6),2,2)
> solve(D)

[,1] [,2]
[1,] 2 -3.000000
[2,] -1 1.666667

Some properties of inverses:

• The inverse of a symmetric matrix is also symmetric.

• The inverse of the transpose of A is the transpose of A−1.

• The inverse of the product of several square matrices is a little more subtle: (ABC)−1 =
C−1B−1A−1. If c is a non-zero scalar then (cA)−1 = c−1A−1.

• The inverse of a diagonal matrix is really easy - the reciprocals of the original elements.

2.5 Eigen values and eigen vectors

These decompositions will form the core of at least half our multivariate methods (although we need

to mention at some point that we actually tend to use the singular value decomposition as a means

of getting to these values). If A is a square p×p matrix, the eigenvalues (latent roots, characteristic

roots) are the roots of the equation:
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|A− λI| = 0

This (characteristic) equation is a polynomial of degree p in λ. The roots, the eigenvalues of A are

denoted by λ1, λ2, . . . , λp. For each eigen value λi there is a corresponding eigen vector ei which

can be found by solving:

(A− λiI)ei = 0

There are many solutions for ei. For our (statistical) purposes, we usually set it to have length 1,

i.e. we obtain a normalised eigenvector for λi by ai = ei√
ei
T ei

We pause to mention a couple of results that will be explored in much more detail later:

(a) trace(A) = Σpi=1λi

(b) |A| =
∏p
i=1 λi

Also, if A is symmetric:

(c) The normalised eigenvectors corresponding to unequal eigenvalues are orthonormal (this is a

bit of circular definition, if the eigenvalues are equal the corresponding eigenvectors are not

unique, and one “fix” is to choose orthonormal eigenvectors).

(d) Correlation and covariance matrices: are symmetric positive definite (or semi-definite). If such

a matrix is of full rank p then all the eigen values are positive. If the matrix is of rank m < p

then there will be m positive eigenvalues and p−m zero eigenvalues.

We will look at the eigen() function in R to carry out these decompositions later.

2.6 Singular Value Decomposition

To be added.
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2.7 Extended Cauchy-Schwarz Inequality

We met the rather amazing Cauchy Schwartz inequality earlier in section 2.1.5. Beautiful as this

result may be, we actually need to use the extended Cauchy Schwartz inequality. For any non-zero

vectors x ∈ R and y ∈ R, with any positive definite p× p matrix S:

〈x,y〉2 ≤ (xTSx)(yTS−1y), for all x,y ∈ R

with equality if and only if x = λSy for some λ ∈ R. Proofs are available for this result (Flury,

1997, page 291). We will use this result when developing methods for discriminant analysis.

2.8 Partitioning

Finally, note that we can partition a large matrix into smaller ones: 2 5 4

0 7 8
4 3 4



So we could work with submatrices such as

(
0 7
4 3

)
.

e.g. If X was partitioned as

(
X1

X2

)
and

(
Y1 Y2 Y3

)
then:

XY =

(
X1Y1 X1Y2 X1Y3

X2Y1 X2Y2 X2Y3

)

2.9 Exercises

1. Which of the following are orthogonal to each other:

x =


1
−2

3
−4

y =


6
7
1
−2

 z =


5
−4

5
7


Normalise each of the two orthogonal vectors.
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2. Find vectors which are orthogonal to:

u =

(
1
3

)
v =


2
4
−1

2


3. Find vectors which are orthonormal to:

x =


1√
2

0
− 1√

2

y =


1
2
1
6
1
6
5
6


4. What are the determinants of:

(a)

(
1 3
6 4

)
(b)

 3 1 6
7 4 5
2 −7 1


5. Invert the following matrices:

(a)

 3 0 0
0 4 0
0 0 9

 (b)

(
2 3
1 5

)
(c)

 3 2 −1
1 4 7
0 4 2

 (d)

 1 1 1
2 5 −1
3 1 −1


6. Find eigenvalues and corresponding eigen vectors for the following matrices:

a =

(
1 4
2 3

)
b =

(
1 2
3 2

)
c =

(
2 −2
−2 5

)
d =

(
2 2
2 5

)

e =

 1 4 0
4 1 0
0 0 1

f =

 4 0 0
0 9 0
0 0 1

 g =

 13 −4 2
−4 13 −2

2 −2 10


7. Convert the following covariance matrix (you’ve seen it earlier) to a correlation matrix, calculate

the eigenvalues and eigenvectors and verify that the eigen vectors are orthogonal.

g =

 13 −4 2
−4 13 −2

2 −2 10
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Chapter 3

Measures of distance

We take a little time out here to consider some ideas regarding multivariate distance and introduce

some properties of multivariate distance matrices. These concepts are most obviously relevant when

considering multivariate technique such as cluster analysis and scaling methods, where we wish

to examine the difference between individuals. In doing this, we need to find some definition of

the concept of “difference between individuals”, and will therefore consider a range of proximity

measures. We also provide some discussion of difference between variables. These are currently

important concepts in bio-informatic applications but earlier work in multivariate statistics involved

consideration of variables which may be carrying similar information where cluster analysis of variables

could be used as a preliminary data analytical exercise. We start by considering one particular measure,

the Mahalanobis distance.

3.1 Mahalanobis Distance

The Mahalanobis distance has an important role in multivariate theory, albeit this is often an implied

consideration rather than an explicit one. For example, development of forms of discriminant analysis

considered in chapter 8 involve this measure. There are however a number of important distributional

properties of the Mahalanobis distance which could be more used in determining multivariate nor-

mality. It should be noted that use of standard distance requires a parametric view of the world, and

in particular it is most applicable for symmetric distributions. We follow Flury (1997) in providing

the following exposition of the standard distance.

Firstly, if we consider the univariate standard distance we see that this is a measure of the absolute

distance between two observations in units of their standard deviation. Given X, a random variable

with mean µ and variance σ2 > 0, the standard distance, between two numbers x1 and x2 is diven
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by:

d(x1, x2) =
|x1 − x2|

σ

Where σ = 1, we will find that this standard distance is the same as the Euclidean distance given

later in section 3.3.1. The standardisation implied in this measure is important, for example, as

will be noted later it is invariant under non-degenerate linear transformations. A univariate example

would be given by considering Y = αX + b, where α 6= 0 and β are fixed constants. Here, we can

transform x1 and x2 to yi = αxi + β, i = 1, 2 and then considering the standard distance between

these two transformed variables we find:

d(y1, y2) =
|y1 − y2|√
var(Y )

=
|α(x1 − x2|)√

α2σ2

= d(x1, x2)

The univariate standard distance has a straightforward generalisation to a multivariate setting. Con-

sidering now two vectors x1 and x2, with a common covariance matrix Σ the multivariate standard

distance is given by:

d(x1,x2) =
√

(x1 − x2)TΣ−1(x1,x2)

Depending on whichever textbook is consulted, this multivariate standard distance may be referred

to as the statistical distance, the elliptical distance or the Mahalanobis distance. Flury (1997) notes

that the squared Mahalanobis distance d(x1,x2)2 is sometimes simply referred to as the Mahalanobis

distance, although it is not a valid distance measure. We refer here to the multivariate standard

distance, d(x1,x2) as the Mahalanobis distance, and where necessary, to d(x1,x2)2 as the squared

Mahalanobis distance.

It is worth noting that this measure was originally proposed by Mahalanobis (1930) as a measure of

distance between two populations:

∆(µ1,µ2) =
√

(µ1 − µ2)TΣ−1(µ1,µ2)

which has an obvious sample analogue as the distance between two mean vectors:
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∆(x̄1, x̄2) =
√

(x̄1 − x̄2)TS−1(x̄1, x̄2)

where S is the pooled estimate of Σ given by S = [(n1 − 1)S1 + (n2 − 1)S2] /(n1 + n2 − 2).

Here, we are going to consider the distance between x, a vector of random variables with mean µ

and covariance matrix Σ and its mean:

∆(x,µ) =
√

(x− µ)TΣ−1(x,µ)

and clearly we can find a sample analogue by estimating µ by x̂ and Σ by S = 1
n−1X

TX. We

note that in R, the mahalanobis() function is intended to returns the squared multivariate distance

between a matrix X and a mean vector µ, given a user-supplied covariance matrix Σ, i.e. we wish

to calculate:

d(xi, µ̂)2 = (xi − µ̂)T Σ̂
−1

(xi − µ̂)

We could also consider the Mahalanobis angle θ between two vectors at the origin:

cos θ =
xT1 S

−1x2

d(x1,0)d(x2,0)

This can be extracted from within R using the following:

mahangle <- function(x1, x2, covmat){

zero <- vector("numeric", length(x1) )

num <- t(x1) %*% solve(covmat) %*% x2

denom <- sqrt(mahalanobis(x1, zero, covmat)) *

sqrt(mahalanobis(x2, zero, covmat))

angle <- acos(num / denom)

return(angle)

}

3.1.1 Distributional properties of the Mahalanobis distance

Remembering that where z1, . . . , zp ∼ N(0, 1), if we form y =
∑p
j=1 z

2
j then y ∼ χ2

p (Bilodeau and

Brenner, 1999); for multivariate normal data, with p variables, the squared Mahalanobis distance can

be considered against a χ2
p distribution:
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Figure 3.1: QQ plot of squared Mahalahobis distance plotted against χ2 distribution

(xi − µ̂)T Σ̂
−1

(xi − µ̂) = zTz ∼ χ2
p (3.1)

This immediately affords one method for assessing multivariate normality, quantiles of the Maha-

lanobis distance of xi, i = 1, . . . , n with respect to µ can be plotted against quantiles of the χ2
p

distribution as an assessment of multivariate normality.

We can also define contours as a set of points of equal probility in terms of equal Mahalanobis

distance:

(xi − µ̂)T Σ̂
−1

(xi − µ̂) = zTz = c2 (3.2)

for any constant c > 0. We will also find later in section 9.23.3 that the squared Mahalanobis

distance is equivalent to the sum of squared prinicipal component scores. However, this chapter

on distance is implicitly geared towards presentations in the chapter 4 on cluster analysis as well

as chapter 5 on scaling methods. In that context it is worth noting that Mahalanobis distance is

rarely used in cluster analysis, certainly Kendall (1975) points out its limitations in this context.

Sporadic reports in the literature include Maronna and Jacovkis (1974) who report use of a particular

clustering algorithm, k-means, with the Mahalanobis distance whereas Gnanadesikan et al. (1993)

use it with hierarchical cluster analysis. This latter work may illustrate one of the difficulties in

using the Mahalanobis distance in the requirement to assume a common covariance. However, whilst

not proposing it’s use in an automatic clustering algorithm, Atkinson et al. (2004) report use of

Mahalanobis distance within the forward search to reliably identify subgroups within the data. They
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propose a small modification to the Mahalanobis distance for use in cluster analysis as follows. The

Mahalanobis distance is multiplied by (|Σ̂
−1

k |1/2)r for group k. Where r = 0 we have the usual

distance, when r = 1 we have what they call the standardised Mahalanobis distance which eliminates

the different variance between groups.

Having provided an overview of one distributionally important distance measure, before considering

further measures we consider a few definitions. Flury (1997) notes that the squared Mahalanobis

distance does not satisfy the axioms of distance.

3.2 Definitions

We now formalise our idea of a proximity measure. This term encapsulates both similarity and disssim-

ilarity measures which have the obvious interpretation (measuring similarity and dissimilarity between

entities), and can be found from each other by means of an appropriate monotonic transformation.

We usually assume that these measures are symmetic.

A distance can be defined as a function d(·) that satisfies the following properties:

(1) Non-negative, that is d(x,y) ≥ 0 for all x,y ∈ Rp and

(2) Identified, that is d(x,x) = 0 for all x ∈ Rp;

(3) Symmetric, that is d(x,y) = d(y,x) for all x,y ∈ R;

In addition to satisfying these three properties, a metric also satisfies the following two properties:

(4) Definite, that is d(x,y) = 0 if and only if x = y for all x,y ∈ Rp;

(5) Triange inequality d(x,y) + d(y, z) ≥ d(x, z) for all x,y, z ∈ R

It is worth noting that it is possible to compute a similarity measure, often denoted s, where 0 ≤
S ≤ 1. A similarity function s(·, ·) satisfies (1) non-negativity s(x,y) ≥ 0, (2) symmetry S(x,y) =
s(y,x) as well as:

(3) s(x,y) increases in a monotone fashion as x and y become more similar. A dissimilarity

function satisfies the first two but clearly 3 is reversed, i.e. it decreases as x and y become

more similar.

Dissimilarity is the opposite of similarity, therefore any monotonically decreasing transformation of s

can provide a dissimilarity measure. The most obvious tranform would be to take d = 1− s but we

will consider a few alternatives later.
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3.3 Distance between points

Two R packages are needed to provide most of the distance functions considered here. In addition to

the default stats library, which provides the dist() function, we require the cluster package for

the daisy() function. Some further correlation based measures can be found in the Dist() function

in the amap package as well as BioBase from Bioconductor.

We now consider a range of ways in which a multivariate distance can be measured. In conducting

an analysis, some decision needs to be made as to whether to scale variables, or whether to remove

highly correlated variables from the analysis. For example, Gnanadesikan (1997) gives an artificial

example which illustrates how rescaling variables can subsequently alter impression of groupings.

3.3.1 Quantitative variables - Interval scaled

It is reasonably straightforward to suggest a number of dissmilarity measures dij which measure the

distance between individual i and j.

Euclidean distance

.

The Euclidean distance, or the l2 norm, is perhaps the most commonly used distance measure. As

mentioned in section 3.1, this distance could be considered simply as the Mahalanobis distance where

σ = 1. Especially in the context of cluster analysis, where we hope to identify distinct sub-groups

within the data, it is not clear how we might determine the covariance matrix hence the Mahalanobis

distance has seen little use. The Euclidean distance, which is quite simply the square root of the

squared distance between any two vectors, which can be quite simply interpreted as the physical

distance between two p-dimensional points is also a convenient measure to understand. Formally, we

can express this measure as:

dij =
(
Σpk=1(xik − xjk)2

) 1
2

where we are trying to measure the distance between observations in row i and row j, in other

words xik is the kth observation in row i, and xjk is the corresponding kth observation in row

j. Euclidean distance can be readily calculated in R using the dist() function with the default

method = "euclidean", as well as by daisy() with the default metric = "euclidean", although

in daisy() it is possible to standardise the data within the calculations by adding stand = TRUE to

the function call.
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Scaled Euclidean distance

It is possible to introduce a suitable weight wk such as the inverse of the standard deviation of the

kth variable, i.e. wk = s−1
k , or even the inverse of the range of the data.

dij =
√

(Σpk=1w
2
k(xik − xjk)2)

No explicit routines are available to compute this measure, but clearly if the co-ordinates are rescaled

by
√
wk this can be calculated implicitly.

City Block metric

The City Block metric, formally referred to as an l1 norm, measures the absolute difference between

two vectors. It is so-named because it measures the distance between two points in terms of move-

ments parallel to the axis and therefore resembles the distance between two points in a city. Krause

(1975) (who had obviously never been in a London taxi) called this distance the taxicab distance,

Brandeau and Chiu (1988) used the term rectilinear, but perhaps the most common alternative

name is Manhattan, suggested by Larson and Sadiq (1983) reflecting the famous city block layout in

Manhattan. Formally, we can express this distance as:

dij = (Σpk=1|xik − xjk|)

It can be calculated in R using the dist() function with method = "manhattan"

Minkowski metric

The Minkowski metric, or the lr norm, is a generalisation of the Manhattan and Euclidean distances.

dij =
(
Σpk=1|xik − xjk|

λ
)1/λ

Where λ = 1 we have the Manhattan metric, where λ = 2 we have the Euclidean distance. It

can be noted that increasing λ exaggerates dissimilar units relative to similar ones. This met-

ric can be calculated in R using the dist() function with method = "minkowski" but addi-

tionally requires an argument to p to set λ, the power of this distance. Therefore, for example

dist(x, method = "minkowski", p=2) gives the Euclidean distance for matrix x.
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Canberra metric

The Canberra metric (Lance and Williams, 1966) can be regarded as a generalisation of binary

dissimilarity measures, and is very sensitive to small changes close to xik = xjk = 0. It can be

scaled by division by p, the number of variables to ensure it lies in the range (0,1). Terms with zero

numerator and denominator are omitted from the sum and treated as if the values were missing.

dij =

{
0 for xik = xjk = 0

Σ
(
|xik−xjk|
|xik+xjk|

)
for xik 6= 0 or xjk 6= 0

This metric can be calculated in R using the dist() function with method = "canberra"

Czekanowski Coefficient

Finally, we mention the Czekanowski Coefficient, which for continuous variables can be given as:

dij = 1−
2
∑p
k=1min(xik, xjk)∑p
k=1(xik + xjk)

3.3.2 Distance between variables

We next consider a number of correlation based distance measures. Note that when used conven-

tionally for calculating the correlation between two variables we work with standardised columns. In

order to measure the similarity between two individuals we must therefore work with standardised

rows, this may not be a sensible procedure. For example, if variables are measured on different scales

the idea of a row mean may not be clear. There is further material in the literature questioning the

use of these measures (Jardine and Sibson, 1971; Fleiss and Zubin, 1969) and Everitt et al. (2001)

note that correlation measures cannot distinguish the size of two different observations, giving the

example xT1 = c(1, 2, 3) and xT2 = c(1, 2, 3) have correlation ρ12 = 1 yet xT2 is three times the size

of xT1 . Nevertheless, correlation based measures have become particular popular in a bio-informatics

setting where some of the noted limitations do not apply (all variables are measured on a comparable

scale) and in fact it is not always clear what a row and a column mean in that application area.

We therefore consider four four distances that can be obtained a correlation measure. Some thought

needs to be given to determining the transformation from a correlation coefficient to a distance

measure. The Pearson correlation coefficient is defined in the range −1 ≤ ρij ≤ 1. Everitt et al.

(2001) suggest using dij = 1−ρij
2 . Gentleman et al. (2005) suggest that it may be appropriate

under some circumstances to use the absolute value of the correlation, that is dij = 1− |ρij | which
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means that there will be little distance between rows having strong positive and strong negative

correlation. In terms of measuring the dissimilarity between variables, Krzanowski (2000) suggests a

further alternative using dij = 1 − (ρij)2. Examining pre-Bioinformatics data, Lance and Williams

(1979) who compared a number of transformations and expressed a strong preference for the first

transformation, and a strong disdain for the third.

It should be noted that these measures are quite badly affected by outliers. As a result, non-parametric

versions may often be preferred. Conversely, these measures are invariant to change of location or

scale transformation which is rather useful. It should be noted in bio-informatics practice that they

tend to group genes whose expression patterns are linearly related, there is some empirical support

from that application for their use in a particular context.

Pearson correlation distance

d(xij , xik) = 1− ρij = 1−
∑p
i=1(xij − x̄·j)(xik − x̄·k√∑p

i=1(xij − x̄·j)2
∑p
i=1(xik − x̄·k)2

Where data are scaled, i.e. mean centred and standardised by the variance so that x·j and x·k are p

variable vecotres with zero mean and unit variance the relationship between the Euclidean distance

and the Pearson correlation is given by:

d
(Euclidean)
ij =

√
2p(1− ρij)

The pearson based distance measure can apparently be obtained from Dist() in the amap package,

where it is referred to as the “Centred Pearson” by specifying method = "correlation" in the

function call.

Cosine correlation coefficient

This is similar to the Pearson Correlation coefficient based distance measure but without the mean

standardisation

d(xij , xik) = 1−
xT·jx·k

||x·j ||||x·k||
= 1−

|
∑p
i=1(xij)xik√∑p

i=1 x
2
ij

∑p
i=1 x

2
ik

The cosine correlation based distance measure, referred to as the “Not-centred Pearson can be

obtained from Dist() in the amap package by specifying method = "pearson" in the function call.

It is not clear from the help file how the correlation measure is transformed into a distance measure.
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Spearman sample correlation distance

d(xij , xik) = 1− ρij = 1−
∑p
i=1(rank(x)ij − rank(x̄)·j)(rank(x)ik − rank(x̄)·k)√∑p

i=1(rank(x)ij − rank(x̄)·j)2
∑p
i=1(rank(x)ik − rank(x̄)·k)2

This requires spearman.dist() in package bioDist, and can be computed via Dist() in the amap

package with a call containing method="spearman".

Kendall’s τ sample correlation distance

d(xij , xik) = 1− τij = 1−
∑p
i=1 sign(xij − x̄·j)sign(xik − x̄·k)

p(p− 1)

This requires tau.dist() in package bioDist

3.3.3 Quantitative variables: Ratio Scaled

Kaufman and Rousseeuw (1989) briefly discuss ratio scaled variables, and give examples including

micro-organism growth which follows and exponential power law. Clearly, we could just consider

these as interval scale variables and use any of the previous measures. They discuss the possibility

of taking a logarithmic transformation of such data where it may be appropriate, obviously having

the exponential growth application in mind. The logarithmic transformation can be dealt with in

daisy() by using the type="logratio" command. Alternatively, it would be possible to treat

such variables as being continuous ordinal data and use rank-based non-parametric procedures. As

discussed further in section 3.3.5, using the type="ordratio" command within daisy() generates

standardised variates from the ranks which are subsequently analysed with a scaled City Block metric,

alternativly, the two non-parameteric correlation derived measures described in section 3.3.2 and 3.3.2

may also be useful.

3.3.4 Dichotomous data

Where xik can only take one of two values, these are coded as 0 and 1:

Object Two

1 0

1 a b

Object 2

0 c d

where p = a+ b+ c+ d, some common dissimilarity measures are:
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In this table, a denotes an agreement (both objects have a zero in the same position), d shows

an agreement where both objects have a one, c and d denote the two possible disagreements. We

should firstly comment in more detail on the nature of dichotomous data. Gower (1971) distinguishes

two types of binary variables, symmetric and assymetric. Binary variables such as gender (male and

female) or handedness (left or right) are clearly symmetric and the distance measure should not

change depending on the way we code these two levels as 0 and 1. In other words, a and d should

act the same way in the table.

We can therefore consider the following symmetric measures.

(Based on the) simple matching coefficient

The simple matching coefficient, also known as the M-coefficient or the affinity index, is quite simply

the proportion of variables in agreement in two objects. The distance measure is found by subtracting

this value from 1 (or calculating the proportion of disagreements):

dij = 1− a+ d

a+ b+ c+ d
=

b+ c

a+ b+ c+ d
(3.3)

This measure can be calculated in daisy() by providing a list indicating those variables to be regarded

as symmetric, i.e. (list("symm", "symm", "symm"). It may be noted in passing that if we force a

calculation of Manhattan distance we get estimate b+c we omit standardisation and simply calculate

the sum of disagreements. Also, the Euclidean distance is the square root of the dissimilarity derived

from the simple matching coefficient. Two further symmetric measures include ? which doubles the

weight of the disagreements:

dij = 1− a+ d

(a+ d) + 2(b+ c)
=

2(b+ c)
(a+ d) + 2(b+ c)

and the Sokal and Sneath (1963) measure which doubles the weight of the agreements:

dij = 1− 2(a+ d)
2(a+ d) + (b+ c)

=
b+ c

2(a+ d) + (b+ c)

All three measures are monotonically related and there seems little imperative to use anything other

than the simple matching coefficient based dissimilarity measure. Life does however get rather more

interesting if we want to work with assymetric binary variables. Some care is needed in analysis in

determining whether binary variables are symmetric or assymetric. A classical example would concern

variables measuring presence or absence. The thought is that if two individuals share the presence

of some attribute we can consider them similar, but if they share the absence of an attribute we
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do not know whether they can be considered similar. For example, if we collect data on individuals

who travelled to a particular location, we can consider them similar if they both drove by car, but if

neither drove by car it is clear there are a range of reasons, which could include not owning a car,

preferring another form of transport, living within walking distance and so on.

Jaccard coefficient

Perhaps the most common assymetric measure of distance is the Jaccard Coefficient Sneath (1957),

which measures the proportion of agreements on the variable coded 1 among all such agreements

and disagreements (i.e. ignoring all possible agreements on variable coded 0). Formally, this can be

set out as:

dij = 1− a

a+ b+ c
=

b+ c

a+ b+ c

This seems to be the value calcuated by R, when method="binary" is used in the call to dist(), it

is also available in daisy() when the a list is supplied which indicates those variables to be considered

as binary assymetric variables, i.e. list("asym", "asym")

As with symmetric measures, there are a few alternatives which alter the weightings.

Czekanowski coefficient

The Czekanowski coefficient (Dice, 1945) increases the weight of the agreements

dij = 1− 2a
2a+ b+ c

=
b+ c

2a+ b+ c

whearas the Sokal and Sneath (1963) coefficient increases the weight of the disagreements:

dij = 1− a

a+ 2(b+ c)
=

2(b+ c)
a+ 2(b+ c)

We extract a small part of an example given by Kaufman and Rousseeuw (1989) to illustrate the

non-monotonicity of the symmetric and asymmetric measures.
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Variable 1
+ -

Variable + a b
- c d

Name x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Ilan 1 0 1 1 0 0 1 0 0 0

Jacqueline 0 1 0 0 1 0 0 0 0 0

Lieve 0 1 0 0 0 0 0 1 1 0

Peter 1 1 0 0 1 0 1 1 0 0

where x1 = Sex(Male = 1, Female = 0), x2 = Married(Yes = 1, No = 0), x3 = Hair(Fair = 1, Dark

= 1), x4 = Eyes (Blue = 1, Brown = 0), x5 = Wears Glasses(Yes = 1, No = 1), x6 = Face (Round

= 1, Oval = 0), x7 = Outlook(Pessimist = 1, Optimist = 0), x8 = Type(Evening = 1, Morning =

0) x9 = Only Child (1 = Yes, 0 = No) x10 = Handedness (1 = Left, 0 = Right).

Using the symmetric, simple matching coefficient based distance measure they note that:

d(Jacqueline, Lieve) = 0.300 d(Ila, Peter) = 0.500

whereas for the asymmetric, Jaccard coefficient we have:

d(Jacqueline, Lieve) = 0.750 d(Ila, Peter) = 0.714

Although Kaufman and Rousseeuw (1989) state that the Jaccard coefficient is inappropriate, it

could be argued that some of these variables are assymetric (there are a variety of reasons why

someone might record that they were not-married). Nevertheless, the point of their illustration was

to highight the non-monotonicity. Whilst we expect the measures to be different, note that for the

symmetric coefficient d(Jacqueline, Lieve) < d(Ila, Peter), whereas for the assymetric coefficient

d(Jacqueline, Lieve) > d(Ila, Peter).

Similarities between variables

χ2 =
(ad− bc)2(a+ b+ c+ d)

(a+ b)(a+ c)(c+ d)(b+ d)

which may require some standardisation:
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dkl = 1−
√

χ2

a+ b+ c+ d

3.3.5 Qualitative variables

Following Kaufman and Rousseeuw (1989) we consider a variable where we have m = 1, . . . ,M
states. It would be possible to create a set of M binary variables, with 0 indicating absence of

a particular category within a variable and 1 indicating presence. Alternatively, a nominal variable

could be collapsed in some suitable manner. However, Sokal and Michener (1958) suggest a simple

matching coefficient, a corresponding distance can be found by substracting this from 1. Denoting

the number of variables on which objects i and i agree by u, and the total number of variables by p

this can be expressed as:

d(xij , xik) = 1− u

p
=
p− u
p

This measure is invariant to the codings used or the order of the variables, and can be extended in

the same way as that suggested for binary variables by Rogers and Tanimoto (1960) and Sokal and

Sneath (1963) by doubling the weight of disagreements and agreements respectively. Kaufman and

Rousseeuw (1989) review proposals to weight the measure depending on the size of M .

The simple matching coefficient is available in R by using daisy() having specified that the variable

concerned is a factor, by ensuring the elements of x supplied to the function have class factor.

It’s also obvious that such variables can be ordered, and also that ordered variables may be derived

from continuous data. We can either obtain the ranks and treat the ranks as continuous variables

applying any of the quantitative distance measures discussed above. A possible derivation, having

first scaled the ranks is given by:

zij =
rij − 1
Mj − 1

When using daisy(), if a discrete variable has the class set to "ordered", or if a continuous

variable is supplied with the argument type = "ordratio" zij will be computed as in figure 3.3.5

and treated as a continuous variable. Distance will subsequently be computed by means of the City

Block distance, which will be scaled by the number of such variables analysed.

Alternative, one of the non-parametric correlation measures in section 3.3.2 or section 3.3.2 could be

used, especially where we are measuring distance between variables rather than between individuals.
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3.3.6 Different variable types

Finally, we consider the possibility that a particular data set contains a variety of variable types. It

might be possible to treat all variables as interval scaled continuous variables, or somehow recode

them all as binary or ordinal variables. It may be better to find some way of combining distance

that has been measured in the most appropriate way for each type of variable. As a result, possibly

the most popular method for measuring dissimilarity in this situation has been derived from Gower’s

coefficient of similarity Gower (1971). In its original incarnation, this measure could combine interval,

nominal and binary data. Consider the following, where we basically sum the individual similarities

however calculated and divide them by the total number of applicable comparisons:

d(xij , xjk) = 1−
∑p
k=1 δijksijk∑p
k=1 δijk

(3.4)

The indicator δijk is set to 1 when both measurements for xij and xik are non-missing, it is zero

otherwise. It is also zero for binary variables where there is a 0− 0 match, i.e. the original measure

assumed assymetric dichotomous variables. We briefly consider how similarities for each of the three

variable types is calculated:

• Quantitative (interval scaled) variables.

The similarity measure is given by:

sijk = 1− |xik − xjk|
range of variable k

(3.5)

This is essentially the City Block distance with the extra assumption that all variables had first

been standardised by dividing by their range. If there are mixed variables within the data frame

or matrix x supplied to daisy(), this standardisation is applied by default (regardless of any

arguments supplied to stand.

• Qualitative (nominal) variables. These are derived from the simple matching coefficient, the

similarity is therefore the proportion of matches among all possible matches:

sijk =

{
1 if i and i agree on variable k

0 otherwise

• Dichotomous variables The original incantation assumed asymmetric variables, hence the Jac-

card coeffcient is used. If we consider k = 1, . . . , 4 variables for individuals i and j, we can see

the possible outcomes:

i 1 1 0 0

j 1 0 1 0

sijk 1 0 0 0

δijk 1 1 1 0
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The original measure has been extended by Kaufman and Rousseeuw (1989) (who set out the cal-

culations as distances rather than similarities) to incorporate symmetric binary and ordinal and

ratio variables. Ordinal variables are ranked, and the ranks used in 3.5, ratio variables are ei-

ther ranked or logged and then 3.5 is used. As has been noted earlier, this is achieved by set-

ting the class of the variables to be ”numeric”, ”factor” or ”ordered”, or providing the arguments

type = "asymm", "symm", "ordratio", "logratio" to estimate appropriate measures for as-

symetric binary variables (Jaccard), symmetric binary, ordinal ratio variables or log transformed ratio

variables respectively.

It should be noted that Gower (1971) shows, provided there are no missing values the n×n similarity

matrix obtained from an n × p data matrix X is positive semi-definite. If we obtain a dissimilarity

matrix from this measure using d(xik, xjk) =
√

(1− s(xik, xjk) the resultant matrix:

∆ =


0 d(x1,x2) · · · d(x1,xp)

d(x2,x1) 0 · · · d(x2,xp)
...

... · · ·
...

d(xp,x1) d(xp,x2) · · · 0


is Euclidean. We will next consider this important property of proximity matrices, it will particularly

inform later developments in terms of metric scaling.

3.4 Properties of proximity matrices

A few words are placed here concerning proximity matrices, the n × n matrix comparing every

individual with each other. It is possible that the only information available in a particular study is

such a matrix, as happens with sensory experiments or the rather famous study comparing matched

judgements on morse code characters (Rothkopf, 1957). Some properties of these matrices will

be important in later developments, particularly scaling as discussed in chapter 5. Earlier, in section

3.3.6, we rather glibly stated that a dissimilarity matrix obtained from Gower’s coefficient of similarity

can be Euclidean. As might be anticipated, a matrix where the elements have been derived from the

Euclidean distance (section 3.3.1) is also Euclidean, but the concept requires further examination.

Gower (1966) demonstrated that Euclidean properties could be met by transforming for the elements

s(xi, xj) of a similarity matrix S to the elements d(xi, xj) of a dissimilarity matrix D:

d(xi, xj) =
√

1− s(xi, xj)

Denoting the distance between two points by d(xi, xj) and the proximity between two individuals by

δ(xi, xj), we are ultimately interested in the proximity matrix ∆
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When forming a matrix ∆ from a dissimilarity matrix D, Lingoes (1971) suggested tranforming the

elements by δ(xi, xj) =
√
d(xi, xj)2 + c1, Cailliez (1983) suggested δ(xi, xj) = d(xi, xj) + c1, both

providing methods for finding the constants c1 and c2.

In general, when considering the n× n dissimilarity matrix, ∆, containing elements d(xi·,xj·). This

matrix can be considered Euclidean if the n individuals can be represented as points in space such

that the Euclidean distance between points i and j is d(xi·,xj·). In general, ∆ is Euclidean if and

only if the following matrix is positive semi-definite:

(I − 1sT )Γ(I − 1sT )

where Γ has elements 1
2d(xi·,xj·)2, I is the identity matrix, 1 is a vector of n ones and s is an

n-element vector such that sT1 = 1.

Important special cases are where s = 1
n1 which centres at the origin (proof is given in Mardia et al.

(1979) regarding the Euclidian property) and where s which has 1 in its ith position and 0 elsewhere

(proof is given by Gower (1984) of the Euclidean property). The significance of the Euclidean property

will be discussed in chapter 5 when we consider scaling methods.

In addition to the Euclidean property, a matrix can be considered metric, if the metric inequality

holds for all triplets i, j, k within ∆

d(xi·,xj·) + d(xi·,xk·) ≥ d(xj·,xk·)d(xi·,xj·) (3.6)

IfDelta is metric, then so are matrices with elements d(xi·,xj·)+c2 as well as d(xi·,xj·)/(d(xi·,xj·)+
c2) where c is any real constant and i 6= j, as is d(xi·,xj·)1/r for r ≥ 1 with again i 6= j.

In the case that ∆ is non-metric, Krzanowski and Marriott (1994a) indicate that where c ≥
maxi,j,k|δ(xi, xj) + δ(xi, xk)− δ(xj , xk)|, the matrix with elements δ(xi, xj) + c is metric.

Again, the significance of the metric property will be discussed in chapter 5 when we consider scaling

methods.
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Chapter 4

Cluster analysis

Cluster “analysis” describes a range of algorithms for investigating structure in data, the main interest

is in finding groups of objects who are more alike. A large number of books are dedicated to this

one subject, for example Kaufman and Rousseeuw (1989); Everitt et al. (2001); Gordon (1999), the

former book supporting some rather interesting code that has been ported to R (the S-PLUS version

is described in Struyf et al. (1997)). It may be worth noting that some multivariate authors do not

cover it at all Flury (1997) preferring a formulation based upon mixture models, and (Venables and

B.D.Ripley, 2002, page 316) indicate a preference for using visualisation methods for finding such

structure in data. Whilst cluster analysis is most often directed towards finding subsets of individuals

that are more alike than other subsets, it is worth noting that variable clustering is also possible. The

heatmap in figure 4.1 has a dendrogram for both individuals and variables.

x <- as.matrix(mtcars)
rc <- rainbow(nrow(x), start=0, end=.3)
cc <- rainbow(ncol(x), start=0, end=.3)
hv <- heatmap(x, col = cm.colors(256), scale="column",

RowSideColors = rc, ColSideColors = cc, margin=c(5,10),
xlab = "specification variables", ylab= "Car Models",
main = "Heatmap of mtcars data")

Modern computing facilities have widened the possibilities for visualisation considerable (both in terms

of linked displays as well as the ability to numerically optimise various projection criteria). However,

when investigating the results of any scaling or projection methods there may still be interesting

structures within the data. The interest in cluster analysis lies in finding groups within the data.

When the objects within a group are very similar this can be described as internal cohesion (or

homogeneity), when they is a large dissimilarity between groups this can be referred to as external

separation (or isolation). Where we have internal cohesion and external separation, one usually refers

to the situation as “clustering”. If the objects have been more-or-less aribtrarily divided into groups
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Figure 4.1: Heatmap of mtcars data; variables scaled in columns
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Figure 4.2: Artificial data suggesting a difference between “clustering” and “dissecting”

we could refer to this as “dissection”. Clustering and dissection may both the useful in different

contexts (e.g. taxonomy and market research). One attempt to illustrate this concept is given in

figure 4.2.

There are a wide range of algorithms that have been developed to investigate clustering within data.

These can be considered in a number of ways:

• Hierarchical Methods

– Agglomerative clustering (hclust(), agnes())

– Divisive clustering (diana(), mona())

• Partitioning methods (kmeans(), pam(), clara())

Hierarchical clustering provides a set of clusterings, either for k = n, . . . , 2 (agglomerative) or k =
2, . . . , l (divisive). The clustering is represented in a dendrogram and can be cut at arbitrary heights

to give a fixed number of clusters. It perhaps has a logical interpretation in numerical taxonomy.

Partitioning methods usually work by assuming a pre-determined number of clusters k (although it

is obviously possible to explore solutions over a range of values of k). As (Seber, 1984, page 379)

points out, the number ofways Sk,n of partitioning n objects into k groups, given by:

Sk,n =
1
k!

k∑
j=1

(
k

j

)
(−1)k−jjn ≈n→∞

kn

k!

is a second type Stirling number, and where k is not specified we have
∑K
k=1 Sk,n partitions.

For n = 50 and k = 2 this is in the order of 6× 1029
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4.1 Introduction to agglomerative hierarchical cluster anal-

ysis

Hierarchical cluster analysis finds representations that obey the ultrametric inequality.

d(xij , xik) ≤ max(d(xij , xil)d(xil, xik))

We will work through three conventional examples of cluster analysis manually before considering an

R implementation in more detail. For the sake of the demonstations, consider the following distance

matrix:

a b c d e

a 0

b 2 0

c 6 5 0

d 10 9 4 0

e 9 8 5 3 0

Initially, each individual is put in its own cluster. Subsequently, at each stage individuals are joined

to other individuals to form clusters, and the distance measure between a units can be readjusted in

some way. Then similar clusters are joined until all individuals have been joined.

4.1.1 Nearest neighbour / Single Linkage

This can be obtained in R using the method = "single" instruction in the call to hclust(), where

it suggests that this method finds “friends of friends” to join each cluster in a similar way to that

used in minimum spanning trees.

The decision to merge groups is based on the distance of the nearest member of the group to the

nearest other object. Clearly, with a distance of 2, inviduals a and b are the most similar.

a b c d e

a 0

b 2 0

c 6 5 0

d 10 9 4 0

e 9 8 5 3 0

We therefore merge these into a cluster at level 2:

Distance Groups

0 a b c d e

2 (ab) c d e

and we now need to re-write our distance matrix, whereby:
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d(ab)c) = min(dac, dbc) = dbc = 5

d(ab)d) = min(dad, dbd) = dbd = 9

d(ab)e) = min(dae, dbe) = dbe = 8

This gives us a new distance matrix

(ab) c d e

(ab) 0

c 5 0

d 9 4 0

e 8 5 3 0

Now we find that the two nearest objects

are d and e, these can be merged into a

cluster at height 3:

Distance Groups

0 a b c d e

2 (ab) c d e
3 (ab) c (de)

We now need to find the minimum distance from d and e to the other objects and reform the distance

matrix:

(ab) c (de)

(ab) 0

c 5 0

(de) 8 4 0

Clearly, the next merger is between (de) and c, at

a height of 4.

Distance Groups

0 a b c d e

2 (ab) c d e
3 (ab) c (de)
4 (ab) (cde)

And it is also clear that the next step will involve merging at a height of 5.

Distance Groups

0 a b c d e

2 (ab) c d e
3 (ab) c (de)
4 (ab) (cde)
5 (abcde)

The corresponding dendrogram is illustrated in figure 4.3.

4.1.2 Furthest neighbour / Complete linkage

Obtained in R using the method = "complete" instruction in the call to hclust(), where it suggests

that this method finds similar clusters. Complete linkage methods tend to find similar clusters.

Groups are merged when the furthest member of the group is close enough to the new object.
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a b c d e

a 0

b 2 0

c 6 5 0

d 10 9 4 0

e 9 8 5 3 0

Start assembling details on the distances; we start

as before

Distance Groups

0 a b c d e

2 (ab) c d e

However, the reduced distance matrix will be different:

d(ab)c) = max(dac, dbc) = dac = 6

d(ab)d) = max(dad, dbd) = dad = 10

d(ab)e) = max(dae, dbe) = dae = 9

(ab) c d e

(ab) 0

c 6 0

d 10 4 0

e 9 5 3 0

Although the next step will be identical (we merge

d and e at a height of 3)

Distance Groups

0 a b c d e

2 (ab) c d e

3 (ab) c (de)

We now need to find the minimum distance from d and e to the other objects and reform the distance

matrix:

(ab) c (de)

(ab) 0

c 6 0

(de) 10 5 0

Although we are still going to merge (de) and c

note that the height is different being 5.

Distance Groups

0 a b c d e

2 (ab) c d e

3 (ab) c (de)

5 (ab) (cde)

(ab) (cde)

(ab) 0

(cde) 10 0

So our final merge will take place at height 10.

Distance Groups

0 a b c d e

2 (ab) c d e

3 (ab) c (de)

5 (ab) (cde)

10 (abcde)

In this simple demonstration, the dendrogram, illustrated in the centre of figure 4.3 obtained is similar

in shape, but all the merges are at different height.
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4.1.3 Group average link

This requires agnes() in package cluster, called with the method="average" instruction.

This time we merge two groups is the average distance between them is small enough.

a b c d e

a 0

b 2 0

c 6 5 0

d 10 9 4 0

e 9 8 5 3 0

Start assembling details on the distances; again,

we start as before:

Distance Groups

0 a b c d e

2 (ab) c d e

But the reduced distance matrix will be different again:

d(ab)c) = (dac + dbc)/2 = 5.5

d(ab)d) = (dad + dbd)/2 = 9.5

d(ab)e) = (dae + dbe)/2 = 8.5

(ab) c d e

(ab) 0

c 5.5 0

d 9.5 4 0

e 8.5 5 3 0

Yet again, the next merge step will be identical (we

merge d and e, only they are merged at height 3)

Distance Groups

0 a b c d e

2 (ab) c d e

3 (ab) c (de)

We now need to find the minimum distance from d and e to the other objects and reform the distance

matrix:

(ab) c (de)

(ab) 0

c 5.5 0

(de) 9 4.5 0

Again, we still going to merge (de) and c note that

the height is different (4.5)

Distance Groups

0 a b c d e

2 (ab) c d e

3 (ab) c (de)

5 (ab) (cde)
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Figure 4.3: Dendrograms from three basic cluster methods

(ab) (cde)

(ab) 0

(cde) 7.8 0

So our final merge will take place at height 7.8.

Distance Groups

0 a b c d e

2 (ab) c d e

3 (ab) c (de)

4.5 (ab) (cde)

7.8 (abcde)

In this simple demonstration, the dendrogram obtained is similar in shape, but all the merges are

at different height. This dendrogram is depicted on the right of figure 4.3. Whilst the role of the

dendrogram seems obvious, it should be acknowledged that there are some algorithmic details needed

to determine how to present these. We will consider other clustering methods shortly, but it should

be noted that the centroid and median approaches can lead to reversals in the dendrogram.

4.1.4 Alternative methods for hierarchical cluster analysis

Given that cluster “analysis” is essentially an algorithmically guided exploratory data analysis it is

perhaps no surprise, firstly that there have been many other methods proposed and secondly that

there have been attempts to generalise the algorithm. Lance and Williams (1966, 1967) proposed a

general recurrence formula which gives the distance between a newly amalgated group Ck
⋃
Cl and

some other group Cm:

dCk
⋃
Cl,Cm = αld(Ck, Cl) + αmd(Ck, Cm) + βd(Ck, Cl) + γ|d(Ck, Cm)− d(Cl, Cm)| (4.1)

where dCk
⋃
Cl,Cm is the distance between a cluster Ck and the merging of two groups Cl and

Cm. The parameters are constrained such that αl + αm + β = 1, αl = αm, β < 1 and γ = 0.
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Using these schema, a number of established agglomerative strategies can be expressed as follows:

Method R call αk β γ

Single link (nearest neighbour) method = "single" 1
2 0 − 1

2

Complete link (furthest neighbour) method = "complete" 1
2 0 1

2

Group average link method = "average" Nl|(Nl +Nm) 0 0

Weighted average link method = "mcquitty" 1
2 0 0

Centroid method = "centroid" Nl|(Nl +Nm) −NlNm|(Nl +Nm)2 0

Incremental sum of squares method = "ward" Nk+Nm
Nk+Nl+Nm

Nk+Nl
Nk+Nl+Nm

0

Median method = "median" 1
2 − 1

4 0
where Nk, Nl and Nm are the cluster sizes when Ck is joined to the other two clusters considered.

This formula facilitates the use of a number of clustering approaches. Ward (1963) proposed a

method in which clustering proceeds by selecting those merges which minimise the error sum of

squares. If we consider the cluster specific error sum of squares:

ESSk =
nk∑
i+1

p∑
j=1

(xki,j − x̄k,j)2

where x̄k,j is the mean of cluster k with respect to variable j and xki,j is the value of j for each

object i in cluster k. The total error sum of squares is therefore given by
∑K
k=1ESSk for all clusters

k. This method tends to give spherical clusters, whether that is a reasonable solution to find or not.

Centroid clustering involves merging clusters with the most similar mean vectors; there is a subtle

variation on a theme in which the centroid calculation is weighted. Whilst the calculations underlying

these methods tend to use Euclidean distance (to facilitate interpretation in terms of the raw data)

that is not compulsory. There is therefore some quite unsubtle interaction between choice of distance

measure and choice of clustering algorithm which provides vast room for ambiguity in conducting

cluster analysis.

4.1.5 Problems with hierarchical cluster analysis

A number of problems have been recognised with hierarchical cluster analysis. Single, complete and
average linkage as well as Ward’s method have the potential for reversals in the dendrogram; single
and complete linkage impose a monotonicity requirement. One particular problem with single link
clustering is “chaining”, we could illustrate this as follows:

x <- rbind(mvrnorm(30, c(0,0), sigma),
mvrnorm(30, c(8,8), sigma),
cbind(seq(0,8, by = 0.4), seq(0,8, by = 0.4) )

dot <- hclust(dist(x), method = "single")
par(mfrow = c(1,2))
plot(dot)
plot(x, pch = cutree(dot, k = 2))
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Figure 4.4: Demonstration of “chaining” with single link clustering

4.1.6 Hierarchical clustering in R

A typical example of a cluster analysis was reported by Jolliffe et al. (1986). To carry out hierarchical

cluster analysis in R , create a distance object from the data (USArrests.dist), create a hierarchical

clustering object from the distance matrix (USArrests.hclust), and plot the results. Here we

have used manhattan distance and compete linkage. You may like to see how much difference the

alternatives make.

> USArrests.dist <- dist(USArrests, method = "manhattan")
> USArrests.hclust <- hclust(USArrests.dist, method = "complete")
> plot(USArrests.hclust)

For comparison with other results, we may want to “cut” the dendrogram at a point which gives us a

certain number of classes. Here, we will cut the dendrogram fairly high up, and look at a possible five

group structure. In the following code, we use cutree to find the five groups, and produce draftsman

plot with colours / symbols altering according to which of the five groups we think the state may

belong to.

> hc.class <- cutree(USArrests.hclust, k =5)
> plot(USArrests, col = hc.class, pch = hc.class)

An agreement is where both objects have a one in each position. b and c denote the two possibly

disagreements.
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Figure 4.5: Dendrogram following complete linkage cluster analysis of US Arrests data
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4.2 Cophenetic Correlation

The cophenetic correlation can be used as some kind of measure of the goodness of fit of a particular

dendrogram.

ρCophenetic =

∑n
i=1,j=1,i<j(dij − d̄)(hij − h̄)(∑n

i=1,j=1,i<j(dij − d̄)2(hij − h̄)2
)0.5 (4.2)

> d1 <- dist(USArrests)
> h1 <- hclust(d1)
> d2 <- cophenetic(h1)
> cor(d1, d2)
[1] 0.7636926
> h1 <- hclust(d1, method = "single")
> d2 <- cophenetic(h1)
> cor(d1, d2)
[1] 0.5702505

So it is easy to obtain a measure of the cophenetic correlation, it is less clear what it means. Certainly

a value below 0.6 implies that there has been some distortion in the dendrogram.

4.3 Divisive hierarchical clustering

Divisive clustering reverses the approach taken above. Here, we start with one large cluster of all n

objects, and split until each object is unique. (Gordon, 1999, page 90) argues that divisive clustering

is not likely to lead to optimal divisions in the data. Arguably the more succesful methods are

monothetic and split on one variable at each stage (see mona() for an R example which works with

binary data).

Macnaughton-Smith et al. (1964) proposed one divisive method which has seen some use. Kaufman

and Rousseeuw (1989) liken this to splintering within a political party, where one person leaves and

attracts the most like-minded people and have provided the diana() routine which facilitates this

form of clustering.

To identify the “splinter”, the object with the largest average dissmilarity to all other objects is

selected. Then the dissimilarities are recalculated, and any objects who are closer to the splinter than

to their original group are reclassified. Average dissimilaries can then be recalculated.

At each subsequent step of the algorithm, the cluster C with the largest diameter is selected:
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Figure 4.6: Divisive clustering of USArrests data, dendrogram and bannerplot

diam(C) = maxi,j∈Cd(i, j)

This diameter is represented as the “height” in the dendrogram and the banner plot.

Then C is split into two subclusters, initially A = C and B = ∅. For each objects in A, calculate

the average dissimilarity to all other objects in A, the object with the largest distance is moved to

B. This step is repeated until there are n clusters.

USArrests.dist <- dist(USArrests)
library(cluster)
USArrests.diana <- diana(USArrests.dist)
par(mfrow = c(1,2), oma = c(0,0,2,0))
plot(USArrests.diana, which = 2, cex = 0.6,
main = "Dendrogram", xlab = "")
plot(USArrests.diana, which = 1, main = "Banner plot",
nmax.lab = 50, cex.axis = 0.6, max.strlen = 12)
mtext("Divisive clustering of USArrests", outer = TRUE)

4.4 K-means clustering

This is a rather different method of clustering, aimed at finding “more homogenous” subgroups within

the data. We specify at the start how many clusters we are looking for, and ideally provide some clue
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as to what might be in those clusters.

The technique was perhaps first proposed by Lloyd (1957) and somewhat codified by Forgy (1965),

early developments were also reported by MacQueen (1967), although the default S-Plus algorithm

was developed by Hartigan and Wong (1979). There is some confusion as to whether k-means refers

to a particular technique or a particular algorithm.

Given a number of k starting points, the data are classified, the centroids recalculated and the process

iterates until stable.

We could attempt to demonstrate this with the following function

step <- function(X, mu1, mu2){
## classify according to current seed point (expectation step)
one <- sqrt(rowSums((X - t(t(t(mu1)) %*% t(ones)))^2))
two <- sqrt(rowSums((X - t(t(t(mu2)) %*% t(ones)))^2))
plot(x,y, col = 1 + as.numeric(one < two), pch = 16, xlim = xlims, ylim = ylims )
legend("topright", pch = c(16,16,2,3), col = c("red", "black"), legend = c("Group1", "Group2", "Seed 1", "Seed 2" ), cex = 0.5)
points(rbind(seed$mu1, seed$mu2), pch = c(2,3), col = c("red", "black"))
fixed <- (mu1 + mu2)/2
slope <- -(mu1[1] - mu2[1])/(mu1[2] - mu2[2])
abline(c(fixed[2] - slope * fixed[1], slope))

## calculate new seed points (maximisation step)
mu1 <- colMeans(X[one < two,])
mu2 <- colMeans(X[one >= two,])
return(seed = list(mu1 = mu1, mu2 = mu2))
}

And set up with:

## simulate two clusters of data
x <- c(rnorm(20,0,1), rnorm(20,4,1))
y <- c(rnorm(20,0,1), rnorm(20,4,1))
X <- cbind(x,y)
ones <- matrix(1, dim(X)[1],1)

## set up some parameters for plotting
xlims <- c(min(x), max(x)) * 1.3
ylims <- c(min(y), max(y)) * 1.3

## plot the data
par(mfrow = c(2,2))
plot(X, xlim = xlims, ylim = ylims)

## And add some very silly seed points
mu1 <- c(0,6)
mu2 <- c(5,-2)
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Figure 4.7: Demonstration of kmeans algorithm, points are classified according to seed, then
position of seed is recalculated

seed <- list(mu1 = mu1, mu2 = mu2)
points(rbind(seed$mu1, seed$mu2), pch = c(2,3),col = c("red", "black"))
legend("topright", pch = c(1,2,3), col = c("black", "red", "black"), legend = c("Data", "Seed 1", "Seed 2" ), cex = 0.5)
##mtext(paste("Seed points: \n Group 1 ", formatC(seed[[1]],2), "Group 2 ", formatC(seed[[2]],2)))

seed <- step(X, seed$mu1, seed$mu2)
seed <- step(X, seed$mu1, seed$mu2)
seed <- step(X, seed$mu1, seed$mu2)

Having illustrated the basic principles it is quite easy to run the analysis:

> US.km <- kmeans(USArrests, centers = 2)
> plot(USArrests, col = US.km$cluster, pch = US.km$cluster) ## not shown
> plot(prcomp(USArrests, center = TRUE)$x[,c(1,2)],
col = US.km$cluster, pch = US.km$cluster)

For interest, we will compare the k-means solution with the diana() classification:

kmclass <- as.vector(US.km$cluster)
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Figure 4.8: Scatterplot of original variables denoting cluster membership for k = 2 means
clustering

> diana.class <- cutree(USArrests.diana, k = 2)
> xtabs(~kmclass + diana.class)

diana.class
kmclass 1 2

1 0 29
2 21 0

So in this particular example, there is good agreement that there may be two clusters in the data.

4.4.1 Partitioning around medoids

This approach to clustering is laid out in Kaufman and Rousseeuw (1989), and the S-PLUS imple-
mentation is very well described in Struyf et al. (1997). The procedure is to find k representative
objects called medoids in such a way that the total dissimilarity of all objects to their nearest medoids
is minimised. One side-effect of this approach is that a data entity is identifed as a representative
object which may facilitate description rather better than a non-existing group centroid. In other
words, we identify objects that “best” represent their groups. This is quite simple to do in R , we
can supply either the data matrix or a distance matrix to pam(), below we supply the data:

> USArrests.pam <- pam(USArrests, k = 2)
> par(mfrow = c(1,2))
> plot(USArrests.pam)
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Figure 4.9: Partitioning around medoids

> USArrest.pam$medoids
Murder Assault UrbanPop Rape

Michigan 12.1 255 74 35.1
Kansas 6.0 115 66 18.0

and it can be seen that Michigan and Kansas are in some sense the best representative examples of

each of the two groups we have chosen to investigate. The plot() method applied to pam objects

produces a 2×2 scatterplot of the first two principal components identifying group memberships and

superimposing ellipses as well as a silhouette.

With minor modification, this is a tractable algorithm for large datasets. A wrapper, clara() has

been written which makes partitioning around mediods available for a wide range of datasets.

4.4.2 Hybrid Algorithms

There have been a number of proposals in the literature recently for hybrid algrithms. We consider

HOPACH, essentially it is a divisive algorithm, but at each stage a merging step is incorporated to

bring together similar clusters (which may be on different branches of the tree). Again, this method

produces medoids, in this case 13 were identified.

> library(hopach)
> USArrests.hopach <- hopach(USArrests)
> row.names(USArrests)[USArrests.hopach$clustering$medoids]
[1] "Mississippi" "Alaska" "New Mexico" "Michigan"
[5] "California" "Illinois" "Missouri" "West Virginia"

c©Paul Hewson 67



Multivariate Statistics Chapter 4

HOPACH of USArrests

Hawaii
Wisconsin

Iowa
North Dakota

New Hampshire
Minnesota

Pennsylvania
Connecticut

Vermont
Utah
Ohio

Nebraska
Kansas
Indiana

New Jersey
Massachusetts

Maine
Rhode Island

Oklahoma
Idaho

West Virginia
South Dakota

Montana
Kentucky

Washington
Virginia

Texas
Missouri
Oregon

Colorado
Wyoming
New York

Illinois
Delaware

Tennessee
Nevada

California
Michigan
Georgia

Louisiana
Arkansas

Arizona
New Mexico

Florida
Alabama
Maryland

Alaska
South Carolina

Mississippi
North Carolina

N
or

th
 C

ar
ol

in
a

M
is

si
ss

ip
pi

S
ou

th
 C

ar
ol

in
a

A
la

sk
a

M
ar

yl
an

d
A

la
ba

m
a

F
lo

rid
a

N
ew

 M
ex

ic
o

A
riz

on
a

A
rk

an
sa

s
Lo

ui
si

an
a

G
eo

rg
ia

M
ic

hi
ga

n
C

al
ifo

rn
ia

N
ev

ad
a

T
en

ne
ss

ee
D

el
aw

ar
e

Ill
in

oi
s

N
ew

 Y
or

k
W

yo
m

in
g

C
ol

or
ad

o
O

re
go

n
M

is
so

ur
i

T
ex

as
V

irg
in

ia
W

as
hi

ng
to

n
K

en
tu

ck
y

M
on

ta
na

S
ou

th
 D

ak
ot

a
W

es
t V

irg
in

ia
Id

ah
o

O
kl

ah
om

a
R

ho
de

 Is
la

nd
M

ai
ne

M
as

sa
ch

us
et

ts
N

ew
 J

er
se

y
In

di
an

a
K

an
sa

s
N

eb
ra

sk
a

O
hi

o
U

ta
h

V
er

m
on

t
C

on
ne

ct
ic

ut
P

en
ns

yl
va

ni
a

M
in

ne
so

ta
N

ew
 H

am
ps

hi
re

N
or

th
 D

ak
ot

a
Io

w
a

W
is

co
ns

in
H

aw
ai

i

Figure 4.10: Heatmap of distances organised according to output of HOPACH with cluster
groups denoted by dashed lines

[9] "Rhode Island" "Nebraska" "New Hampshire" "Wisconsin"
[13] "Hawaii"
> dplot(dist(USArrests), us, labels = row.names(USArrests), main = "HOPACH of USArrests")

The dplot() method requires input of a distnce matrix and produces a heatmap of the distances

ordered by the cluster structure. Silhouette plots are also available, and further plot methodology is

available from programs external to R .

4.5 K-centroids

More recent proposals in the literature have tried to remove the dependency on algorithmic depen-

dency. I need to add something on this shortly.
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4.6 Further information

It is worth repeating that “cluster analysis” is a poorly delimited set of methods for unsupervised

classification. Obvious omissions include fuzzy analysis (where we accept some uncertainty in group

assignments), monothetic analysis (where we split based on binary variables one at a time). All these

merit further consideration. However, it is acknowledged that the greatest omission at present is in

terms of mixture modelling, much more comprehensive information is available in McLachlan and

Peel (2000), some coverage is also given in Flury (1997).
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Chapter 5

Multidimensional scaling

We have looked at clustering techniques which partition an n × n matrix of dissimilarities into

groups of like individuals. Whilst it is possible to visualise differences between individuals in terms

of dendrograms, it might be more useful to have a direct representation of the relationship between

individuals. We are now going to consider techniques which let us visualise the relative distances

bewteen individuals in a low dimensional structure. Some early ideas were set out by Richardson

(1938), and the algebraic techniques required to reconstruct a configuration from distances were

established by Young and Householder (1938). Torgerson (1952) set out the foundations for this

work, but developments in the technique associated with the name principal co-ordinates analysis

were given by Gower (1966). Arguably, the tecnique is most commonly referred to as scaling, often

as classical scaling.

5.1 Metric Scaling

Consider (any) distance matrix ∆. It is metric if elements of ∆ satisfy the metric (triangle) inequality

δij ≤ δik + δkj for all i, j, k.

Classical metric multidimensional scaling is based on the n × n distance or dissimilarity matrix, we

will note later some connections with principal components. Here, we will first consider a matrix ∆

of Euclidean distances between objects, such that δij is the distance between points i and j. These

n points can be represented in n − 1 dimensional space. We are looking for a configuration of n

points such that the distance dij between points i and j equals the dissimilarity δij for all i, j. The

dimensionality of this configuration is q such that we are seeking to reconstruct an n× q matrix X.

We can very easily get from an n× p matrix X to a Euclidean distance matrix. If we first form the

n× n matrix Q then Q = XXT . Considering this one element at a time:
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qrs =
p∑
j=1

xrjxsj (5.1)

We know that the Euclidean distance is given by:

δ2
rs =

p∑
j=1

(xrj − xsj)2

=
p∑
j=1

(x2
rj +

p∑
j=1

(x2
sj − 2

p∑
j=1

xrjxsj

= qrr + qss − 2qrs

So given X we can find Q = XXT and hence find the Euclidean distance.

What we want to do now is reverse this process. We should note that our recovered n × q matrix

is not uniquely defined - it is only defined up to translation, rotation and reflection. To fix this, we

will usually assume X has been centred (i.e. make column means zero, such that
∑n
i=1 yij = 0). It

may be noted here that we don’t necessarily want to recover an n× p matrix, we can reconstruct a

matrix with up to n− 1 columns, but as with other dimension reduction techniques we hope to find

an n× q matrix with q < p; clearly if q = 2 it will be easy to visualise the results. So, to recover Q

from D:

n∑
r=1

d2
rs = trace(Q) + nqss (5.2)

n∑
s=1

d2
rs = nqrr + trace(Q) (5.3)

n∑
r=1

d2
rs

n∑
s=1

d2
rs = 2ntrace(Q) (5.4)

By rearranging this and manipulating the equations above which lead us to our distance matrix, we

can recover elements of Q from D using a double centering procedure:

qij = −1
2

(d2
ij − d2

i· − d2
·j + d2

··)

The dots denote means taken over the relevant indices.

c©Paul Hewson 72



Multivariate Statistics Chapter 5

In summary, to find Q given D:

• Square it element by element

• Double centre it

– subtract column means

– subtract row means

– add overall mean

• Multiply by − 1
2 .

Having found Q (Q = XXT ), all we need is to find a suitable X, which sounds like some kind of

matrix square root problem. Given Euclidean distances, Q is symmetric and we can do this using

the spectral decomposition Q = EΛET where Λ = λ1, λ2, . . . , λn, a diagnonal matrix of ordered

eigenvalues and E is the matrix whose columns are the corresponding (normalised) eigenvectors.

If Q = EΛ
1
2 Λ

1
2E

T
= XXT then X = EΛ

1
2 and we have recovered the co-ordinates from the

inter-point distances.

X =


√
λ1


e11

e12

...

e1n

 , . . . ,
√
λn


en1

en2

...

enn




So if we want a one dimensional representation, we just use
(√
λ1e1

)
, for a two dimensional repre-

sentation we would use
(√
λ1e1,

√
λ2e2

)

5.1.1 Similarities with principal components analysis

A short diversion noting a few similarities with principal component analysis may be in order. Consider

the centred data matrix X:

C =
1

n− 1
XTX

Principal components come from an eigenanalysis of C, here we denote the eigenvalues of C by µi

and associated eigenvectors by ai:
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Cai = µiai
1

n− 1
XTXai = µiai

XTXai = (n− 1)µiai

XXTXai = (n− 1)µiXai

QXai︸︷︷︸
zi

= (n− 1)µiXai︸︷︷︸
zi

So Xai = zi is an eigenvector of Q with corresponding eigenvalue (n−1)µi. If we want a normalised

eigenvector it may be worth noting that the length can be found as follows:

||zi||2 = zTi zi = aiX
TXai = (n− 1)aTi Cai

= (n− 1)aTi µiai

= (n− 1)µi
aTi ai
||ai||2

= (n− 1)µi

So, ||zi|| =
√

(n− 1)µi. Hence a normalised eigenvector for Q takes the form 1
(n−1)µi

Xai with

eigenvalue (n− 1)µi

Therefore, our eigenvalues and eigenvectors found from multidimensional scaling / principal co-

ordinates analysis are related to those found from decomposition of the covariance of the scaled data

matrix:

λi = (n− 1)µi

ei =
1√
λi
Xai

Remember that Z = XAT , where:

A =


aT1

aT2
...

aTn
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So Xai:

(Xa1Xa2, . . . ,Xan)

in other words, this is our matrix of principal component scores.

5.2 Visualising multivariate distance

Consider the US Arrests data (we have looked at this a few times). If you still have the distance

matrix spot created earlier, you can run principal co-ordinates analysis quite easily:

> spot <- dist(USArrests, method = "euclidean")
> what <- cmdscale(spot)
> plot(what[,1], what[,2],

xlab = "Axis 1", ylab = "Axis 2",
main = "US Arrests")

> identify(what[,1], what[,2], row.names(USArrests))

By default you extract two variables, and you don’t get the eigen values. You can alter the function

call if you want to change that (see ?cmdscale)

You might like to use identify() to check that very odd points according to principal co-ordinates

are also very odd according to your cluster analysis.

5.3 Assessing the quality of fit

One measure of discrepancy is given by:

ϕ =
n∑
i=1

n∑
j=1

(δ2
ij − d2

ij)

and it can be shown (Mardia et al., 1979)that:

ϕ = 2n(λq+1 + . . .+ λn)

So, if we fit a model with q = n− 1 = 49 (in order to measure the size of the discarded eigenvalues

- most of these eigenvalues are zero hence warnings about eigenvalues below zero):
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> what <- cmdscale(spot, eig = TRUE, k = 49)
> 2 * dim(USArrests)[1] * sum(what$eig[3:49])

We should find that this give the same value as a direct comparison of the distance matrices formed

from the data and the q = 2 dimensional representation. (Note that we convert the distance

matrices into ordinary matrices, and then we carry out vectorised operations to take squares, subtract

elementwise and sum)

what <- cmdscale(spot, eig = TRUE, k = 2)
delta <- as.matrix(dist(USArrests, upper = TRUE))
d <- as.matrix(dist(what$points, upper = TRUE))
sum(as.vector(delta)^2 - as.vector(d)^2)

This has clear analogies with the percent trace measure used in principal components analysis:

∑q
i=1 λi∑p
i=1 λi

(5.5)

> what <- cmdscale(spot, eig = TRUE, k = 4)
> what$eig / sum(what$eig)
[1] 0.9655342206 0.0278173366 0.0057995349 0.0008489079

Considerable work has been carried out on Goodness of fit measures for scaling problems. If ∆ is based

on a measure other than the Euclidean then our reconstructed Q may not be positive semi-definite

(in other words we find some negative eigenvalues and imaginary co-ordinates). If Q =
∑q
i=1 λieie

T
i

then Mardia (1978) suggests the discrepancy measure:

ϕ′ = trace(Q− Q̂
2
) (5.6)

. Following Eckart and Young (1936) we would use:

∑q
i=1 λi∑p
i=1 |λi|

(5.7)

or following Mardia (1978) we would use:

∑q
i=1 λ

2
i∑p

i=1 λ
2
i

(5.8)
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5.3.1 Sammon Mapping

Classical metrical scaling works on orthogonal projections, and has the attractive property of an exact

analytical solution. This is quite restrictive, Sammon (1969) suggested minimising the discrepancy

measure:

ϕ′′ =
n∑
i=1

n∑
j=1

(δij − dij)2

This has no analytical solution, and numerical methods must be used. But it is worth noting that a

set of disparities are generated:

d̂ij = a+ bδij (5.9)

This should look like a reasonably familiar formula, and you should have guessed that residual sums

of squares from 5.9 yields another discrepancy measure. This measure can (should / must) be

normalised with reference to its size
∑n
i=1

∑n
j=1 d

2
ij , giving what is called the standardised residual

sum of squares:

STRESS =

(∑n
i=1

∑n
j=1(dij − d̂ij)2∑n

i=1

∑n
j=1 d

2
ij

) 1
2

(5.10)

SSTRESS =

(∑n
i=1

∑n
j=1(d2

ij − d̂2
ij)

2∑n
i=1

∑n
j=1 d

4
ij

) 1
2

(5.11)

Normalisation means that both these measures take on values between 0 and 1, lower values indicate

better fit. Values below 0.1 are usually considered adequate, but it may be worth noting that Kruskal

(1964) suggests values below 0.2 give a poor fit, values below 0.1 a fair fit, values below 0.05 a good

fit, values below 0.025 an excellent fit.
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Chapter 6

Multivariate normality

The multivariate normal distribution remains central to most work concerning multivariate continuous

data. Experience has suggested that it is usually at least an acceptable approximation, and of course

one usually has recourse to the central limit theorem. Although we will examine a few common

alternatives, it is perhaps in the field of robust statistics where it’s use has been modified most.

6.1 Expectations and moments of continuous random func-

tions

The mean and covariance can be defined in a similar way to to the univariate context

Definition 6.2 Given a multivariate distribution function for p random variables x = (x1, x2, . . . , xp)
taking the form P (x ∈ A) =

∫
A
f(x)dx, expectation can be defined as:

E(g(x)) =
∫

R

g(x)f(x)dx (6.1)

which gives rise to moments

E(x) = µ (6.2)

as well as moment generating functions:

Mxt = Eex
T t, (6.3)
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cumulants:

Kxt = log(Mxt), (6.4)

and the characteristic function:

φxt = E(Eeix
T t) (6.5)

These generating functions have analogous properties to their univariate counterparts.

6.3 Multivariate normality

Definition 6.4 If x = (x1, x2, . . . , xp) is a p dimensional vector of random variables, then y has a

multivariate normal distribution if its density function is:

f(x) =
1

(2π)p/2|Σ|1/2
e−(x−µ)TΣ−1(x−µ);

for −∞ < yij <∞, j = 1, 2, . . . , p

And it can be shown that E(x) = µ, and that V ar(x) = Σ, hence we can use the notation:

y ∼MVNp(µ,Σ)

Finding the maximum likelihood estimators for µ and Σ is not trivial, there are perhaps at least three

derivations. We briefly recap results from one of the more popular derivations here.

Theorem 6.5 If x = (x1, x2, . . . , xp) is a p dimensional vector of random variables representing a

sample from MVNp(µ,Σ), then the log-likelihood function can be given by as follows:

(µ,Σ|x) = −np
2

log(2π)− n

2
log|Σ| − 1

2

n∑
i=1

(
(xi − µ)TΣ−1(xi − µ)

)
(6.6)

which can be rewritten as:

(µ,Σ|x) = −np
2

log(2π)− n

2
log|Σ| − 1

2
trace

(
Σ−1

n∑
i=1

(xi − µ)T (xi − µ)

)

adding and subtracting x̄ from each of the two brackets on the right, and setting A =
∑n
i=1(xi −

x̄)(xi − x̄)T allows this to be rewritten as:
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−np
2

log(2π)− n

2
log|Σ| − 1

2
trace

(
Σ−1A+ nΣ−1(x̄− µ)(x̄− µ)T

)
The way to obtaining the maximum likelihood estimators for µ is now fairly clear. As Σ is positive

definite, we require (x̄ − µ)(x̄ − µ)T to be greater than or equal to zero, hence µ̂ = x̄ maximises

the likelihood for all positive definite Σ

A number of derivations for Sigma are possible, essentially we need to minimise:

(x̄,Σ) = log|Σ|+ trace(Σ−1S). (6.7)

with respect to Σ. This can be derived as a minimisation of (x̄,Σ) − log(|S|) = trace(Σ−1S) −
log|Σ−1S|. If S1/2 is the positive definite symmetric square root of S, trace(Σ−1S) = trace(S1/2Σ−1S1/2),

but given that A = S1/2Σ−1S1/2 is a symmetric matrix we know that trace(A) =
∑p
j=1 λi and

|A| =
∏p
j=1 λi where λ1, . . . , λp are the eigenvalues of A, which must all be positive (because A is

positive definite). Hence we wish to minimise:

(x̄,Σ)− log(|S|) =
p∑
j=1

λi − log
p∏
j=1

λi (6.8)

and given that f(z) = z − log(z) takes a unique mininum at z = 1 we wish to find a matrix where

all the eigenvalues equal 1, i.e. the identity matrix. Consequently we wish to find:

S1/2Σ−1S1/2 = I (6.9)

hence S is the maximum likelihood estimator of Σ. Do note that this requires n > p.

6.5.1 R estimation

cov() and var() (equivalent calls) both give the unbiased estimate for the variance-covariance

matrix, i.e. 1
n−1

∑n
i=1(xi − x̄)T (xi − x̄). It is worth nothing that by default, cov.wt() (which will

do a few other things as well) uses the divisor 1
n

6.6 Transformations

Box and Cox (1964) modified earlier proposals by Tukey (1957) to yield the following transformation:

x(λ) =

{
xλ−1
λ , λ 6= 0,

log x, λ = 0 andx > 0.
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L (µ, σ2, λ|x(λ)) ∝ (2πσ2)−n/2 exp(−
n∑
i=1

(x(λ)
i − µ)2

2σ2

n∏
i=1

xλ−1
i (6.10)

If λ is fixed, this likelihood is maximised at:

x̄(λ) =
1
n

∑
i=1

nx
(λ)
i (6.11)

and

s2(λ) =
1
n

n∑
i=1

(x(λ)
i − x̄

(λ))2 (6.12)

which means that the value maximising the log-likelihood is proportional to:

L(λ) = −n
2

log s2(λ) + (λ− 1)
n∑
i=1

log xi (6.13)

It is possible to apply this transformation to each variable in turn to obtain marginal normality

Gnanadesikan (1977) argues that this can be used satisfactorily in many cases.

However, it may be preferable to carry out a multivariate optimisation of the transformation param-

eters.

A range of tranformations have been considered for multivariate data, mainly of the Box-Cox type.

If the variables y = (y1, y2, . . . , yp are are smooth transformation of x, the frequency function for y

can be given by:

g(y) = f(x(y))|∂x
∂y
|

where x(y) is x expressed in terms of the elements of y, and J = |∂x∂y | is the Jacobian which ensures

the density is mapped correctly.

∏p
j=1

∏n
i=1 x

λj−1
ij

L (µ,Σ, λ|X(λ)) ∝ −n
2

log|Σ|−1
2
tr(Σ−1(X(λ)−1µT )T (X(λ)−1µT )+sump

j=1

(
(λj − 1)

n∑
i=1

log xij

)
(6.14)

If λ is fixed, this likelihood is maximised at:
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x̄(λ) =
1
n

1TX (6.15)

and

s2(λ) = (X(λ) − 1µT )T (X(λ) − 1µT ) (6.16)

which means that the value maximising the log-likelihood is proportional to:

L(λ) = −n
2

log|Σ̂|+
p∑
j=1

(
(λj − 1)

n∑
i=1

log xij

)
(6.17)
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Chapter 7

Inference for the mean

We introduced the Mahalanobis distance earlier in 3.1. Consideration of the squared Mahalabnobis

distance leads us to consider the so called T2 statistic (the nomenclature reflects that this relates to

a t-statistic for one variable). This can be found as:

T 2 = n(µ0 − x̄)TS(µ0 − x̄) (7.1)

where n is the sample size, µ0 is the hypothesised mean, x̄ and S are the sample mean and covariance

matrices respectively. It turns out that this statistic follows a T2 distribution, however, given that

there is a simple relationship between the T2 and F distribution it is often easier to work with the

latter.

If xi, i = 1, . . . n represent a sample from a p variate normal distribution with mean µ and covariance

Σ, provided Σ is positive definite and n > p, given sample estimators for mean and covariance x̄

and S respectively, then:

F =
(

n

n− 1

)(
n− p
p

)
(µ0 − x̄)TS(µ0 − x̄) (7.2)

follows an F -distribution with p and (n− p) degrees of freedom. Note the requirement that n > p,

i.e. that S is non-singular. This clearly limits the use of this test in bio-informatic applications and

we may examine a few proposals to deal with this. To carry out a test on µ, we determine whether

F ≤ F(1−α),p,n−p, the (1−α) quantile of the F distribution on p and n− p degrees of freedom. We

reject the null hypothesis if our test statistic exceeds this value. We will not consider the one sample

T2 test any further, but will now examine the two-sampled test.
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7.1 Two sample Hotelling’s T2 test

Analagous to the univariate context, we wish to determine whether the mean vectors are comparable,

more formally:

H0 : µ1 = µ2 (7.3)

The T2 statistic proposed by Hotelling (1931), will be based this time on the distance between two

mean vectors. It can be calculated as:

T 2 =
(

n1n2

n1 + n2

)
(x̄1 − x̄2)TS−1(x̄1 − x̄2) (7.4)

where S−1 is the inverse of the pooled correlation matrix given by:

S =
(n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2

given the sample estimates for covariance, S1 and S2 in the two samples. As before, there is a simple

relationship between the test statistic, T 2, and the F distribution.

If x1i, i = 1, . . . n1 and x2i, i = 1, . . . n2 represent independent samples from two p variate normal

distribution with mean vectors µ1 and µ2 but with common covariance matrix Σ, provided Σ is

positive definite and n > p, given sample estimators for mean and covariance x̄ and S respectively,

then:

F =
(n1 + n2 − p− 1)T 2

(n1 + n2 − 2)p

has an F distribution on p and (n1 +n2−p−1) degrees of freedom. Essentially, we compute the test

statistic, and see whether it falls within the (1 − α) quantile of the F distribution on those degrees

of freedom. note again that to ensure non-singularity of S, we require that n1 + n2 > p.

Whilst we won’t use the next formula for computation, it may clarify understanding of this test if we

consider the sample estimate of the mean difference d = x̄1− x̄2, and the corresponding population

distance δ = µ1 − µ2 we can use the formula:

F =
(
n1 + n2 − p− 1
p(n1 + n2 − 2)

)(
n1n2

n1 + n2

)
(d− δ)TS−1(d− δ)

to calculate the test statistic.

We are going to consider an example using data from Flea Beetles reported by Lubischew (1962) and

used in (Flury, 1997, page 307). It should be noted that in terms of practical computation, methods

are based on the QR decomposition will be used, details are given in Seber (1984). However, for the

purposes of understanding the principles behind the test, we follow the formula directly.
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> library(Flury)
> ?flea.beetles
> data(flea.beetles)

It can be seen that there is a factor “Species” denoting whether the beetles are from ’oleracea’ or
’carduorum’. There are four numeric variables as follows: ’TG’; Distange of the Transverse Groove to
the posterior border of the prothorax (microns), ’Elytra’; Length of the Elytra (in units of 0.01mm),
’Second.Antenna’; Length of the second antennal joint (microns) and ’Third.Antenna’; Length of the
third antennal joint (microns). We need to estimate the mean for each sample, and calculate the
difference between the two vectors:

mu <- by(flea.beetles[,-1], flea.beetles$Species, colMeans)
mudiff <- mu[[1]] - mu[[2]]
p <- dim(flea.beetles)[2] - 1 ## how many variables are we using

The next step is to extract the two covariance matrices:

> covmats <- by(flea.beetles[,-1], flea.beetles$Species, cov)
> covmats

and then to estimate the pooled covariance matrix S for the flea beetle data (where N[1] gives n1,

N[2] gives n2), can be calculated as:

> N <- xtabs(~flea.beetles[,1])
> pooledS <- ((N[1]-1) * covmats[[1]] + (N[2]-1) * covmats[[2]]) / (N[1] + N[2] -2)
> pooledS
> Sinv <- solve(pooledS)
> Sinv

TG Elytra Second.Antenna Third.Antenna
TG 0.013257964 -0.0053492256 0.0015134494 -0.0021617878
Elytra -0.005349226 0.0066679441 -0.0047337699 -0.0005969439
Second.Antenna 0.001513449 -0.0047337699 0.0130490933 -0.0007445297
Third.Antenna -0.002161788 -0.0005969439 -0.0007445297 0.0060093005

Having calculated the inverse of the pooled correlation matrix we also need the scaling factor n1n2
n1+n2

.

Hotellings T2 is then quite straightforward to calculate:

> scaleFact <- (N[1]*N[2]) / (N[1]+N[2])
> Hotellings <- t(mudiff) %*% Sinv %*% mudiff * scaleFact
> Hotellings

[,1]
[1,] 133.4873

which is the value of the T2 statistic. We could work with this value directly, but it is more convenient
to transform it into something we can compare with the F distribution.
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Pairwise scatter plots for Lubischew's Flea Beetle data

Figure 7.1: Scatterplot for Lubischew flea data, lower panel has symbols denoting the two species

test <- ((N[1] + N[2] - p - 1) * Hotellings )/ ((N[1] + N[2] - 2) * p)
test

[,1]
[1,] 30.666

and we compare this with an F distribution having p and (n1 + n2 − p− 1) d.f.

And we can check this as follows:

> pf(test, p, N[1]+N[2]-p-1,lower.tail = FALSE )
[,1]

[1,] 3.215324e-11

which gives us the area under the curve from our test statistic (30.666) to∞. Clearly in this case, we

have reject H0, i.e. there is evidence that the mean vectors, x̄oleracea = (194.4737, 267.0526, 137.3684, 185.9474), x̄carduorum =
(179.55, 290.80, 157.20, 209.25), for the two species differ. This is perhaps no surprise if you consider

the data. Figure 7.1 contains a scatterplot where different symbols have been used in the lower

panels for the two species. However, we do need to consider this in a little more detail.
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7.2 Constant Density Ellipses

Flury (1997) gives an interpretation of constant density ellipses in terms of the Mahalanobis distance

which is worth reading. Essentially, we wish to find a region of squared Mahlanobis distance such

that:

Pr
(
(x̄− µ)TS−1(x̄− µ)

)
c2)

and we can find c2 as follows:

c2 =
(
n− 1
n

)(
p

n− p

)
F(1−α),p,(n−p)

where F(1−α),p,(n−p) is the (1−α) quantile of the F distribution with p and n−p degrees of freedom,

p represents the number of variables and n the sample size.

This illustration is based on, but differs from code provided by Marco Bee to accompany and will

make much more sense if used in conjunction with that book. It is worth checking how and why this

code differs! Firstly, we need a function to draw ellipses:

ellipse <- function(covmat, centroid, csquare, resolution, plot = TRUE) {
angles <- seq(0, by = (2 * pi)/resolution, length = resolution)
sd <- covmat[1,2] / sqrt(covmat[1,1] * covmat[2,2])
projmat <- matrix(0,2,2)
projmat[1,1] <- sqrt(covmat[1,1] %*% (1+sd)/2)
projmat[1,2] <- -sqrt(covmat[1,1] %*% (1-sd)/2)
projmat[2,1] <- sqrt(covmat[2,2] %*% (1+sd)/2)
projmat[2,2] <- sqrt(covmat[2,2] %*% (1-sd)/2)

circle <- cbind(cos(angles), sin(angles))
ellipse <- t(centroid + sqrt(csquare) * projmat %*% t(circle))
if (plot == TRUE) {lines(ellipse)}
return(ellipse)
}

It is possible to define a function which calculates c2 and calls the ellipse routine (I’m not completely

convinced this is doing the calculation correctly yet, in particular I’m not sure I’m using the correct

tail).

function (data, alpha=0.05, resolution=500)
{
xbar <- colMeans(data)
n <- dim(data)[1]
p <- dim(data)[2]
f <- qf(1-alpha, p, n-p)
csquare <- ((n-1)/n) * (p / (n-p)) * f
cat(csquare)
ellipse <- ellipse(cov(data), xbar, csquare, resolution)
}
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Figure 7.2: Constant density ellipse for mean vector for difference in head width and breadth,
and univariate confidence intervals for the mean of each variable

For illustrative purposes, we’ll create a n×2 data object from our flea beetles, and plot the confidence

ellipse for these.

X <- cbind(flea.beetles[,2], flea.beetles[,3])
plot(X)
cdellipse(X, alpha = 0.01)
cdellipse(X, alpha = 0.05)

These can be contrasted with the univariate confidence intervals:

abline(v = confint(lm(X[,1]~1)))
abline(h = confint(lm(X[,2]~1)))

This exercise should be repeated with the turtles data! However, it is possible to illustrate the basic

idea with the sibling heads data, where we construct two derivative variables indicating the difference

in head breadth and the difference in head width. These are plotted in figure 7.2, it can be seen

that the univariate confidence intervals and the constant density ellipse support different areas of

parameter space. Ignoring the correlation structure in these data could lead to flaws in inference

when assessesing parameter uncertainty.
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7.3 Multivariate Analysis of Variance

As with the univariate situation, t-tests are fine for comparing the means of two groups, but we would

have “multiple comparison” problems if we tried to compare more than two. In an analagous way, in

the multivariate context we have MANOVA.

First of all we’ll enter some data relating to the production of plastic film reported in Krzanowski

(2000). Tear, gloss and opacity are measures of the manufactured films.

> tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2, 6.9, 6.1, 6.3,
6.7, 6.6, 7.2, 7.1, 6.8, 7.1, 7.0, 7.2, 7.5, 7.6)

> gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0, 9.9, 9.5, 9.4,
9.1, 9.3, 8.3, 8.4, 8.5, 9.2, 8.8, 9.7, 10.1, 9.2)

> opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0, 3.9, 1.9, 5.7,
2.8, 4.1, 3.8, 1.6, 3.4, 8.4, 5.2, 6.9, 2.7, 1.9)

Y <- cbind(tear, gloss, opacity)

We now need to put in information on the rate of extrusion, and the amount of additive used (gl()

is a command which specifically creates these kind of experimental factors).

> rate <- factor(gl(2,10), labels=c("Low", "High"))
> additive <- factor(gl(2, 5, len=20), labels=c("Low", "High"))

There are three conventional ANOVA that could be considered here, but to consider the three

responses together we may wish to conduct a MANOVA. However, we can use manova() to fit the

multivariate ANOVA, and use summary.aov() to extract the results of the unvariate analyses.

There are three matrices of interest in MANOVA:

• Total SSP (T )

• Between-group SSP (B = T −W )

• Within-group SSP (W )

Wilk’s Lambda is the ratio |W ||T |

> fit <- manova(Y ~ rate * additive)
> summary.aov(fit) # univariate ANOVA tables
Response tear :

Df Sum Sq Mean Sq F value Pr(>F)
rate 1 1.74050 1.74050 15.7868 0.001092 **
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additive 1 0.76050 0.76050 6.8980 0.018330 *
rate:additive 1 0.00050 0.00050 0.0045 0.947143
Residuals 16 1.76400 0.11025
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Response gloss :
Df Sum Sq Mean Sq F value Pr(>F)

rate 1 1.30050 1.30050 7.9178 0.01248 *
additive 1 0.61250 0.61250 3.7291 0.07139 .
rate:additive 1 0.54450 0.54450 3.3151 0.08740 .
Residuals 16 2.62800 0.16425
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Response opacity :
Df Sum Sq Mean Sq F value Pr(>F)

rate 1 0.421 0.421 0.1036 0.7517
additive 1 4.901 4.901 1.2077 0.2881
rate:additive 1 3.961 3.961 0.9760 0.3379
Residuals 16 64.924 4.058

A call to summary() will give the MANOVA table. If you leave out the text = Ẅilks¨ call you will

get a default Pillai-Bartlett statistic.

> summary(fit, test="Wilks") # ANOVA table of Wilks’ lambda
Df Wilks approx F num Df den Df Pr(>F)

rate 1 0.3819 7.5543 3 14 0.003034 **
additive 1 0.5230 4.2556 3 14 0.024745 *
rate:additive 1 0.7771 1.3385 3 14 0.301782
Residuals 16
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

As with Hotellings T2, Wilk’s Lambda has to be converted into an F statistic, a calculation that has

been done by the software. It is possible to approximate this by a χ2
pbdf withW = −

(
w − p−b+1

2

)
logΛ

where p = number of variables, w = residual degrees of freedom (16), b = number of hypotheses

degrees of freedom (1).

In any case, the interaction term is not significant. We can fit the model without interactions, which

as anticipated suggests that both additive and extrusion rate have an effect on the outcome measures.

We will use by() to examine the various group means.

> fit <- manova(Y ~ rate + additive)
> summary(fit, test = "Wilks")

Df Wilks approx F num Df den Df Pr(>F)
rate 1 0.3868 7.9253 3 15 0.002120 **
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additive 1 0.5538 4.0279 3 15 0.027533 *
Residuals 17
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> by(Y, rate, mean) ## group means according to extrusion rate
INDICES: Low

tear gloss opacity
6.49 9.57 3.79

------------------------------------------------------------
INDICES: High

tear gloss opacity
7.08 9.06 4.08

> by(Y, additive, mean) ## group means according to additive
INDICES: Low

tear gloss opacity
6.59 9.14 3.44

------------------------------------------------------------
INDICES: High

tear gloss opacity
6.98 9.49 4.43

>
> by(Y, list(rate,additive), mean) ## group means by both.
: Low
: Low

tear gloss opacity
6.30 9.56 3.74

------------------------------------------------------------
: High
: Low

tear gloss opacity
6.88 8.72 3.14

------------------------------------------------------------
: Low
: High

tear gloss opacity
6.68 9.58 3.84

------------------------------------------------------------
: High
: High

tear gloss opacity
7.28 9.40 5.02

High levels of extrusion rate lead to higher levels of tear and opacity but lower levels of gloss. High

levels of addtive lead to higher levels of tear, gloss and opacity.
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Chapter 8

Discriminant analysis

Discriminant analysis presupposes that we have a number of known groups of individuals, and a set of

data which has been collected on individuals within these groups. We wish to find a way of using that

data to predict which group these individuals belong to, either to understand the differences or to

be able to predict group membership. Bumpus (1898) collected data on sparrows who survived and

didn’t survive a storm, these data are extensively analysed in this context by Manly, the primary aim

of the analysis being to look for differences between the groups. Are there different features which

help us tell storm survivors from non-survivors? More usually, we may be interested in predicting

group membership. Common examples can be found in finance; can banks tell good credit risks from

bad based on data collected on customers who have subsequently defaulted on loans, see Johnson

and Wichern (1998) for more details. Another good account of discriminant analysis is given by

Flury (1997) who suuggests it may be valuable when we have to carry out destructive procedures to

determine group membership (such as in certain quality control investigations). Finally a rather brief

account is given in Venables and B.D.Ripley (2002), which gives the example of disease diagnosis.

Consider a set of measurements of patient characterstics, and information determined on whether

these patients have breast cancer or not. We would be very interested in being able to make a

determination of breast cancer based on the data, rather than having to wait for biopsy or other

pathological information.

Discriminant analysis in one dimension seems straightforward enough. We can examine the densities

of the two groups and find an optimal cut-off point, which classifies the two groups as accurately

as possible. Some idea of the procedure is given in figure 8.1, which illustrates the idea behind

discriminant function.

Note immediately that there is a measureable risk of misclassification, which depends on the variance

within groups and the separation between groups. All we need to do is extent this procedure to work

in more than one dimension. We are going to realise this by seeking a linear combination giving us
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Figure 8.1: Idealised discrimant function

the largest separation between groups. In other words, we are going to find linear combinations based

on the original variables:

z = a1x1 + a2x2 + . . .+ apxp (8.1)

However our linear combination this time will be optimised to give us the greatest potential for

distinguishing the two groups. Having found a suitable linear combination, we select a cut-off point

(denoted by the vertical dotted line in the figure above), and assign observations to group 1 or group

2 based on the value relative to the cut-off. You can see from the stylised function shown that some

observations will be misclassfied! We check the performance of this aspect of our procedure by means

of a confusion matrix.

Recall that when conducting the T 2 test we essentially looked for linear combination of variables

which maximised the difference between groups. Similar ideas apply in discriminant analysis. We

seek a transformation of the data which gives the maximum ratio of group means to group variance

within the two groups, i.e. we are maximising the between group variation relative to the within

group variance - this should sound vaguely like what goes on in ANOVA:

Source d.f. Mean Square F ratio

Between groups m− 1 MB MB/MW

Within groups N −m MW

N-1

We need to find a linear combination that yields as large an F ratio as possible, hence the coefficients
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a1, . . . , ap need to be chosen to maximise this value. More than one discriminant function is available,

there are

s = min(p,m− 1) (8.2)

discriminant functions available, where p is the number of variables, and m is the number of groups.

Considering the case where we have m > 2 groups, and p > 2 variables, we are looking for the

following discriminant functions:

z1 = a11x1 + a12x2 + . . .+ a1pxp

z2 = a21x1 + a22x2 + . . .+ a2pxp

. . .

zs = as1x1 + as2x2 + . . .+ aspxp

although hopefully only a small number of these linear combinations will account for all important

differences between groups.

8.1 Fisher discimination

Remember the T 2 statistic:

T 2(a) =
(a(x̄1 − x̄2))2

n1n2/(n1 + n2)
aTSa

(8.3)

This is equivalent to finding a which maximises |a(x̄1− x̄2)| subject to aTSa = 1. This has a single

solution:

a = S−1(x̄1 − x̄2)

and so the linear discriminant function is given by:

z = (x̄1 − x̄2)TS−1x
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In two dimensions, an obvious cut-off would be the midpoint between the mean value of z for group

1 and 2.

Fisher’s approach has been extended to cope with more than two groups. Again, we wish to find a

linear combination z = aTx which maximised the ratio of between group variance to within group

variance.

If we calculate the within sample matrix of sum of squares and cross products W , and the total

sample matrix of sum of squares and cross products T , we can easily find the between-groups sample

matrix sum of squares and cross products:

B = T −W (8.4)

In effect we wish to maximise:

aTBa

aTWa
(8.5)

and usually do this subject to the condition that aTWa = 1. Fisher’s method of discriminant

analysis reduces to finding the eigenvalues and corresponding eigenvectors of W−1B. The ordered

eigenvalues λ1, . . . , λs are the ratio of between groups to within groups sum of squares and cross

products for z1, . . . , zs, the corresponding eigenvectors, a1, . . . ,as, where ai =


ai1

...

aip

 are the

coefficients of zi.

We make a number of big assumptions in discriminant analysis: that observations are a random sam-

ple, that they are normally distributed and that the variance is the same for each group. Discriminant

analysis is relatively resistant to some departures from the normality assumption - it can cope with

skewness but not with outliers.

8.2 Accuracy of discrimination

Clearly, one important measure of the success of our discriminant rule is the accuracy of group

prediction: note that there are a number of ways of measuring this and that discriminant analysis is

one technique among many used in supervised classification. There are many techniques in machine

learning and other areas which are used for classification, for example you have already met the

technique of logistic discrimination.

Model over-fitting is a known problem: we can fit a classifier really really well to our existing data but
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it doesn’t work well next time we carry out a data collection exercise. A key concept in this regard

is the use of training and testing sets, where we split our data into two groups, and use one part to

build a classifier, and the other to test it. There are many other technques which can help in this

regard, for example leave one out (loo) cross validation and some of the more recent multivariate

texts should be consulted.

An important idea in terms of measuring the success of our classifier is the confusion matrix. This

sounds rather grand, but is basically a matrix telling us how many times our discriminant function

made a correct classification, and how many times it got it wrong.

8.3 Importance of variables in discrimination

Some textbooks refer to questions surrounding selection of variables for use in a classifier. It is

important to consider whether variables are necessary for classification; often a tolerance test may be

used prior to the analysis to remove multicollinear and singular variables. It may even be desirable

to carry out a dimension reducing technique. The reason for carrying out these tests are related to

over-fitting.

Some software provides “standardised” coefficients, the idea being that perhaps it is safe to remove

variables with small standardised coefficients. However, another approach could well be to consider

classifiers with different numbers and combinations of variables and contrast the confusion matrix.

This might help identify variables which do the best job of distinguishing the groups, and those which

are the least necessary.

8.4 Canonical discriminant functions

As mentioned earlier, we can have more than one discriminant function. It is usual to plot these on a

scatterplot in an attempt to visualise the discriminant ability. However, there are tests of significance.

For example, we wish to find discriminants with a small Wilk’s lambda ( |W ||T | ), in our case this can

be derived as :

Λ2 =

(
m∑
k=1

nk − 1− 1
2

(p+m)

)
ln(1 + λj), (8.6)

which has a χ2 distribution with p+m− 2j degrees of freedom.

c©Paul Hewson 99



Multivariate Statistics Chapter 8

8.5 Linear discrimination - a worked example

In practice, we’re going to consider a classification exercise on the Iris data. This is rather well known

data featuring three species of Iris, and four anatomical measures. First of all we need to load the

MASS to obtain the lda() function. Then we are going to pull out a training set from the Iris data.

> library(MASS)
> data(iris3)
> Iris <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),
+ Sp = rep(c("s","c","v"), rep(50,3)))
> train <- sample(1:150, 75)

train is a set of index numbers which will allow us to extract a training set. We use lda() to fit a

discriminant analysis, setting all priors equal to 1 (i.e. group memberships the same), and subset =

train to fit the analysis to the training set. The squiggle dot indicates that we wish to use all other

variables within Iris to predict Species (Sp).

> z <- lda(Sp ~ ., Iris, prior = c(1,1,1)/3, subset = train)

> z

Having extracted a training set, we are going to classify the remaining Iris’ and see how well the

predicted and actual species line up.

> actual <- Iris[-train,]$Sp
> preds <- predict(z, Iris[-train, ])$class)
> xtabs(~actual + preds)

One little thing to watch when using software is that in practice, Fisher’s approach tends not to

be used. An approach based on probability distributions and using Bayes rule is common. All this

does, is correct for the proportions in each group to start with. Instead of finding a discriminant rule

assuming a 50:50 split, we use information on more plausible group numbers.
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Principal component analysis

The origins of principal component analysis are usually traced to Pearson (1901) who was concerned

with the fitting planes in the analysis of covariance matrices by orthogonal least squares. Much

development of the technique is ascribed to Hotelling (1933), who, working with the correlation

matrix provided another development of the technique which is more familiar. As a technique in

its own right it has received book length treatment by Jackson (1991) and Jolliffe (1986); another

excellent exposition is given in Flury (1988) who also develops one generalisation of the technique

to multiple groups. The theory underlying principal components is important in a wide range of

areas, consequently this chapter will examine some of the underlying theory as well as considering

conventional approaches to principal component analysis. An R-centric selection of recent extensions

to the technique will also be considered in the next chapter.

Principal component analysis can be performed for a variety of reasons, one can perhaps consider its

use in one of three ways. Arguably the most common use is in terms of dimension reduction. Principal

component analysis can be thought of as a data analytic method which provides a specific set of

projections which represent a given data set in fewer dimensions. This has obvious advantages when

it is possible to reduce dimensionality to two or three as visualisation becomes very straightforward

but it should be acknowledged that reduced dimensionality has advantages beyond visualisation.

Another rationale for conducting principal components analysis is to transform correlated variables

into uncorrelated ones, in other words to sphere the data. Whilst univariate data can be standardised

by centering and scaling, in a multivariate context one may also wish to “standardise” the correlation

between variables to zero. The final rationale for the technique is that it finds linear combinations of

data which have relatively large (or relatively small) variability.

In essence, we wish to form projections z = (z1, z2, . . . , zq) of the standardised data x = (x1, x2, . . . , xp)
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z1 = e11x1 + e12x2 + . . . e1pxp

z2 = e21x1 + e22x2 + . . . e2pxp

. . .

zq = eq1x1 + eq2x2 + . . . eqpxp

where the coefficients E form a p × q matrix. If dimension reduction is our goal, clearly we hope

that we can form an adequate representation of the data with q < p.

We are going to illustrate Principal Component Analysis by reference to three sets of data. The first

was presented by Karlis et al. (2003) and relates to Heptathalon results from the Sydney Olympics

in 2000. In this event, athletes compete in seven different sporting activities, and clearly for the

purposes of the competition a decision has to be made as to who is the best heptathelete overall.

For sporting purposes, points are awarded for performance in each event and summed. In essence,

a one dimensional composite variable has to be created from the results for the seven events before

a decision can be made as to who wins the medals. We are not necessarily going to challenge the

way the International Olympic Committee calculates scores, but clearly a linear combination which

achieved maximum separation of athletes might be interesting. A trivial linear combination would be

to take e = 1
n1. However, the aim of any projection method is to find an interesting projection of

the data. All we need to do is decide what we mean by interesting. As mentioned earlier, one use

of principal components is to find projections where the variance is maximised, thus maximising the

separation between heptatheletes.

The second rather well used set of data relates to carapace measurements the painted turtle Chrysemys

picta marginata first reported by Jolicoeur and Mosimann (1960). These data contain 3 variables

recording the shell length, width and height for 24 male and 24 female turtles. We will consider these

data partly because the turtles are cute, but mainly because it affords some consideration of the role

of standardisation. Standardising by subtracting mean and dividing by the standard deviation can be

a rather brutal approach, it is possible to take the natural logarithms of these anatomical measures

which allows a different insight into the relationship between the measures.

Finally, we will investigate some gene expression data. In microarray experiments, one typically collects

data from a relatively small number of individuals, but records information on gene expression of a

large number of genes and therefore have a data matrix X where n << p. Dimension reduction is a

central concern at some stage of the analysis, either on the whole set of genes or on a selected subset.

As might become clear, groups of genes which can be identified analytically as co-expressing are

referred to as eigengenes. We will therefore consider some of the issues surrounding the interpretation

of principal components in high dimensions.

Some other data sets will be included to illustrate specific points where necessary, and the excercises
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will also develop other data sets.

9.1 Derivation of Principal Components

We will firstly consider the derivation of population principal components in the style proposed by

Hotelling (1933) as a way of finding linear combinations with maximum variance. Given that we have

a random vector x ∈ RP , we wish to consider the vector of transformed variables z = αT (x − x̄),

and so we wish to find α such that the Var(z) is maximised. By convention, we insist that α is

orthonormal, i.e. in addition to being a vector of unit length we require that αTα = 1. To find

an expression for Var(z) in terms of the original variables x, firstly by considering the following

relationship:

Var(z) = Var(αTx) = E(αTx)2

Hence,
n∑
i+1

(zi − z̄)2 =
n∑
i=1

αT
[
(xi − x̄)(xi − x̄)T

]
α

and premultiplying both sides by 1
n−1 gives us an estimate of the variance of the transformed variables

in terms of the original variables. To find α in order to maximise the variance we therefore wish to

find:

max(αT Σ̂α) (9.1)

subject to the side condition that αTα = 1. Considering the first principal component, we wish to

maximise Var(z1) = αT1 Σ̂α1; it can be shown that this problem can be specified by incorporating

a Lagrange multiplier. Consider maximising the expression ϕ given below, where λ is a Lagrange

multiplier:

ϕ1 = αT1 Σ̂α1 − λ1(αT1 α1 − 1) (9.2)

which can be solved by differentiation with respect to α1. The differential gives us a system of linear

equations as follows:
∂ϕ1

∂α1
= 2Σα1 − 2λα1 (9.3)

and setting the derivative equal to zero gives:

Σα1 = λ1α1 (9.4)

which is easily rearranged to give:

(Σ− λ1I)α = 0. (9.5)

We have p equations and p unknowns, but we can find non-trivial solutions where α 6= 0 noting that
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if aT1 a = 1 then Σ− λI is singular which therefore implies that:

|Σ− λ1I| = 0 (9.6)

This looks like an eigenproblem, so λ1 can be found as the largest eigenvalue of Σ, and α1 as the

corresponding eigenvector.

For the second principal component, as we are going to assume orthogonality, we wish to add the

side condition that Cor(z1, z2) = 0. We therefore need to solve:

ϕ2 = αT2 Σ̂α2 − λ2(αT2 α2 − 1)− µ(αT1 Σα2) (9.7)

where differentiating now gives:

∂ϕ2

∂α2
= 2Σα2 − 2λ2α2 − µΣα1 (9.8)

but as we assume Cor(z1, z2) = 0 we take αT2 Σα1 = αT1 α2 = 0 implying that αT1 α2 = αT2 α1 = 0
hence we can premultiply our equation in 9.8 by α2 giving:

2αT2 Σα2 − 2αT2 λ2α2 − µαT2 Σα1 (9.9)

which implies that µ = 0, and that λ2 is also an eigenvalue of Σ.

Clearly in any formal sense we should continue this process, but the apparent pattern can be demon-

strated. To find further principal components we need to take the spectral decomposition of the

covariance matrix, subject to normalising the eigenvectors to have unit length. In order to find prin-

cipal components which have maximum variance subject to the condition of being orthogonal to any

previous principal component we only need to solve:

|Σ− λI| = 0

and to find:

Σα = λα

Of some interest to us is that if any matrix Σ is symmetric (which will always be the case for cor-

relation and covariance matrices), the normalised eigenvectors corresponding to unequal eigenvalues

are orthonormal.

In practice, we don’t know Σ and we have to estimate it from our data with a suitable estimate. We

can consider a number of possibilities, indeed we will examine robust estimators later. However, most

development of principal components assume the unbiased estimator S = 1
n−1X

TX, where X is a

matrix of mean centred data, although we will note later that one of the R functions actually uses
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S = 1
nX

TX. µ is readily estimated from the sample mean. However, before considering applications

to sample principal components, we make a few comments on the geometry of this technique.

9.1.1 A little geometry

Whilst we have covered the variance maximising property of principal components, it is possible to

consider the technique from a geometric perspective. Geometry is perhaps rather more important

in recent developments in principal components, details on the concept of self-consistency are given

by Flury (1997). For now, we note that from a geometrical perspective we wish to minimise the

perpendicular distance between points and the new projection, the same problem Pearson (1901) was

solving.

Consider the vector of observations x = (x1, . . . , xp) ∈ Rp We want to project these obsevations

onto λα, and in doing so to find the best fitting q dimensional subspace. Denoting the projection of

x by Px, we therefore wish to minimise:

(z − Px)T (z − Px)

Ideally, we wish the projection to be performed in terms of α = (α1, . . . , αq), although with a p

dimensional representation this can clearly take the form (α1, . . . , αq, αq+1, αp).

The projection can be given as

Px = xαTα

where αTα can be described as the projection matrix. We can rewrite this as:

Px =
q∑
1

(xiαTi )αi.

We can therefore rewrite z − Px as

z − Px =
p∑
q+1

(xTi αi)αi

Clearly

(z − Px)T (z − Px) =
p∑
q+1

(xTi αi)
2

Consequently, we wish to minimise
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p∑
j=1

n∑
i=1

(xTj αi)
2

Which is Pearson’s orthogonal least squares problem. However, we can find a link with Hotelling’s

approach by noting that
∑n
j=1 x

T
j xj =

∑p
j=1

∑n
i=1(xTj ai)

2 our problem can also be expressed as

one where we wish to maximise

p∑
j=1

n∑
i=1

(xTj αi)
2

Noting that this last term is
∑q
i=1α

T
i XX

Tαi, it might be apparent that we actually seek to find

α, subject to αTα = δ to maximise αTΣα which looks like a familiar problem!

It may now be noted that the eigenvectors are related to the angle between the untransformed data

and the principal component. Assuming we have j = 1, . . . , p variables, and k = 1, . . . , p projections,

this angle is given by:

cos θjk = αjk (9.10)

This is reasonably convenient to plot in 2-dimensions. Given simulating bivariate data x = (x1, x2),

the angle between x1 and the first principal component is given by cos θ11 = α11. Rather conveniently,

this is implicit in the slope b= supplied to abline(). An illustration of orthogonal projection can be

explored using the following code. This should be contrasted with the least squares fit.

require(MASS)
X <- scale(mvrnorm(25, c(2,2), matrix(c(1,0.8,0.8,1),2,2)))
eqscplot(X)
X.cov <- cov(X)
X.ed <- eigen(X.cov)
proj <- X.ed$vec[,1] %*% t(X.ed$vec[,1])
y <- t(proj %*% t(X))
abline(a=0,b=X.ed$vec[2,1]/X.ed$vec[1,1])
arrows( X[,1], X[,2], y[,1],y[,2], length = 0.05, col = "green")

Plotting the ordinary least squares solutions is easy enough, although when regression X[,1] on X[,2]

the gradient needs to be inverted (or the axes reversed).

## plot the ols of X[,2] on X[,1]
eqscplot(X)
X2.lm <- lm(X[,2] ~ X[,1])
abline(X2.lm, col = "red", lwd = 2)
arrows(X[,1],X[,2], X[,1], predict(X2.lm), length = 0.01, col = "red")
points(X[,1],X[,2], pch = 16)
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Figure 9.1: Illustration of perpendicular distance
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## plot the ols of X[,1] on X[,2]
eqscplot(X)
X1.lm <- lm(X[,1] ~ X[,2])
abline(0, 1/coef(X1.lm)[2], col = "blue")## need to invert the gradient
arrows(X[,1],X[,2], predict(X1.lm), X[,2], length = 0.01, col = "blue")
points(X[,1],X[,2], pch = 16)

It is informative to contrast the line plotted in figure 9.1 with those produced by linear regression of

x on y as well as y on x. The matrix aaT can be referred to as the projection matrix.

9.1.2 Principal Component Stability

Whilst considering the geometry, it is useful to motivate some ideas about the differences between

population and sample principal components by simulating three datasets from the same parameters.

For population 1, we draw from standard normal variables with correlation of 0.9, for population

2 the variables are uncorrelated. In other words, µ1 = µ2 = (0, 0)T , Σ1 =

(
1 0.9

0.9 1

)
but

Σ2 =

(
1 0
0 1

)

Simulating the data is simple enough, for example:

X <- mvrnorm(100, c(0,0), matrix(c(1,.9,.9,1),2,2))
V <- var(X)
eV <- eigen(V)

plot(X, xlim = c(-3,3), ylim = c(-3,3))
abline(a=0,b=eV$vec[2,1]/eV$vec[1,1])
abline(a=0,b=eV$vec[2,2]/eV$vec[1,2])

Just so the eigenvalues don’t feel left out, we can add constant density ellipses to these plots, details

on these were given in 7.2. Essentially, we can define a constant density ellipse from the “centre”

as ±c
√
λiαi, here we take c = 1.96. In the code snippet below, x and y are the coordinates of an

ellipse scaled from a unit circle by the two eigenvalues. These are then rotated by the angles of the

eigenvectors:

theta <- seq(0,(2*pi),length=101)
x <- 1.96 * sqrt(eV$val[1]) * cos(theta)
y <- 1.96 * sqrt(eV$val[2]) * sin(theta)
newxy <- cbind(x,y) %*% t(eV$vec)
lines(newxy)
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Figure 9.2: Artificially generated data indicating stablity of pca solution

We now consider figure 9.2, which overlays three samples from each of the two populations specified.

The semi-major axis, the contribution to the first principal component has been denoted with solid

lines, the semi-minor axis, the contribution to the second principal component, has been denoted by

dotted lines. It should be very apparent that there is some variation in the orientation of the axes, as

might be expected the eigenanalysis varies slightly according to sample properties. However, the right

hand side of the plot is intended to illustrate the problem of sphericity. Without a strong correlation

structure, the angles subtended by the principal components varies massively.

Whilst this is an artificial example in many senses (not only are the data simulated but we have

only two variables), but the problem is an important one. In particular, when exploring dimension

reduction properties of principal components we have to be attendant to the possibility of partial

sphericity; that some of the q + 1, . . . , p principal components essentially exhibit this behaviour. We

consider specific hypothesis tests for this problem later.

Finally, whilst talking about projections, we make one comment in relation to projection pursuit. This

technique will be considered further in the next chapter. Suffice to say here that projection pursuit

is a generic set of techniques which aims to find “interesting” projections of data. The user decides

on the dimensionality of the projection and selects a suitable criterion of interestingness. Bolton and

Krzanowski (1999) give results interpreting principal components analysis within this framework, the

criterion (projection pursuit index) in this case is given by:

I = max(eSeT ); eeT = 1,

c©Paul Hewson 109



Multivariate Statistics Chapter 9

where S is the sample covariance matrix. This index is the minimum of the maximised log-likelihood

over all projections when normality is assumed.

However, they go on to imply that more “interesting” projections are less likely to have normally

distributed data by showing that in terms of the likelihoodL (e), this decreases as eSeT increases.

Assuming the usual maximum likelihood estimators for µ and Σ:

L (e) = maxL (x;µ,Σ, e)

= −n
2

[
p+ p log

(
2πn
n− 1

)]
− n

2
log |eSeT |

In other words, under normality, the most “interesting” projection is the one with the maximised

likelihood.

9.2 Some properties of principal components

Before considering some examples of principal component analysis we first consider a number of

fundamental properties.

Definition 9.3 If x is a mean centred random vector, with covariance matrix Σ, the principal com-

ponents are given by:

x→ z = ET (x− µ) (9.11)

i.e. the transformation requires mean-centred variables. E is orthogonal, ETΣE is diagonal, λ1 ≥
λ2 ≥ . . . ≥ λp ≥ 0 provided Σ is positive definite.

A number of key propeties immediately follow from their derivation from the spectral decomposition:

Theorem 9.4

E(zi) = 0 (9.12)

Var(zi) = λi (9.13)

hence:

Var(z1) ≥ Var(z2) ≥ . . . ≥ Var(zp); (9.14)

in particular it should be noted that no standardised linear combination of x has a larger variance

than λ.
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We finally restate the implications of finding orthogonal projections.

Cov(zi, zj) = 0, i 6= j; (9.15)

One property we will make repeated use of concerns the proportion of variance explained by each

principal component:

Theorem 9.5 The trace of a covariance matrix is equal to the sum of its eigenvalues:

trace(Σ) =
p∑
i=1

λi (9.16)

In other words, equation 9.16 indicates that the total variance can be explained by the sum of the

eigenvalues. In the case of principal components formed from the correlation matrix R this will be

equal to the number of variables.

Theorem 9.6 The generalised variance (the determinant of a covariance matrix) can be expressed

as the product of its eigenvalues:

|Σ| =
p∏
i=1

λi (9.17)

Theorem 9.6 indicates that we can find an estimate of the generalised variance from the product

of the eigenvalues. Along with theorem 9.5 we find that the generalised variance and the sum of

variances are unchanged by the principal component transformation.

Finally, a note is needed on scale-invariance. Flury (1997) describes this last as an anti-property.

Principal components are not-invariant to changes of scale. Standardising variables is rather a brutal

way of dealing with this. Explanations are given in most multivariate textbooks, for example both

formal and information explanaitions are given by (Mardia et al., 1979, page 219). Nevertheless,

if variables are recorded on widely differing scales, a principal component analysis of the covariance

matrix will largely reflect the variables with the numerically greatest variance. It is therefore important

that the variables are in some sense comparable; this can either be achieved by standardising, or by

some gentler transformation. We will find that the heptathalon data has to be standardised, whereas

it is possible to take logs of the turtle data.

Finally, we consider one important property, which is more in the Pearson (1901) sense.

Theorem 9.7 The first k principal components have smaller mean squared departure from the pop-

ulation (or sample) variables than any other k-dimensional subspace.

Proof: (Mardia et al., 1979, page 220)
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This property is rather important when considering the dimension reducing properties of principal

component as it does not require any distributional assumptions.

9.8 Illustration of Principal Components

We define the sample principal components by e and `.

Having now hopefully explained the rationale behind principal components analysis, we consider some

illustrative analysis before considering further inferential developments.

9.8.1 An illustration with the Sydney Heptatholon data

Before doing anything else with these data, it needs to be noted that in the three running events,

better performance is indicated by a lower measure (time), whereas in the jumping and throwing

events good performance is indicated by a higher measure (distance). It seems sensible to introduce

a scale reversal so that good performance is in some way at the top of any given scale. A convenient

way of doing this is to multiply the times of the running events by −1.

hept.df <- read.csv("Heptatholon.csv", row.names = 1)
hept.df$X100mHurdles.S. <- hept.df$X100mHurdles.S. * -1
hept.df$X200m.sec. <- hept.df$X200m.sec. * -1
hept.df$r800m.s. <- hept.df$r800m.s. * -1

These variables are clearly incomparably in any sense. It is also clear that we need to work with the

correlation matrix for these data, there is considerable difference in the scales (running 800 metres

tends to take rather longer than running 100 metres). We will also centre the variables using scale()

which saves us a little work later on.

hep.scale <- scale(hept.df[,-1])
hept.cormat <- cor(hept.df[,-1])
hep.ev <- eigen(hept.cormat)

Our principal component analysis then basically consists of extracting hep.ev$values contains the

eigenvalues, and hep.ev$vectors contains the eigen vectors. Our first set of loadings are given by

the first row of the eigenvectors, we can form the first linear combination:

> hep.ev$vectors[,1]
> z1 <- hep.scale %*% hep.ev$vectors[,1]
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Figure 9.3: Scree plot displaying the amount of variation explained by each of the seven principal
components formed from the correlation matrix of the Sydney Heptathalon data

in a similar manner it is possible to form z2 and so on.

This means that the proportion of total variance explained by each linear combination can be given by
λi∑p
i=1 λi

, which can be calculated for our heptathalon data with hep.ev$values/sum(hep.ev$values).

It is also conventional to produce a “scree” plot of this information with something like plot(hep.ev$values, type = "b")

which graphically represents the amount of variance explained by each linear combination.

9.8.2 Principal component scoring

As stated at the start of the chapter, the principal component scores are essentially derived from the

mean centered data.

In other words, we found:

z = ET (x− µ) (9.18)

It is possible (although somewhat unusual in this context) to find scores from the standardised data

z = ET (x− µ)Λ−1/2 (9.19)
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It should be noted that Rencher (2002) really doesn’t approve of this latter effort, it essentially leaves

us looking at the correlation between the standardised data and the principal component scores. We

therefore consisder the more usual scores given in equation 9.18. The first four eigenvectors are given

as follows:

$vectors
[,1] [,2] [,3] [,4]

[1,] -0.4656494 0.28868133 0.32883275 -0.003922038
[2,] -0.2455859 -0.56442826 -0.10737271 -0.610427608
[3,] -0.4195748 -0.07137064 -0.52173345 0.235891780
[4,] -0.4330174 -0.02204083 0.51825157 0.357022268
[5,] -0.4630436 0.11516723 0.12459693 -0.480637087
[6,] -0.3228125 0.38161226 -0.56832241 0.091073036
[7,] -0.2017272 -0.65849286 -0.03216966 0.452710298

So to find the first principal component we only need to compute the following:

zi1 = a11xi1 + a12xi2 + a13xi3 + . . .

which means that the first principal component can be given as:

Zi1 = −0.4656× x1 − 0.2456× x2 − 0.4196× x3 + . . .

Clearly this can also be calculated as matrix product Xa.

hep.ev$vectors[,1] ## first vector of pc loadings
scores <- hep.scale %*% hep.ev$vectors
par(mfrow = c(3,3))
apply(scores, 2, qqnorm)
scoresR <- hep.scale %*% (hep.ev$vectors %*% diag(hep.ev$values^-0.5))

If we wished, we can carry out further investigation of the principal component scores.

9.8.3 Prepackaged PCA function 1: princomp()

In practice it will come as no surprise to learn that there are prepackaged functions in R for carrying out

a principal components analysis. princomp() has been provided for comparability with S-Plus. We

will find out later that the preferred function uses the singular value decomposition. However, there

are good reasons for examining princomp() first. It is based on carrying out an eigen decomposition,
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by default of the covariance matrix and it should be noted that the covariance matrix esimated by

cov.wt uses the divisor N , rather than the unbiased version N − 1. It is possible to supply robust

estimates of the covariance matrix via covmat, this does allow a form of robust principal components

and as we work through the heptathalon data we will find out that this may indeed be useful. It is

possible to call princomp() with the specification cor=TRUE to use the sample correlation matrix

rather than sample covariance matrix.

The main results can be accessed via summary() and print(). The eigenvectors are extracted

and printed with a degree of pretty printing using loadings(). If necessary, the square roots of the

eigenvalues (i.e. the standard deviations of each principal component) are stored within the princomp

object and can be extracted manually using $sdev. The principal component scores themselves can

be accessed via $scores if these have been requested. There are also graphical methods associated

with princomp() objects, plot() produces a screeplot, biplot() produces a biplot, we explain this

tool further in section 9.8.4. However, we note an important aspect of eigenanalysis, which is very

clearly stated in the helpfile and will be quite important later:

The signs of the columns of the loadings and scores are arbitrary, and so may differ

between different programs for PCA, and even between different builds of R.

This is a point we will return to a few times particularly when considering bootstrapping!

Executing a principal component analysis is therefore trivial, as demonstrated in the following code

snippet. We extract the principal component scores and create qq plots; as demonstrated in chapter

2 any univariate linear combination of multivariate normal data should be normally distributed.

hept.princomp <- princomp(hept.df[,-1], scale = TRUE)
summary(hept.princomp)
plot(hept.princomp) ## produces scree plot
par(mfrow = c(3,3))
apply(hept.princomp$scores, 2, qqnorm)

9.8.4 Inbuilt functions 2: prcomp()

The preferred R function for a conventional principal component analysis is prcomp(). There are a

number of differences in use and extraction, but the rather more important difference is that it is based

upon a singular value decomposition of the data. The singular value decomposition was outlined in

Section 2.6. Whilst discussing the singular value decomposition in this context it is convenient to

introduce the biplot. Gabriel (1971) introduced the biplot as a means of representing either a matrix

of rank two, or a rank two approximation to a matrix of rank greater than two. The idea is to display

vectors for each row and vectors for each column are displayed on the same plot, illustrating features
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of either a rank two matrix or a rank two approximation. Whilst we illustrate it in detail here, it has

application in areas other than with principal components.

As discussed earlier, we consider data matrix X; it’s decomposition is given by:

X =
p∑
i=1

λiuiv
T
i

and hence for the biplot, where we specifically require a rank two solution:

X =
2∑
i=1

λiuiv
T
i = (u1,u2)

(
λ1 0
0 λ2

)(
vT1 v

T
2

)

Based on this decomposition, we have a choice of plots. In general, we can plot:

gTi = λ1−ζ
1 u1i, λ

1−ζ
1 u2i

for the observations and

hTj = λζ1q1jλ
ζ
2q2j

for the columns. where 0 ≤ ζ ≤ 1. Gabriel (1971) essentially gave proposals for ζ = 0, ζ = 0.5
and ζ = 1. In R, these can be set with the argument scale which takes the range 0 ≤ scale ≤
1. The default is scale = 1 which implies HTH = I; more notably this means that the inner

products between variables approximate covariances and distances between observations approximate

Mahalanobis distance. By default, observations are scaled up by
√
n, variables are scaled down by

√
n

It is possible to adjust choices=c(1,2) if you don’t really want a biplot but want to examine the

projection of what are in this context other principal components.

pairs(turtles[,-1],
lower.panel = function(x, y){ points(x, y,
pch = unclass(turtles[,1]),
col = as.numeric(turtles[,1]))},
main = "Pairwise scatter plots for painted turtles")

We follow Flury (1997) in transforming these data onto the log scale (and multiplying them by 10).

This is quite common in allometric applications, where the log transformation may suffice in terms

of bringing all variables onto a comparable scale.

data(turtles)
turtles.m <- subset(turtles, turtles$Gender == "Male")
turtles.m <- 10 * log(turtles.m[,-1])
turtles.m.prcomp <- prcomp(turtles.m)
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summary(turtles.m.prcomp)
plot(turtles.m.prcomp)
turtles.m.prcomp$sdev^2 ## extract eigenvalues
par(xpd = NA)
biplot(turtles.m.prcomp)

We can illustrate the biplot as follows by carrying out the various computations by hand within R:

turtles.svd <- svd(turtles.m)
H <- cbind(turtles.svd$u[,1], turtles.svd$u[,2]) * sqrt(24)
g1 <- turtles.svd$d[1] * turtles.svd$v[,1] / sqrt(24)
g2 <- turtles.svd$d[2] * turtles.svd$v[,2] / sqrt(24)
plot(H)
par(new = TRUE)
plot(c(-arrx,arrx),c(-arry,arry), type = "n",
xaxt = "n", yaxt = "n")

axis(3)
axis(4)
arrows(0, 0, arrx, arry)

9.9 Principal Components Regression

Finally, we say a few words about principal components regression, and illustrate the use of principal

components in bioinformatics with the superpc package.

9.10 “Model” criticism for principal components analysis

This section has deliberately given a provocative title. “Model” criticism clearly requires some kind

of model, it is worth giving some thought to whether we are using a principal components model

in the context of a model or not. It is possible to use the technique as a data analytical technique,

particularly when used for data reduction there is no necessity to assume multivariate normality.

However, when we are using it in the context of a multivariate normal distribution, it is important to

be aware of a number of key distributional results on the asymptotic distribution of the eigenvalues

and eigenvectors of a covariance matrix.
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9.10.1 Distribution theory for the Eigenvalues and Eigenvectors of a

covariance matrix

Girshink (1939); Anderson (1963) give results for asymptotic distributions in connection with the

covariance matrix. Firstly, we comment on the existence of maximum likelihood estimators for the

eigendecomposition of a covariance matrix:

Theorem 9.11 Under conditions of normality, the maximum likelihood estimators for the population

eigenvalues and eigenvectors of Σ are given by the sample eigenvalues and eigenvectors, provided all

the eigenvalues are distinct.

Proof: See (Mardia et al., 1979, page 229) and (Anderson, 1984, page 460)

Theorem indicates that our sample eigenvalues are the maximum likelihood estimators of their cor-

responding population counterparts. In most inferential situations we would wish to qualify such an

estimator with guidance as to the level of associated uncertainty. Firstly, we wish to establish the

distribution of the eigenvalues.

Theorem 9.12 The asymptotic distribution of eigenvalues and eigenvectors can be expressed as

follows:
√
n(`− λ) ∼MVN(0, 2Λ2) (9.20)

where Λ is the diagonal matrix of eigenvalues. This can be expressed equivalently as:

√
n (log(`)− log(λ)) ∼MVN(0, 2) (9.21)

and
√
n(êi − ei) ∼MVN(0,Ei) (9.22)

where Ei = λi
∑p
k=1,k 6=i

λk
(λk−λi)2 eke

T

Proof: The proof for this has been restated in Flury (1988). These properties were established

following work by Anderson (1963) and Girshink (1939).

Theorem 9.20 indicates that for large n, the eigenvalues λi are independently distributed. We can

therefore obtain standard errors for the eigenvalues as follows:

se(λj) =
√

2/nλj ,
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giving confidence intervals:

`i

1 +
√

2/nzα/2
≤ λi ≤

`i

1 +
√

2/nz1−α/2

and the standard error for the corresponding eigenvectors are given by:

se(α) =

 1
n
λj

p∑
j+1;j 6=h

λj
(λj − λh)2

α2
jh

1/2

.

We can illustrate calculation of these standard errors, as well as estimation of associated confidence
intervals by adapting code written by Marco Bee to accompany Flury (1997)). This code will be set
out at an S3 class in R. Firstly therefore, we set out a container:

lpc <- function(X){
UseMethod("lpc", X)

}

And now we can write out a default method which calculates the relevant confidence intervals:

lpc.default <- function(X)
{
n <- dim(X)[1]; p <- dim(X)[2] # number of observations
X.prcomp <- prcomp(X)
evals <- X.prcomp$sdev^2
Ones <- matrix(1, p, p)
Lambda <- Ones * evals
Q <- (t(Lambda) - Lambda + diag(p))^(-2) - diag(p) # nifty trick
Theta1 <- sweep(Q, 2, evals, FUN="*")
Theta <- Theta1 * evals # compute matrix of theta-coefficients
stdeB <- matrix(0,p,p)

h <- 1
while (h <= p){
V <- X.prcomp$rotation %*%

(Theta[, h] * t(X.prcomp$rotation))
stdeB[, h] <- sqrt(diag(V)/n)
h <- h + 1
}

stdelam <- sqrt(2/n) * evals
results <- list("eigenvectors" = X.prcomp$rotation,
"eigenvalues" = X.prcomp$sdev^2,
"stdeB" = stdeB, "stdelam" = stdelam)
class(results) <- "lpc"
results

}
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Having returned the standard error we can write a simpler print function which displays the eigen-

vectors and eigenvalues along with their associated standard error:

print.lpc <- function(x) {

print(x[1]) ## eigenvectors

print(x[2]) ## eigenvalues

cat("standard errors for eigenvector coefficients:")

print(x[3])

cat("standard errors for eigenvalues:")

print(x[4])

cat("\n\n")

invisible(x)

}

So for example, with the turtles data:

> lpc(subset(turtles, turtles$Gender == "Male")[,-1])
$eigenvectors

[,1] [,2] [,3]
[1,] 0.8401219 0.48810477 -0.23653541
[2,] 0.4919082 -0.86938426 -0.04687583
[3,] 0.2285205 0.07697229 0.97049145

$eigenvalues
[1] 195.274633 3.688564 1.103833

standard errors for eigenvector coefficients:$stdeB
[,1] [,2] [,3]

[1,] 0.01442666 0.04469703 0.07885419
[2,] 0.02487011 0.01592627 0.13874655
[3,] 0.01513963 0.15478836 0.01276277

standard errors for eigenvalues:$stdelam
[1] 56.370931 1.064797 0.318649

And if we wanted to estimate the confidence intervals we can write an associated summary method

which will do the additional calculations and return the results. Note in the code below that we have

allowed for a Bonferroni adjustment. If we wish to adjust for making m comparisons we can replace

zα
2

with z α
2m

summary.lpc <- function(x, alpha = 0.05, bonferroni = FALSE) {
if (!is.null(alpha)){ ## calculate ci if asked
if (bonferroni == TRUE) {alpha = alpha / length(x[[2]])}
z <- abs(qnorm((1-alpha)/2))
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}
print(x[1]) ## eigenvectors

if (!is.null(alpha)){
cat(round(alpha * 100), "\% CI: \n ")
veclo <- x[[1]] - z * x[[3]]
vechi <- x[[1]] + z * x[[3]]
print(veclo)
print(vechi)
cat("\n")
}

print(x[2]) ## eigenvalues

if (!is.null(alpha)){
cat(round(alpha * 100), "\% CI: \n ")
vallo <- x[[2]] - z * x[[4]]
valhi <- x[[2]] + z * x[[4]]
print(vallo)
print(valhi)
cat("\n")
}

cat("standard errors for eigenvector coefficients:")
print(x[3])

cat("standard errors for eigenvalues:")
print(x[4])
cat("\n\n")
invisible(x)
}

9.13 Sphericity

We preface this section on sphericity with some results concerning covariance / correlation matrices

which are of less than full rank. If a symmetric positive definite matrix (correlation and covariance

matrices are at least semi-definite). If such a matrix is of full rank p then all the eigen values are

positive. If the rank of the covariance or correlation matrix m < p then the last p −m eigenvalues

are identically zero. The converse of this theorem is that any non-zero eigen value can be considered

to be significantly non-zero.

However, we are now going to consider sphericity, where there are not p distinct eigenvalues. We

highlighted earlier the potential problem of sphericity and the effect on a resultant principal component

analysis. Clearly there is little point carrying out a principal component analysis under conditions of

sphericity. We can consider three possiblilites, where R = I, which can arise either because S = sI

or the more general possibility that S is diagonal.
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We firstly consider the most general possibility, that Σ ∝ σI where σ is unspecified. However, this

test is equivalent to examining whether all the roots of |Σ− λI| = 0 are equal. In this eventuality,

the arithmetic and geometric means will be identical

We firstly consider a general test for sphericity proposed by Mauchly (1940)

Theorem 9.14 We consider that: ∏p
j=1 λ

1/j
i∑p

j=1 λ
1/j
i

=
|Σ|1/j
1
j tr(Σ)

This yields the following test statistic. Under the null hypothesis H0 : S = σI, the test statistic m

given by:

m =
|SΣ−1

0 |n/2[
1
p trace(SΣ−1

0 )pn/2
] (9.23)

This is pre-implemented in R for manova type objects, therefore if we fit a null manova object we

can carry out this test:

obj <- manova(as.matrix(turtles.m) ~ 1)
mauchly.test(obj)

Mauchly’s test of sphericity

data: SSD matrix from manova(as.matrix(turtles.m) ~ 1)
= 101.1821, p-value < 2.2e-16

And so we have evidence (provided the test assumptions are met) that the turtle data are not

spherical.

For completeness, we mention here another test for sphericity is given by (Morrison, 2005, see section

1.9) based upon the determinant of the correlation matrix.

Definition 9.15 Under the null hypothesis H0 : R = I, the test statistic w given by:

w = −
(
n− 2p+ 5

6

)
log|R|

has a χ2 distribution with 1
2p(p− 1) degrees of freedom.

This test is quite simply coded up in R.
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morrison <- function(data){
n <- dim(data)[1]; p <- dim(data)[2];
wnm <- -(n - (2 * p)/6) * log(det(cor(data)))
cat(paste("wnm = ", wnm, "\n"))
cat(paste("df = ", p * (p - 1) * 0.5, "\n"))
cat(paste("Chisq density = ", dchisq(wnm, p * (p - 1) * 0.5) , "\n"))

}

Again, this test confirms non-sphericity of the Turtles data.

9.15.1 Partial sphericity

It is usually the case that partial sphericity is or more practical concern than more complete inde-

pendence of the data. We will consider more heuristic methods for selecting the dimensionality of a

principal component projection later, but clearly the eigenvectors of principal components with equal

eigenvalues are too poorly defined to be of any practical use. We are therefore interested in partial

sphericity, where λq+1 = λq+2 = . . . = λp

Where we have partial sphericity, we may note the following theorem:

Theorem 9.16 For normal data, where the eigenvalues of Σ are not distinct then the m.l.e. of λ̄

is the corresponding arithmetic mean of the sample eigenvalues, and the corresponding eigenvectors

are maximum likelihood estimators although they are not unique.

Proof: See Anderson (1963)

The asymptotic theory set out above leads to a number of possible tests for partial sphericity. One

likelihood ratio can be considered as follows:

Definition 9.17 (Seber, 1984, page 198) gives a likelihood ratio test for partial sphericity. In order

to determine whether whether the last p − q eigenvalues are equal can be specified as follows. We

wish to test H0 : λq+1 = λq+2 = . . . = λp versus Ha : λq+1 > λq+2 > . . . > λp.

−2 log = −n log

(
p∏
q=1

λj
λ̄

)
(9.24)

where ¯lambda = 1
p−q

∑p
j=q λj . Under the null hypothesis, the likelihood ratio statistic, −2 log , of

the eivenvalues derived from a covariance matrix is distributed as χ2
1
2 (p−q−1)(p−q+2)

. The test can

be applied to the correlation matrix but the asymptotic distribution is no longer chi-square. The

asymptotics can be improved with a correction proposed by Lawley (1956):
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−

n− 1− q − 2(p− q)2 + (p− q) + 2
6(p− q)

+
q∑
j=1

(
λ̄

λj − λ̄

)2
 log

(
p∏
q=1

λj
λ̄

)
(9.25)

This test is however not robust to departures from normality.

It is reasonably straightforward to start coding a function to execute this in R, a sketch of such a
function is illustrated here:

spher <- function(X, q){
p <- dim(X)[2]; n <- dim(X)[1]; r <- p-q
X.prcomp <- prcomp(X)
evals <- X.prcomp$sdev^2
retain <- evals[1:q]; discard <- evals[-(1:q)]
lambdahat <- mean(discard)
bit <- sum(lambdahat / (retain - lambdahat) )^2
corr <- n - 1 - q - (2 * r^2 + r + 2)/(6*r) + bit
product <- prod(discard / lambdahat)
lrt <- -corr * log(product)
df <- 0.5 * (r-1) * (r+2)
cat(paste("-2log L = ", lrt, "\n") )
cat(paste("df = ", df, "\n") )
cat(paste("Chisq density ", dchisq(lrt, df ), "\n" ))
##return(lrt)

}

We illustrate this with the turtle data. Recalling that the first eigenvalue was 2.33, considerably

greater than the second and third eigenvalues of 0.06 and 0.036.

> spher(turtles.m, 1)
-2log L = 1.34290454195737
df = 2
Chisq density 0.255482988814162

So in this case we cannot reject H0 and have no evidence that the second and third eigenvalues are

distinct. We might be included to consider the possibility here that that λ2 = λ3 and would therefore

be somewhat wary of the resultant eigenvectors.

A simpler explanation is given in (Flury, 1997, page 622), which follows from that given in (Anderson,

1984, page 475), and is given in slightly different form in (Mardia et al., 1979, page 235).This relies

on a log likelihood statistic derived as a ratio of arithmetic to geometric means of the eigenvalues.

function(X, q){
p <- dim(X)[2]; n <- dim(X)[1]; r <- p-q
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X.prcomp <- prcomp(X)
evals <- X.prcomp$sdev^2
q1 <- q+1
discard <- evals[q1:p]
a <- sum(discard) / r
g <- prod(discard)^(1/r)
s <- n * r * log(a / g)
df <- 0.5 * r * (r+1)

cat(paste("-log L = ", s, "\n") )
cat(paste("df = ", df, "\n") )
cat(paste("Chisq density ", dchisq(lrt, df ), "\n" ))
##return(s)

}

Asymptotically, this value can be considered to follow a χ2
1
2 (p−q)(p−q+1)−2

distribution under the null

hypothesis. It can be seen that is related to the test of complete sphericity. This test can be used

with the turtle data and again confirms the possible that the second and third principal components

can be considered spherical and should not be interepreted further.

High Dimensional Tests for Sphericity

Having (hopefully) demonstrated the importance of sphericity in conventional principal components

analysis we refer to results which carry out analagous procedures in high dimensions. Whilst the

asymptotic tests above rely on n → ∞, it can be problematic where p > n. More recent work

therefore examines how one might carry out tests for this eventually. We firstly consider testing

whether Σ ∝ I

Theorem 9.18 A test for Σ ∝ I which is reliable whenever p > n can be given as follows:

U =
1
p
trace

(
(

S

(1/p)trace(S)
− I)2

)
(9.26)

In this case, it may be noted that np
2 U asymptotically follows a

chi2 distribution with 1
2p(p+ 1)− 1 degrees of freedom.

Proof: See Ledoit and Wolf (2002), following work by John (1971, 1972)

This can be very simply estimated in R:

JohnsU <- function(data){
p <- dim(data)[2]
S <- cov(data)
traceS <- sum(diag(S))
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traceSI <- sum(diag(S-diag(rep(1, p))))
u <- 1/p * traceS / (1/p*traceSI^2)
test <- n * p * 0.5 * u
df <- (0.5 * p * (p+1)) - 1

cat(paste("U = ", test, "\n") )
cat(paste("df = ", df, "\n") )
cat(paste("Chisq density ", dchisq(test, df ), "\n" ))

}

So we can estimate the sphericity quite simply

JohnsU(khan$train)

Which appears to indicate little evidence for sphericity.

Testing the correlation matrix is not quite so straighforward to expansion of p relative to n. Σ = I

Theorem 9.19 A test for Σ = I which is reliable whenever p > n is given by:

W =
1
p
trace

{
(S − I)2

}
− p

n

{
1
p
trace(S)

}2

+
p

n
(9.27)

Under H0, assuming multivariate normality nm
2 W →d χ2

p(p+1)/2−1

Proof: Ledoit and Wolf (2002)

ledoitwolf <- function(data){
n <- dim(data)[1]; p <- dim(data)[2]
S <- cor(data)
traceS <- sum(diag(S))
SI <- crossprod(S - diag(rep(1, p)))
traceSI <- sum(diag(SI))
w <- 1/p*traceSI - p/n*(1/p*traceS)^2 + p/n
test <- n * p * 0.5 * w
df <- (0.5 * p * (p+1))

cat(paste("U = ", test, "\n") )
cat(paste("df = ", df, "\n") )
cat(paste("Chisq density ", dchisq(test, df ), "\n" ))

}

However, we can consider results based on those indicated in 9.15 which can be used to test whether

R = I.
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Theorem 9.20 A test statistic for sphericity is given by:

t =
p∑
i=2

i−1∑
j=1

r2
ij −

p(p− 1)
2n

Which is asymptotically normal with zero mean and variance:

σ2
t =

p(p− 1)(n− 1)
n2(n+ 2)

Proof: See Schott (2005)

This is simply illustrated in R.

schott <- function(data){
n <- dim(data)[1]; p <- dim(data)[2]
R <- cor(data)
R[lower.tri(R) == FALSE] <- NA
red <- na.omit(as.vector(R))
tnm <- sum(red^2)
cf <- (p * (p-1)) / (2 * n)
test <- tnm - cf
sigma2 <- (p * (p-1) * (n-1)) / (n^2 * (n+2) )
cat(paste("tnm = ", tnm, "cf = ", cf, "\n") )
cat(paste("Normal density ", dnorm(test, sqrt(sigma2) ), "\n" ))

}

Again, a call to schott(khan$train) confirms that these data are non-spherical.

As before, perhaps we are more interested in the generalisations of these statistics, i.e. we are

concerned with partial sphericity and wish to determine whether the smallest p− q eigenvalues of Σ

are equal.

Theorem 9.21 Generalising equation 9.27, a test for partial sphericity can be based upon the fol-

lowing test statistic:

u =
(1/p)

∑p
i=q+1 λi[

(1/p)
∑p
i=q+1 λi

]2 − 1 (9.28)

where n−q
u

1 can be compared with a χ2 distribution with p(p+ 1)/2− 1 degrees of freedom.

Proof: Schott (2006)

Again, this test can be coded up in R and examined in the context of the khan data.

1check this
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schottpartial <- function(X, q){
p <- dim(X)[2]; n <- dim(X)[1]; r <- p-q
X.prcomp <- prcomp(X)
evals <- X.prcomp$sdev^2
discard <- evals[-(1:q)]
u <- (sum(discard^2) / r) / (sum(discard) / r)^2 - 1
df <- 0.5 * r * (r+1) - 1
cat(paste("u = ", u, "\n") )
cat(paste("df = ", df, "\n") )
cat(paste("Chisq density ", dchisq(u * (n-q), df ), "\n" ))
##return(lrt)

}

It is bearing in mind that just because the smallest p − q eigenvalues indicate the corresponding

principal components explain very little of the variation, they do not necessarily contain any useful

information.

9.22 How many components to retain

We have considered formal hypothesis testing for sphericity and partial sphericity. This may well

indicate that it is not sensible to include a number of principal components in a given representation

of multivariate data. However, we may not really be interested in modelling multivariate normality.

We may not like asymptotics. We will consider a few further results on selecting the number of

principal components in any given projection of the data.

Whilst principal components have optimality properties in terms of providing the best lower dimen-

sional projection in terms of mean squared error. Nevertheless, they are often used, however informally,

in an inferential role. Consideble care is needed in their interpretation. It is important to note that

we are working with sample principal components, these can be somewhat unstable relative to the

puted underlying population components. It makes little sense to attempt anything resembling infer-

ential work without considering the stability of a particular principal component solution. Typically,

having decided how best to scale the data, the next most important question surrounds how many

components need to be retained. We will first consider some of the more informal procedures used to

guide this judgement, and will subsequently consider methods derived from normal theory inference.

9.22.1 Data analytic diagnostics

A number of proposals have been made in the literature concerning decisions surrounding the “number

of components” to retain. The following are some of the more popular proposals:
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Proportion of variance explained

The proportion of variance explained is a rather informal method for selecting q, the number of

dimensions in the principal component projection required to adequately explain the data. Essentially,

one decides a priori that a certain amount of variance is to be explained, and only accepts solutions

meeting that requirement. It is however consistent with the exploratory nature to which principal

component analysis is often applied.

We can however, using the asymptotic theory set out above, develop a confidence interval for the

proportion of variance explained.

Theorem 9.23 We denote our estimate of the proportion of variation explained by π:

π = f(λ) =
∑q
i=1 λi∑p
i=1 λi

.

If we also consider the corresponding sum of squares:

ζ =
∑q
i=1 λ

2
i∑p

i=1 λ
2
i

Under conditions of multivariate normality, we can obtain an estimate of the variance associated π,

the proportion of variance explained as follows:

η2 =
2trace(Σ)

(n− 1)(trace(Σ))2
= π2 − 2ζπ + ζ2 (9.29)

Proof: Sugiyama and Tong (1976) and (?, page 454) Hence we can derive a confidence interval for

π as follows.

This can be illustrated as follows:

vals <- hep.ev$values^2
q <- 3
alpha <- 0.95
alpha <- 1 - (1-alpha)/2

pi <- sum(vals[1:q]) / sum(vals)
alpha <- sum(vals[1:q]^2) / sum(vals^2)## by vector recycing
eta2 <- pi^{2} - 2 * alpha * pi + alpha^2
cat(pi, eta2)
cat("\n")
cat(pi + qnorm(alpha)*eta2)
cat("\n")
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cat(pi - qnorm(alpha) * eta2)
cat("\n")

Change in slope of the scree plot

Cattell (1966) proposed the scree plot in the context of (principal component extracted) factor

analysis. Without wishing to add to the confusion between the two techniques, it has become a fairly

standard technique for assessing the adequacy of a number of dimension reducing techniques. Both

prcomp and princomp objects have a plot method which yields a scree plot, the idea is to select

components up to the point where the slope changes direction.

plot(hept.princomp)

Interpreting the scree plot in the presence of simulations

It is possible to extend the basic scree plot idea. Horn (1965) suggested simulating data from a

multivariate normal having the same sample size, the same number of variables, the same means and

variances but having zero covariances. There are a couple of manifestations of this approach within

various R packages, for example psy package contains a ready made function. The scree plot of with

zero correlation is expected to be a straight line, it can be compared with the scree plot from the

observed data. It is possible to extend this to a full Monte Carlo test, the code listing below goes

someway towards this.

Horn <- function(data, reps){
p <- dim(data)[2]
n <- dim(data)[1]
Varmat <- matrix(0,p,p)
Mean <- mean(data)
diag(Varmat) <- diag(var(data))

Evals <- princomp(data, cor = TRUE)$sdev^2
idx <- barplot(Evals, names.arg = paste("PC", c(1:7)),
xlab = "Component", ylab = "Proportion of trace",
main = "Proportion of trace explained")

results <- matrix(0,reps,p)
for (i in 1:reps){
SimData <- mvrnorm(n, Mean, Varmat)
ExpEvalsH <- princomp(SimData, cor = TRUE)$sdev^2
results[i,] <- ExpEvalsH
lines(idx, ExpEvalsH, type = "b", pch = 16)
}
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lines(idx, apply(results, 2, mean), type = "b", col = "red")

legend("topright", lty = 1, pch = 16, legend = "Expected values")
Results <- data.frame(Evals = Evals, ExpEvalsH = ExpEvalsH)
}

Horn(hept.df[-1], 10)
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Broken Stick

Another approach to assessing the proportion of variation explained has been made by Jolliffe (1986)

who suggests using a “broken stick” approach. The idea here is that if any unit is randomly divided

into p segments, the expected length of the kth longest segment is:

lk =
(

1
p

) p∑
i=k

(
1
i

)
(9.30)

If we assume that the total variance, traceS =
∑p
j=1, is the “stick”, we can use this approach to

estimate an expected size of each eigenvalue. A rather simple function to calculate the expected

values indicated by 9.30 is given below, the expected values are plotted alongside the observed values

from a princomp() object created from the Heptathalon data. It should be noted that princomp()
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returns the standard deviations ($sdev), these have therefore been squared to recoved the eigenvalues

λi.

> stickometer <- function(p){
vec <- 1 / (1:p)
stick <- vector("numeric", p)
stick[1] <- sum(vec)

for (i in 2:p){
stick[i] <- sum(vec[-(1:(i-1))])}

stick <- 1/p * stick
names(stick) <- paste("Comp.", c(1:p), sep = "")
return(stick)

}
>
> stick <- stickometer(7)
> proptrace <- hep.princomp$sdev^2 / sum(hep.princomp$sdev^2)
>
> stick
> proptrace
>
> idx <- barplot(proptrace, names.arg = paste("PC", c(1:7)),
> xlab = "Component", ylab = "Proportion of trace",
> main = "Proportion of trace explained")
> lines(idx, stick, type = "b", pch = 16)
> legend("topright", lty = 1, pch = 16, legend = "Expected values")
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Examination of the results (numbers or the plot) suggest that the first and seventh components are

accounting for slightly more variation than would be expected purely by chance.

Kaiser Criterion

The Kaiser Criteria is a rather inflexible criteria widely met in many sofware packages. Basically it

amounts to retaining all components where the eigenvalue is greater than the mean of the eigenvalues.

In the case of principal components based on the correlation matrix this clearly means retaining all

components where the eigenvalue is greater than one. Whilst one may not wish to assume multivariate

normality, the asymptotics considered next provide a clear warning that population eigenvalues greater

than one could clearly be realised in a sample with values below one.

Karlis provide some caveats on the use of this criteriosn.

9.23.1 Cross validation

Cross-validation in the context of principal components was proposed by Wold (1976, 1978) and

developed by Eastment and Krzanowski (1982). In essence, the sample can be randomly split into

g groups, the loadings can be estimated from reduced sets omitting each of the g groups in turn,

but the predicted values can be found from these g groups using the loadings estimated from the

other rows. The value for (x̂ − x) can be estimated from equation 9.32, and the PRESS statistic

estimated.

pcaxv <- function(X){
UseMethod("pcaxv", X)

}

It is useful to create an S3 object to carry out this procedure. The working function is given by:

pcaxv.default <- function(X, g = 5){
N <- dim(X)[1]
p <- dim(X)[2]
index <- sample(c(1:N) )
groups <- gl(g, N %/% g)

Q <- matrix(0, g, p)
for (i in 1:g){
dot <- prcomp(X[-index[groups == i],])

Q[i,] <- colSums((as.matrix(scale(X))[index[groups == i],]
%*% dot$rotation)^2)}

colmeans <- colSums(Q) / N
PRESS <- cumsum(colmeans[c(p:1)])/ c(1:p)
PRESS <- PRESS[c(p:1)]
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names(PRESS) <- paste("C", c(0:(p-1)))
results <- list("PRESS" = PRESS,
dm = pcaxvconstants(N,p)$dm, dr = pcaxvconstants(N,p)$dr)

class(results) <- "pcaxv"
results
}

The function pcaxvconstants() calculates some constants that can be used in the summary func-

tion. A suitable print function for use with cross-validation objects created here can be given as

follows:

print.pcaxv <- function(x){
cat("Components Removed \n")
print(x[[1]])
cat("\n")
invisible(x)

}

(Jackson, 1991, page 354) refers to a W statistic (without giving any idea as to its origin or distri-

bution. The idea behind this W statistic however is that for any component where W > 1 we have

evidence to retain the component, where W < 1 we have an adequate representation of our data

swarm without that component. The constants calculated earlier are basically DM = n+p−2(p−q),

DR = p(n− 1)−
∑(p−q)
i=1 (n+ p− 2i), and W is given by:

W =
(PRESS((p− q)− 1)− PRESS(p− q))/DM (p− q)

PRESS(p− q)/DR(p− q)
(9.31)

summary.pcaxv <- function(x){
cat("PRESS for components Removed \n")
print(x[[1]])
cat("\n")
wl <- length(x$PRESS)-1
w <- rep(NA, wl)

for (i in 1:wl){
w[i] <- ((x$PRESS[i] - x$PRESS[i+1]) / x$dm[i+1] ) /

(x$PRESS[i+1] / x$dr[i+1] ) }
names(w) <- paste("C", c(1:wl))

cat("W for components included \n")
print(w)

invisible(x)
}

These are rather interesting concepts in practice. For example, considering the turtle data examined

earlier:
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> turtle.xv <- pcaxv(as.matrix(log(turtles[,-1])))
> turtle.xv
PRESS for components Removed

C 0 C 1 C 2
0.97916667 0.05952219 0.06118754

W for components included
C 1 C 2

29.00900476 -0.02605895

Which appears to provide strong evidence that the turtle data can be represented by one principal

component.

One little glurp can happen with the W statistic. Consider the water strider data given in Flury

(1997).

data(strider)
dot <- pcaxv(as.matrix(log(strider)))
summary(dot)
PRESS for components Removed

C 0 C 1 C 2 C 3 C 4 C 5
0.98863636 0.27912037 0.23714880 0.15109046 0.10068831 0.05974256

W for components included
C 1 C 2 C 3 C 4 C 5

11.8809534 0.6686066 1.6310744 0.9662281 0.6690516

It can be seen that the second component has a W below 1, but for the third is clearly above 1, and

for the fourth is is very close to 1. Jackson (1991) suggests that this may be due to the presence of

outliers - this is left as an exercise for further examination.

The following functions (a) need tidying up and (b) support the pcaxv function - they’re left here for

tidiness only;

rtota <- function(N, p, q){
rtot <- 0
for (i in 1:q){
rtot <- rtot + N + p - 2 * i
}

rtot
}

pcaxvconstants <- function(N,p){
dm <- N + p - 2 * (p - c(p:1))
dm[1] <- NA
dr <- rep(0,p)
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dr[1] <- p * (N-1)
for (i in 2:p){
dr[i] <- p * (N - 1) - rtota(N, p, i-1)

}
results <- list(dm = dm, dr = dr)
}

Bootstrapping

We discuss standard errors derived from asymptotic theory in the next section, but clearly there are

limitations in having to assume multivariate normality. Bootstrapping avoids any such assumptions,

we can make inference based upon an empirical distribution function. For tidiness, we will make a

little function that calls prcomp() and returns the eigenvalues and eigenvectors only:

theta <- function(x.data, x){
eta <- prcomp(x.data[x,])
return(cbind(eta[[1]], eta[[2]]))
}

However, whilst computer power might be cheap, nothing in life is free and the problem with eigenvec-

tors is the arbitrariness of the signs. Accordingly, it is completely unacceptable to use bootstrapping

without checking for inversions of eigenvectors. Below we consider carrying out some boostrapping,

plot the results and identify the most unreasonably volatile eigenvector. We can use the sign of this

eigenvector to adjust the signs of all the other components of this eigenvector and hence obtain

bootstrap estimates of the eigenvectors.

Then we call the function with our data, and tell it how many sets of bootstraps we want:

> library(boot)
> hep.boot <- boot(hep.scale, theta, R = 50, sim = "ordinary")
> eigen.bootplot(hep.boot,8,7)

It is quite clear that we need to invert some eigenvectors. One approach is to identify one coefficient

within an eigenvector and whenever this is below zero to multiply the entire vector by the scalar -1.

> idx <- hep.boot$t[,8] < 0
> hep.boot$t[idx,c(8:14)] <- hep.boot$t[idx,c(8:14)] * -1
> eigen.bootplot(hep.boot,8,7)

In this way we can obtain additional information on the variability of our principal component analysis.
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Figure 9.4: Trace of bootstrap iterations for first eigenvector
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Other structure matrices

We might also be interested in testing for other structure matrices, such as equi-correlation. See

Lawley (1963).

r̄k =
1

p− 1

p∑
i=1;i6=k

rik; k = 1, . . . , p

r̄ =
2

p(p− 1)

∑
i<k

∑
rik

ˆalpha =
(p− 1)2

[
1− (1− r̄)2

]
p− (p− 2)(1− r̄)2

where n−1
(1−r̄)2α follows a T 2 distribution.

Proof: JW 489

mean(spot[lower.tri(spot)])

9.23.2 Forward search

A more recent proposal for assessing the stability of principal component solution is the forward

search Atkinson et al. (2004).

9.23.3 Assessing multivariate normality

If we are prepared to entertain the idea that our data might be multivariate normal, it is very

simple to obtain distance measures from the principal component scores and examine the adequacy

of a representation in this context (clearly this might not be so useful if we are cannot assume

multivariate normality). Given a random vector x having mean µ and covariance matrix Σ, (Flury,

1997, pg 608-609) (page 608-609) demonstrates the relationship between the principal component

scores zj and the mahalanobis distance δ2(x,µ) (which he calls the squared standard distance).

Theorem 9.24

δ2(x,µ) = (x− µ)Σ−1(x− µ) =
p∑
j=1

z2
j

λj
(9.32)

where z = (z1, . . . , zp)T = E(x− µ), and Σ = EΛET as above.
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Proof: See Flury (1997)

We can use our principal component representation to partition the mahalanobis distance. We want

δ2
a =

∑q
j=1

z2j
λj

corresponding to the distance encapsulated in our first q principal components, and

δ2
b =

∑p
j=q+1

z2j
λj

corresponding to the distances encapsulated by the last (p−q) principal components.

Flury (1997) indicates that these can be represented by χ2 random variables with respectively q and

p− q degrees of freedom which lends itself to diagnostic assesment of the adequacy of the principal

component representation. It should perhaps be noted that this is a large sample approximation,

Gnanadesikan (1977) (page 172) suggests n = 25 is adequate in the bivariate case. Bilodeau and

Brenner (1999) (page 186) therefore indicate the use of the Beta distribution, with α = p−2
2p and

β = n−p−2
2(n−p−1) .

It is possible to write a simple function to extract the distances associated with accepted and rejected

principal component (and the total distance) which can then be used in various diagnostic plots.

> princomp2dist <- function(obj.princomp, retain){
scores <- t(t(obj.princomp$scores^2) / obj.princomp$sdev)
dtot <- apply(scores, 1, sum)
d1 <- apply(scores[,c(1:retain)], 1, sum)
d2 <- apply(scores[,-c(1:retain)], 1, sum)
dists <- data.frame(dtot = dtot, d1 = d1, d2 = d2)
return(dists)

}

> hept.princomp <- princomp(hept.df[-1], scores = TRUE, scale = TRUE)
> ## form a princomp object
> hept.m <- princomp2dist(hept.princomp, 3)
> ## extract distances based on 3 component representation

Having obtained the distances, we only need some suitable method of investigation. The most useful

are qq-plots. Given we have only 26 rows and 9 columns, we will use a modified verion of the

qqbeta function given by Bilodeau and Brenner (1999). This plots the Mahalanobis distance against

a suitable beta distribution.

> qqbetaM <- function(x, p) {
n <- length(x)
a <- p/2
b <- (n-p-1)/2
alpha <- 0.5*(a-1)/a
beta <- 0.5*(b-1)/b
x <- sort(x)
y <- qbeta(((1:n)-alpha)/(n-alpha-beta+1),a,b)*(n-1)^2/n
plot(x,y,xlab="Mahalanobis distances",ylab="Beta quantiles")

}
> qqbetaM(hept.m$dtot, 7)
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Figure 9.5: Mahalanobis distance from three component representation of the Heptathalon data
versus theoretical quantiles of the Beta(1.5, 10) distribution

It is reasonably clear from figure 9.5 that there are reasons to doubt multivariate normality, particularly

in relation to outliers.

Nevertheless, if we persevere, the adequacy of the q = 3 dimensional representation can be considered.

Plotting δ2
a against δ2

b provides one way of identifying those points not well represented by the three

dimensional projection.

> plot(hept.m$d1, hept.m$d2,
xlab = "Represented by q", ylab = "Not represented by q",
main = "Mahalanobis distances")

> identify(hept.m$d1, hept.m$d2, row.names(hept.df))

However, qq plots of the data do tend to suggest that she could be considered an outlier. This takes

us back to the start of the chapter; in this case we may wish to consider a robust principal component

analysis.

> hep.princomp <- princomp(hept.df[-1], cor = TRUE)
> hep.cor.rob <- cov.rob(hept.df[,-1], cor = TRUE)$cor
> hep.princomp.rob <- princomp(cov = hep.cor.rob)
> hep.princomp
> hep.princomp.rob
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> loadings(hep.princomp)
> loadings(hep.princomp.rob)

In this case it should be seen that there is only a slight difference between the estimates for the

eigenvalues, but the loadings do alter somewhat. Further methods for robust principal components

will be considered in the next chapter.

9.25 Interpreting the principal components

This is the area that gets principal components a bad name. Sometimes referred to as reification, we

look at the loadings on the various components, and try to suggest a concept that the component

may be referring to. Factor analysis does something similar.

It is worth at this point considering the correlation between a given variable and the principal com-

ponent score (or projection of the data in q dimensional subspace).

Definition 9.26 The univariate correlation between a variable and it’s principal compnent projection

can be given by:

ρz,xk =
ei, λi√
σkk

Proof: (Johnson and Wichern, 1998, page 462)

It should be noted that this only measures the unvariate contribution of x to z, something Rencher

(2002) feels is useless but something which may serve as a means to an end.

The corresponding measure for principal component analysis based on the correlation matrix is given

by: ρz,xstandardised = eik
√
λi

9.27 Exercises

1. Consider data X =

(
1 2 3
1 2 3

)
. Find the covariance and correlation matrix for these data.

2. Consider S =

(
5 2
2 1

)
. Convert S into R. Calculate the principal components from each

matrix. Comare and contrast.

3. Calculate ρz,x

4. S = diag(2,4,2), what are evals and evecs
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5. Couple of questions on equicorrelation matrices

6. Estimate Sx and Sx.

7. Carapace data - how many pcs (sphericity test, bootstrap, scree, blah blah blah)
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Canonical Correlation

10.1 Canonical variates

10.2 Interpretation

In canonical correlation, we are interested in the relationship between two sets of variables. We do this

by creating linear combinations U = a1x1 +a2x2 + · · ·+apxp and V = b1y1 +b2y2 + · · ·+bqyq
such that the correlation between U and V is as high as possible.

To do this, we need to work out the correlation matrix, and partition it:

x1 . . . p y1 . . . yq

x1

...

xp

y1

...

y3



Ap×p Cp×q

Cq×p Bq×q



Having done this, we calculate the matrix:

B−1CTA−1C
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and find the associated eigenvalues (in descending order) λ1 > λ2 > . . . > λr. The corresponding

eigenvectors b1, b2, . . . , br give the coefficients of the Y variables.

So:

vi = bTi Y

where bi =


bi1
...

biq

 and Y =


y1

...

yq

, or in longhand:

vi = bi1y1 + · · ·+ biqyq

Having calculated these, it is possible to solve the coefficients for the X variables:

a1 = A−1Cb1, a2 = A−1Cb2, . . . , ar = A−1Cbr,

f

ui = aTi X

where ai =


ai1

...

aiq

 and X =


x1

...

xr

, or in longhand:

ui = ai1x1 + . . .+ airxr

And one really cute result is that [corr(ui,vi)]
2 = λi.

10.3 Computer example

Franco Modigliani proposed a life cycle savings model, the savings ratio (aggregate personal saving

divided by disposable income) is explained by per-capita disposable income, the percentage rate of

change in per-capita disposable income, and two demographic variables: the percentage of population

less than 15 years old and the percentage of the population over 75 years old.

However, we are interested here in the relationship between the two demographic variables (percent

of population under 15, percent of population over 75) and the three financial variables (personal

savings, per-capita disposal income, growth rate of dpi). The first stage of any such analysis would
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Figure 10.1: Pairwise scatterplots of Life Cycle Savings data

be a visual inspection.

pairs(LifeCycleSavings, pch = 16)

And it is worth examining the correlation matrix:

> cor(LifeCycleSavings)
sr pop15 pop75 dpi ddpi

sr 1.0000000 -0.45553809 0.31652112 0.2203589 0.30478716
pop15 -0.4555381 1.00000000 -0.90847871 -0.7561881 -0.04782569
pop75 0.3165211 -0.90847871 1.00000000 0.7869995 0.02532138
dpi 0.2203589 -0.75618810 0.78699951 1.0000000 -0.12948552
ddpi 0.3047872 -0.04782569 0.02532138 -0.1294855 1.00000000

It appears that the X variables are correlated. This is less so for Y variables, and even less so for

X,Y inter-correlations.

You need to be sure that the variables are scaled before carrying out a canonical correlation analysis.

LifeCycleSavingsS <- scale(LifeCycleSavings)
pop <- LifeCycleSavingsS[, 2:3] ## The X matrix
oec <- LifeCycleSavingsS[, -(2:3)] ## the Y matrix
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Having created an X matrix and a Y matrix, we now want to find linear combinations of X which

have maximum correlation with Y.

> cancor(pop, oec)
$cor
[1] 0.8247966 0.3652762

$xcoef
[,1] [,2]

pop15 -0.08338007 -0.3314944
pop75 0.06279282 -0.3360027

$ycoef
[,1] [,2] [,3]

sr 0.03795363 0.14955310 -0.023106040
dpi 0.12954600 -0.07518943 0.004502216
ddpi 0.01196908 -0.03520728 0.148898175

$xcenter
pop15 pop75

-4.662937e-16 2.753353e-16

$ycenter
sr dpi ddpi

1.421085e-16 6.661338e-17 4.440892e-16

This indicates one canonical correlate with a correlation of 0.8247966 between zX1 and zY 1

zX1 = −0.08338007xpop15 + 0.06279282xpop75 (10.1)

zY 1 = 0.03795363ysr + 0.12954600ydpi + 0.01196908yddpi (10.2)

If we extract the coefficients as vectors (this time we have created LCS.cancor as an object; also we

have used as.numeric(...) to extract the coefficients in a form suitable for matrix multiplication).

> LCS.cancor <- cancor(pop, oec)
> ycoef <- as.numeric(LCS.cancor$ycoef[,1])
> xcoef <- as.numeric(LCS.cancor$xcoef[,1])
> v1 <- oec %*% ycoef ## remember oec and pop are scaled
> u1 <- pop %*% xcoef
> plot(v1, u1)
> identify(v1, u1, row.names(LifeCycleSavings))
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10.3.1 Interpreting the canonical variables

There is some “controversy” about the best way of interpreting the canonical variables. You have

two possibilities:

• Interpret the coefficients in a similar way to that used in principal components (problems with

collinear variables)

• Calculate the correlation between the canonical and the original variables (doesn’t tell you

anything about joint contributions)

10.3.2 Hypothesis testing

As with Principal Components, a certain amount of hypothesis testing is possible. The distributional

properties of canonical variables is far wilder than principal components - none of the recommended

books discuss it. However, the tests can be described. For example, if we wanted to test whether

there was any relationship between our two sets of variables:

H0; Σ12 = 0

The Likelihood ratio test leads us to:

Λ
2
n = |I − S−1

22 S21S
−1
11 S12| =

k∏
i=1

(1− r2
i ) ∼ ΛWilks(p, n− 1− q, q)

Using Bartlett’s approximation this can yield a chi2 test:

−
(
n− 1

2
(p+ q + 3)

)
log

k∏
i=1

(1− r2
i ) ∼ χ2

pq

As we’ve seen before, perhaps we are more interested in finding out how many canonical correlations

we need to keep in our analysis. Bartlett also proposed a statistic only s canonical correlations are

non-zero:

−
(
n− 1

2
(p+ q + 3)

)
log

k∏
i=s+1

(1− r2
i ) ∼ χ2

(p−s)(q−s)
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Factor analysis

11.1 Role of factor analysis

Most of the development of factor analysis has taken place outside the statistical community, most

often in terms of Psychometrics which may partly reflect its origins in the study of intelligence.

The earliest cited reference is Spearman (1904). Factor Analysis and Principal Components Analysis

are often confused with each other, just to be really awkward there is one method of performing

Factor Analysis called Principal Component Extraction. The two methods should never be confused.

Principal Components seeks orthogonal projections of the data according the variance maximisation

with the hope of achieving some dimension reduction. Factor analysis is all about studying the co-

variance (or correlation) and is based on a statistical model. We hope to describe the covariance

relationships between many variables in terms of a few underlying, unobservable random quantities

called factors. If there is a group of highly correlated variables, which in turn are uncorrelated with

other variables, perhaps these represent realisations of some underlying phenomena that is responsible

for for the observed correlations. It is an attempt to approximate the covarariance matrix Σ. It is

not highly regarded by many statisticians, but it is used by many others. There are currently many

variations on a theme (such as Structural Equation Modelling) which are also very common in many

applied literatures.

Whilst we can consider one model for factor analysis, there are two very different fitting methods,

neither of which is entirely satisfactory. Having found a solution there are a large number of possible

rotations of the solution each of which aim to give the most interpretable solution. In other words,

don’t be surprised if different computer programs give different “Factor Analysis” solutions for the

same data.

Factor Analysis is normally carried out with a view to reification: the investigator usually has a
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Figure 11.1: Factor analysis, dependence between three variables represented by two latent
variables - is this sensible

conceptual model of some underlying entity which cannot be measured directly. These latent, or

hidden, variables are the factors in factor analysis. The aim of factor analysis is that each of the

p observed variables can be represented by means of q < p mutually uncorrelated common factors.

This will leave some uncorrelated residual specific to each of the observed variables, the uniqueness,

which is not correlated with any of the remaining p− 1 variables 1. It is possible to rotate the q axes

of common factors to new orthogonal or obligue axes to make the factor solution fit with existing

theoretical ideas regarding the model.

11.2 The factor analysis model

The orthogonal model underlying Factor Analysis can be described as follows:

x = µ+ Γφ+ ζ

Where x is an 1 × p random vector. µ represents a vector of unknown constants (mean values),

Γ is an unknown p × q matrix of constants referred to as the loadings. φ is a q × 1 unobserved

random vector referred to as the scores assumed to have mean 0 and covariance Σφ, it is commonly

assumed that Σφ = I. ζ is 1× p unobserved random error vector having mean 0 and by assumption

a diagonal covariance ψ referred to as the uniqueness or specific variance.

1Note that the diagonal of a correlation matrix is 1. This statement implies that only part of this 1 is due to
the q < p latent variables - this part is known as the communality.
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With these assumptions, cov(φ, ζ) = 0, if Σφ = I then cov(x,φ) = Γ. It is worth emphasising

that unlike many multivariate techniques covered here, factor analysis is a statistical model for our

observations, with the following distributional form:

x ∼ Normal(µ,ΓΓT +ψ)

It may be slightly clearer to consider the way a vector of observations x = x1, . . . , xp are modelled

in factor analysis:

x1 = µ1 +
q∑

k=1

γ1kφk + ζ1

x2 = µ2 +
q∑

k=1

γ2kφk + ζ2

...

xp = µp +
q∑

k=1

γpkφk + ζp

Note that under the terms of this model:

var(xj) = γ2
j1 + γ2

j2 + . . .+ γ2
jq + var(ζj) (11.1)

One potential problem with this model should be immediately obvious, there can be rather more

parameters than data. For example, note that the covariance matrix Σ has p(p + 1)/2 parameters,

the factor model ΓΓT+ψ) has qp−q(q−1)/2+p parameters. One issue arises whereby a factor analsis

model must be constrained in order to ensure identifiability. Clearly, p(p+1)/2 ≥ qp−q(q−1)/2+p,

or:

q ≤ 2p+ 1−
√

8p− 1
2

(11.2)

This gives some maximum values of q for given values of p:
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p max q

1 0

2 0

3 1

4 1

5 2

6 3

7 3

8 4

9 5

10 6

Where q < p, the right hand side of 11.1 indicates how much of var(xj is explained by the model, a

concept referred to as the communality. Consideration of the order of the model leads on to a point

we will consider later, degrees of freedom after fitting a q factor model:

df =
p(p+ 1)

2
− qp+

q(q − 1)
2

− p =
(p− q)2 − (d+m)

2
(11.3)

11.2.1 Centred and standardised data

In practice it is often much simpler to centre the data, so that we model:

xj − µj =
q∑

k=1

γkφk + ζj ; j = 1, . . . , p (11.4)

or even to standardise the variables so that in effect we are modelling the correlation matrix rather

than the covariance matrix.

xj − µj
σjj

=
q∑

k=1

γkφk + ζj ; j = 1, . . . , p (11.5)

Regardless of the data matrix used, factor analysis is essentially a model for Σ, the covariance matrix

of x,

Σ = ΓΓT +ψ
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11.2.2 Factor indeterminacy

We now consider another problem with factor analysis. It is a very indeterminate model, specifically

it is unchanged if we replace Γ by KΓ for any orthogonal matrix K. However, this can be turned

to our advantage, with sensible choice of a suitable orthogonal matrix K we can achieve a rotation

that may yield a more interpretable answer. Factor analysis therefore requires an additional stage,

having fitted the model we may wish to consider rotation of the coefficients.

11.2.3 Strategy for factor analysis

To fit the model, we therefore need to:

• Estimate the number of common factors q.

• Estimate the factor loadings Γ

• Estimate the specific variances ψ2

• On occasion, estimate the factor scores φ

We will now consider fitting methods for factor analysis. It will be obvious that the preferred method

in R is the maximum likelihood method, but we will first consider methods based around principal

components to reinforce some ideas about the model.

11.3 Principal component extraction

We have already used the spectral decomposition to obtain one possible factoring of the covariance

matrix Σ.

Σ = EΛET

which can be expanded:
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Σ = λ1e1e
T
1 + λ2e2e

T
2 + . . . λpepe

T
p

=
(√

λ1e1,
√
λ2e2, . . . ,

√
λpep

)

√
λ1e1√
λ2e2

...√
λpep



Of course, in practice we don’t know Σ and we use S (or we standardise the variables and use R -

it should be remembered that this is rather a big decision when working with principal components).

Referring back to our data, it should be remembered that the spectral decomposition yields linear

principal components as follows:

z1 = e11x1 + e12x2 + . . .+ e1pxp; var(z1) = λ1

z2 = e21x2 + e22x2 + . . .+ e2pxp; var(z2) = λ2

...

zp = ep1x1 + ep2x1 + . . .+ e1pxp; var(zp) = λp

which in matrix notation this can be expressed as:

Z = EX (11.6)

where Z =


z1

z2

...

zp

, X =


X1

X2

...

Xp

 and E =


e11 e12 . . . e1p

e21 e22 . . . e2p

...
...

. . .
...

ep1 ep2 . . . epp

.

Multiplying both sides of 11.6 by E−1gives:

E−1Z = X (11.7)

We know orthogonal matrices generally that E−1 = ET so we can invert the transformation by using

X = ETZ (11.8)
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which can be expanded as:

x1 = e11z1 + e21z2 + . . .+ epzp

x2 = e12z2 + e22z2 + . . .+ epzp
...

xp = e1pz1 + e2pz2 + . . .+ eppzp

which we could express as;

x1 = (e11

√
λ1)

z1√
λ1

+ (e21

√
λ2)

z2√
λ2

+ . . .+ (ep1
√
λp)

zp√
λp

x2 = (e12

√
λ1)

z1√
λ1

+ (e12

√
λ1)

z1√
λ1

+ . . .+ (ep2
√
λp)

zp√
λp

...

xp = (e1p

√
λ1)

z1√
λ1

+ (e2p

√
λ2)

z2√
λ2

+ . . .+ (epp
√
λp)

zp√
λp

and if we set γjk = (ejk
√
λj) and φj = zj/

√
λj we have a clear link with the factor analysis model

given in equation 11.2. If we try writing this in matrix terminology, our loadings matrix Γ is the p×p
matrix where the jth column is given by

√
λjej we now have:

S = ΓΓT

which is getting us part of the way to our factor analysis model. Before going any further we will

reinforce this procedure by considering how to obtain these values from within R. Note that under

the principal component solution, the estimated loadings do not alter as the number of factors is

increased or decreased. We are going to load the economic data, and carry out a decomposition of

the correlation matrix R.

> econ <- read.csv("econ.csv", row.names = 1)
> econ.cor <- cor(econ)
> econ.ev <- eigen(econ.cor)
> loadings <- matrix(0,9,9)
> for (i in 1:9){
> loadings[,i] <- sqrt(econ.ev$values[i]) * econ.ev$vectors[,i]
> }
> econ.cor - loadings %*% t(loadings) ## should equal zero
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Clearly we don’t actually want to use a decomposition with with q = p variables. As might be

rather obvious bearing in mind our earlier use of principal components, we wish to partition Λ into

Λ1 = λ1, λ2, . . . , λq and Λ2 = λq+1, . . . , λp with the corresponding eigenvectors. As a consequence,

we reduce the size of our Γ matrix, i.e. to neglect the contribution of λq+1eq+1e
T
q+1 + . . . λpepe

T
p .

So when considering our model for the data, we wish to partition our factors as follows:

x1 = e11z1 + e21z2 + . . .+ eq1zq + eq+1,1zq+1 + . . .+ ep1zp

x2 = e12z2 + e22z2 + . . .+ eq2zq + eq+1,2zq+1 + . . .+ ep2zp
...

xp = e1pz1 + e2pz2 + . . .+ eqpzq + eq+1,pzq+1 + . . .+ eppzp

and if we set eq+1,jzq+1 + . . .+ epjzp = ζj ; j = 1, . . . , p we can rewrite this as:

x1 = e11z1 + e21z2 + . . .+ eq1zq + ζ1

x2 = e12z1 + e22z2 + . . .+ eq2zq + ζ2
...

xp = e1pz1 + e2pz1 + . . .+ eqpzq + ζp

As earlier, we can expressed this as:

x1 = (e11

√
λ1)

z1√
λ1

+ (e21

√
λ2)

z2√
λ2

+ . . .+ (eq1
√
λq)

zq√
λq

+ ζ1

x2 = (e12

√
λ1)

z1√
λ1

+ (e12

√
λ1)

z1√
λ1

+ . . .+ (eq2
√
λq)

zq√
λq

+ ζ2

...

xp = (e1p

√
λ1)

z1√
λ1

+ (e2p

√
λ2)

z2√
λ2

+ . . .+ (eqp
√
λq)

zq√
λq

+ ζp

where γjk = (ejk
√
λj) and φi = zi/

√
λi as before, notice as stated at the outset that var(ζ) = ψ.

If we consider this in terms of the decomposition of the covariance matrix we have:
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Σ =
(√

λ1e1,
√
λ2e2, . . . ,

√
λqeq

)

√
λ1e1√
λ2e2

...√
λqeq

+


ψ1 0 . . . 0

0 ψ2 . . . 0
...

...
. . .

...

0 0 . . . ψp

 (11.9)

Where now ψj = var(ζj) = σjj −
∑q
k=1 γ

2
jk for k = 1, 2, . . . , q.

Estimates of the specific variances are given by diagonal elements of the matrix Σ̂− Γ̂Γ̂
T

, i.e:

ψ̂ =


ψ1 0 . . . 0

0 ψ2 . . . 0
...

...
. . .

...

0 0 . . . ψp

withψj = σjj −
q∑

k=1

γ2
jk (11.10)

So, when using the principal component solution of Σ̂, it is specified in terms of eigenvalue-eigenvector

pairs (λ̂1, ê1), (λ̂2, ê2), . . ., (λ̂p, êp), where λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂p. If we wish to find a q < p solution

of common factors, then the estimated factor loadings are given by:

Γ̂ =
(√

λ1e1,
√
λ2e2, . . . ,

√
λqeq

)
As with the factor analysis model given earlier, the factors φ have identity covariance matrix

var(φ) = var
(√

Λ1ΓT1 (x− µ)
)

= Iq,

and are uncorrelated with the residuals:

cov(φ, ζ) = cov
(√

Λ1ΓT1 (x− µ),Γ2ΓT2 (x− µ)
)

=
√

Λ1ΓT1 ΣΓ2ΓT2 = 0

However, one major objection to this principal component “solution” is that it can also be seen that

each ζi contains the same zi so they are not mutually unrelated. Hence the latent variables obtained

using the principal component method do not explain all the correlation structure in our data X.

The covariance matrix for the errors is now:

var(ζ) = Γ2Λ2ΓT2
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This additional step can be carried out fairly easily in R. We only need to discard the unwanted

components and estimate the uniquenesses:

> loadings4 <- matrix(0,9,4)
> for (i in 1:4){
> loadings4[,i] <- sqrt(econ.ev$values[i]) * econ.ev$vectors[,i]
> }
> LLt <- loadings4 %*% t(loadings4)
> unique <- diag(econ.cor - LLt)
> error <- econ.cor - (LLt + unique)

and so loadings4 gives us the matrix of loadings, unique gives us an estimate of the uniquenesses.

It should be noted that the loadings are unaltered as the number of factors q is changed. It may be

noted that the diagonal elements of Σ̂ are given by the diagonal elements of ΓΓT + ψ, but this is

not true of the off-diagonal elements. There are error terms associated with our decomposition of

the covariance matrix, these can be easily found from error. Clearly these are values we wish to see

minimised.

We will consider interpretation of factor structure in more detail later. However, for now it may be

of interest to examine the four factor solution. It would appear that the first factor represents some

kind of contrast between agriculture and other industries (with the exception of finance and mining).

\loadings4
[,1] [,2] [,3] [,4]

Agriculture -0.978199871 -0.07760625 0.05173168 -0.02899271
Mining -0.002342834 -0.90214224 -0.21179672 -0.06592893
Manufacture 0.645370678 -0.52159027 -0.15703856 0.34982446
PowerSupplies 0.476333161 -0.37897538 -0.58769654 -0.39731951
Construction 0.608061420 -0.07694001 0.15838634 0.66387307
ServiceIndustries 0.707975893 0.51045159 -0.12126845 0.05137022
Finance 0.138717720 0.66237521 -0.61559512 0.05147600
SocialAndPersonalServices 0.723602099 0.32374238 0.32749903 -0.40851903
TransportAndCommunications 0.684640120 -0.29451591 0.39342807 -0.31637790

11.3.1 Diagnostics for the factor model

We can define a residual matrix as:

ε = S −
(
LLT +ψ

)
(11.11)

By construction, the diagonal elements of this residual matrix will be zero. A decision to retain a

particular q factor model could be made depending on the size of the off-diagonal elements. Rather

conveniently, there is an inequality which gives us:
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[
ε = Σ̂−

(
LLT +ψ

)]
≤ λ̂2

q+1 + · · ·+ λ̂2
p (11.12)

So it is possible to check the acceptability of fit in terms of a small sum of squares of neglected

eigenvalues.

In a similar manner to that used in principal components, it is possible to use the eigenvalues to

indicate the proportion of variance explained by any given factor. So instead of examining discarded

components we could examine those we intend to retain. Bearing in mind that trace(Σ = σ11+σ22+
. . .+σpp, we know that the amount of variation explained by the first factor γ2

11 + γ2
21 + . . .+ γ2

p1 =
(
√
λ1e1)T (

√
λ1e1) = λ1.

So we know that the j-th factor explains the following proportion of total sample variance:

λj
trace(S)

(11.13)

which reduces to
λj
p when using standardised variables (the correlation matrix).

It is actually in the context of factor analysis that the Kaiser criterion was developed. This is

implemented by default in a number of computer programs, basically we retain factors which are

explaining more than the average amount of variance; if we are decomposing the correlation matrix

we retain all factors where the corresponding eigenvalues are greater than one. We can consider the

number of components to retain from our earlier eigen analysis. The following R output gives the

eigenvalues, and the proportion and cumulating proportion explained by each possible factor.

> econ.ev$values
[1] 3.482820 2.132332 1.098373 0.9984261 0.5450933
[6] 0.3836385 0.2224905 0.1367327 0.0000930

> econ.ev$values / 0.09
[1] 38.698003578 23.692581759 12.204146983 11.093622860 6.056592340
[6] 4.262650255 2.472116648 1.519252072 0.001033506

> cumsum(econ.ev$values/0.09)
[1] 38.69800 62.39059 74.59473 85.68836 91.74495 96.00760 98.47971
[8] 99.99897 100.00000

Considering the eigenvalues first, using the Kaiser criterion would lead us to select three components,

but it should be noted that the fourth component is only just below 1 (0.998) giving perhaps some

warning as to the arbitrariness of this device. There are 9 variables, so we divide by 9 (and multiply

by 100 to express the proportions as a percentage). Cumulative values are also given. We require

five components to explain over 90% of the variation. Remember that according to formula 11.2 this
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is the largest value of q that can be contemplated with nine manifest variables.

Communalities

Another important concept are the communalities. In the case of standardised variables, these indicate

the proportion of variance of a manifest variable explained by its relevant factor structure. These are

simply estimated as:

ξ2
jk = γ2

j1 + γ2
j2 + · · ·+ γ2

jq (11.14)

Terminology can now be supplied for the decomposition of the variance of x given earlier in 11.1 to

reflect the reduced dimensionality.

var(xj) = γ2
j1 + γ2

j2 + . . .+ γ2
jq︸ ︷︷ ︸

communality of xj

+ ψi︸︷︷︸
specificity of xj

(11.15)

For standardised variables, var(xj) = 1, therefore: γ2
i1 + γ2

i2 + . . .+ γqi1 ≤ 1 and −1 ≤ γjk ≤ 1.

These are fairly simply extracted from our matrix of loadings by squaring all entries and summing by

row:

> row.names(loadings4) <- row.names(econ.cor)
> apply(loadings4^2, 1, sum)

Agriculture Mining
0.9664145 0.8630706

Manufacture PowerSupplies
0.8355980 0.8737656

Construction ServiceIndustries
0.8414721 0.7791356
Finance SocialAndPersonalServices

0.8395906 0.9025525
TransportAndCommunications

0.8103523

These appear to be reasonably high for most variables which would suggest a plausible fit for the

factor model.
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11.3.2 Principal Factor solution

We might have been worried about the way our model above doesn little to account for the off-

diagonal elements of Σ̂. Principal factoring (which seems to have rather fewer advocates) considering

decomposing a reduced matrix. We know that the diagonal elements of our covariance matrix are

given by σjj = ξ2
j + ψj , so having determined the number q of common factors needed, we can

decompose the reduced covariance matrix. If we obtain some initial estimates of ψ, we can re-

estimate the remaining part of the decomposition ΓΓT .

σjj = ξ2
j + ψj (11.16)

If we had some initial estimate of ψ, ψ̃ say, we could obtained a “reduced” covariance matrix

S =


ξ̃2
1 s12 · · · s1p

s21 ξ̃2
2 · · · s2p

...
...

. . .
...

sp1 sp2 · · · ξ̃2
p


and carry out an eigendecomposition of this matrix, updating our estimates of the uniqueness and

repeat until convergence.

So all we need is an initial estimate of ψ̃. Many programs conduct a multiple regression of each

manifest variable on each other, and use sjjr
2
j . We then conduct a principal component analysis on

S − ψto find Γ. ψ can then be recalculated as the diagonal of S − ΓΓT and we extract a further

set of principal components. These latter steps are repeated until convergence, which can be slow if

it happens at all. As we are working with the correlation matrix, it’s easy enough to find these intial

values:

> r2s <- vector("numeric", 9)
>
> for (i in 1:9){
+ y <- econ[,i]
+ x <- econ[,-i]
+ mod <- lm(y~as.matrix(x))
+ r2s[i] <- summary(mod)$r.squared
+ }
>
>
> unique <- diag(1-r2s)
> diag(unique)
[1] 0.0001429627 0.0420230140 0.0006887118 0.1325518542 0.0138610514
[6] 0.0016432160 0.0043879128 0.0007569780 0.0161276459
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And all that is now required is to repeatedly implement the loop stage. This is presented as a function

in mvmmisc.R, but it is worth pasting through this manually to see how the procedure works.

> new <- econ.cor - unique
> new.ev <- eigen(new)
>
> loadings4pf <- matrix(0,9,4)
> for (i in 1:4){
+ loadings4pf[,i] <- sqrt(new.ev$values[i]) * new.ev$vectors[,i]
+ }
>
> LLt <- loadings4pf %*% t(loadings4pf)
>
> unique.f <- econ.cor - LLt
> diag(unique) <- diag(unique.f)
>
> diag(unique)
[1] 0.02890147 0.14965321 0.15824274 0.25101144 0.14818053 0.21896192 0.15269320
[8] 0.09280381 0.20001567
>
> loadings4pf

[,1] [,2] [,3] [,4]
[1,] -0.980556270 -0.06951113 0.06899117 -0.004043332
[2,] -0.007596438 -0.88584019 -0.20248258 0.156770695
[3,] 0.644457570 -0.53242421 -0.27602489 -0.258391989
[4,] 0.453749164 -0.35005068 -0.40926760 0.503055476
[5,] 0.607710009 -0.08927793 -0.03546047 -0.687953501
[6,] 0.711408766 0.50862889 -0.12606387 -0.018444548
[7,] 0.140377243 0.67201322 -0.59955488 0.128581528
[8,] 0.727082131 0.31778092 0.43171651 0.301966740
[9,] 0.681111481 -0.30230726 0.45690884 0.189515460

It should be noted that in addition to slow (or no) convergence, different results will be obtained de-

pending on whether correlation or covariance matrix is used. However, this approach does not require

any distributional assumptions so may be of some use of multivariate normality cannot be claimed,

even by refuge to the central limit theorem. Harmon (1967) does indicate further fundamental

differences between the principal component and this solution.

Little more needs to be said about this method of factor analysis, we now turn our attention to a

more promising approach, maximum likelihood.

11.4 Maximum likelihood solutions

Obvious conclusions might be drawn by noting that R only offers this method of fitting factor analysis

models, see the helpfile for the relevant function ?factanal as well as Venables and B.D.Ripley
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(2002). It should be noted from the outset that this method is invariant to changes in scale, a proof

given in Seber (1984). In other words, it doesn’t matter whether the correlation or the covariance

matrix are used, or indeed whether any other scale changes are applied. There are a number of

other advantages associated with maximum likelihood fitting, but the problem of Heywood cases still

remains, whereby some of the unique variances are estimated with a negative value.

We also need to impose an additional assumption over and above the factor analysis assumptions set

out earlier, namely that the following matrix:

ΓTΨ−1Γ (11.17)

must be diagonal to enable model fitting. Having fitted the model, as we will find out later we are

free to rotate the solution.

If the maximum likelihood method is so superior, the obvious question arises as to either of the

principal component based methods have remained in use for so long. There is in fact a long and

far from trouble free history in terms of trying to develop a maximum likelihood solution for factor

analysis, details of an earlier approach to maximum likelihood fitting are given in Morrison (1976).

In any case, we well assume that our data follows a multivariate normal distribution, which will have

the following likelihood:

L(x;µ,Σ) = (2π)−
np
2 |Σ|−n2 e−

1
2 tr(Σ−1(

∑n
i=1(xi−x̄)(xi−x̄)T+n(x̄−µ)(x̄−µ)T )) (11.18)

we wish to solve this in terms of our factor analysis model and therefore need to find an expression

for the likelihood of L((x;µ,Γ,ψ).

µ is a nuisance parameter for our purposes here, we can either get rid of it by using the estimate

µ̂ = x̄ and hence use the profile likelihood to find Γ̂ and ψ̂ , or we can factorise the likelihood as

L(S; x̄,Σ)L(x̄;µ,Σ). In this latter case, barx and S are the joint sufficient statistics for µ and

Σ respectively, for the purposes of factor analysis we only require the first part of the factorised

likelihood which can be estimated by conditional maximum likelihood. Note that as barx and S are

independent this is also the marginal likelihood.

Taking logs of 11.18, and collecting constant terms into c1 and c2 we can say that we wish to

maximise:

lnL = c1 − c2
(

ln |ΓΓT +ψ|+ trace(ΓΓT +ψ)−1S
)

(11.19)

By taking this likelihood, along with the diagonality contraints indicated in 11.17 all we need is a

procedure for estimation.
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An intial estimate of ψ̃ has to be made as before, Lawley and Maxwell (1971) give maximum likelihood

solutions for the uniquenesses. Joreskog (1967) noted that for fixed ψ > 0, the likelihood equations

require:

Γ̂ =
√
ψE1

√
(Λ1 − I) (11.20)

where Λ1 contains the q largest eigenvalues of
√
ψS
√
ψ, and E1 the corresponding eigenvectors.

This is used to estimate Γ̂ given a value of ψ̂. Now, the log likeihood is maximised with respect to

ψ̂ given an estimate of Γ̂.

As stated, this method is implemented in R, and therefore it is quite easy to try to fit a model to our

economics data:

> econ <- read.csv("econ.csv", row.names = 1)
> econ.fact <- factanal(econ, factors = 4, rotation = "none")

We can consider the residual matrix for our maximum likelihood solution

> loadml <- loadings(econ.fact)
> class(loadml) <- "matrix"
> uniqueml <- econ.fact$uniquenesses
> resid <- econ.cor - ( loadml%*% t(loadml) + diag(uniqueml) )
> resid

It will be seen that these are considerably smaller than those residuals obtained from the principal

component method used earlier. One gain from using the maximum likelihood method is that classical

multivariate work provide a test for the adequacy of model fit. If take our null hypothesis as belief

that our factor analysis model is an adequate representation of the covariance matrix we will test the

following:

H0 : Σ = ΓΓT +ψ

H1 : Σ is any other positive definite matrix

This (eventually) yields a likelihood ratio statistic:

−2 ln Λ = −2 ln

(
|Σ̂|
|S|

)
+ n

(
tr(Σ̂

−1
S)− p

)
(11.21)
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with 1
2

(
(p− q)2 − p− q

)
degrees of freedom.

It can be shown (not here) that tr(Σ̂
−1
S) − p = 0 at the maximum likelihood so this term can be

removed and we can consider that

−2 ln Λ = n ln

(
|Σ̂|
|S|

)
(11.22)

All that remains is to add a correction suggested by Bartlett (1951, 1954). We need to replace n

with something slightly more elaborate, the exact formula chosen varies amongst many multivariate

tests, in the current R function the correction applied is:

n− 1− 2p+ 5
6
− 2q

3

Hence we are going to test:

n− 1− 2p+ 5
6
− 2q

3
ln

(
|Γ̂Γ̂

T
+ ψ̂|
|S|

)
> χ2

((p−q)2−p−q)/2,α (11.23)

The idea might be to start with q small (anticipating the rejection of H0), and increase q until H0 is

no longer rejected. As with all such tests, there are many reasons for rejecting H0, not all of these

may concern us. In addition, Johnson and Wichern (1998) suggest that if n is large and q is small

relative to p, it will tend to reject H0 even though Σ̂ is close to S. So the situation can arise whereby

we can claim “statistical significance” for the inclusion of additional factors in our model, but they

actually add little to the model. This tends to reinforces the exploratory aspects of multiviariate

analysis (for some sense of exploratory).

We can extract the communalities from our model as easily as before:

> apply(loadml^2, 1, sum)
Agriculture Mining
0.9954167 0.5937541

Manufacture PowerSupplies
0.9950263 0.9950022

Construction ServiceIndustries
0.4852833 0.8360147
Finance SocialAndPersonalServices

0.4786655 0.9950786
TransportAndCommunications

0.4676025
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The R output has already given us information on the proportion of variance explained by each of

the factors:

Factor1 Factor2 Factor3 Factor4
SS loadings 3.270 1.519 1.189 0.864
Proportion Var 0.363 0.169 0.132 0.096
Cumulative Var 0.363 0.532 0.664 0.760

suggesting that 76% of variation is explained by our four factors (under the maximum likelihood

solution). We reckoned on 10% points more for the principal component solution. This would be

expected due the variance maximising properties of principal components generally (whether used

appropriately or for factor analysis).

It is now important to turn our attention to rotation. The maximum likelihood solution is constrained

by the diagonality constraint, and it is particularly important here that rotations are considered.

11.5 Rotation

It was stated earlier that one of the potential disadvantages of factor analysis was a certain rotational

indeterminancy, indeed in the maximum likelihood fitting method it is necessary to add a constraint

specifically deal with this. We are now going to consider one of the benefits of rotation; to yield a

more interpretable factor structure. In short, we seek a rotation:

Γ̂
(R)

= Γ̂T (11.24)

such that we obtain easy-to-interpret factor loadings. One definition of “easy” is that where possible

some components would be large, others small. The most obvious way to do this is actually to carry

out the exercise by eye, and to rotate the axes around the origin so that some factor loadings become

small. It is also easy to suggest a two dimensional rotation matrix:

T =

(
cosφ sinφ
− sinφ cosφ

)

for rotation angle φ;−π ≤ φ ≤ φ. All we need to do is find a suitable value for φ. This becomes

slightly more difficult in every sense where q > 2, indeed it is possible to carry out the whole procedure

by eye with pencil and paper (do you remember what they are).

For orthogonal rotations, two objective criteria are most commonly used to determine the optimal

rotation: the Varimax procedure (Kaiser, 1958) and the Quartimax procedure Neuhaus and Wrigley
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(1954). The former is currently available within R and will be considered here, as usual it is worth

checking the definitive entry in ?varimax. This looks for a rotation which maximises the objective

V:

V =
1
p2

q∑
k=1

p p∑
j=1

[
γ2
jk

ξ2
j

]4

−

 p∑
j=1

[
γ2
jk

ξ2
j

]2
 (11.25)

where ξ2
i =

∑q
k=1 γ

2
jk is the communality for each of the j variables as before.

Earlier we called factanal() with the argument rotation = "none", hence the default is to carry

out a rotation. It is also possible to obtain a promax rotation. However, it is useful for our purposes

to carry out the rotations directly on the loadings matrices we have generated earlier, the following

call:

> varimax(loadings4)

will supply a varimax rotation of our four principal component factors.

In many books dealing with topic it is conventional to consider this subject by visually rotating the

axis, leaving the loadings in the same position. However, inverting this procedure we can very simply

plot the rotated and unrotated loadings as follows:

> plot(loadings4[,c(1:2)], pch = as.character(c(1:9)),
xlab = expression(paste(gamma,"1")), ylab = expression(paste(gamma,"2")),
main = "First and second loadings",
xlim = c(-1,1), ylim = c(-1,1))

> points(varimax(loadings4)$loadings[,c(1:2)],
pch = letters[c(1:9)], col = "red")

> abline(h = 0)
> abline(v = 0)

where the numbers 1-9 represent the unrotated loadings for variables 1 to 9, and the letters a-i

represent the rotated loadings for variables 1 to 9 on the first two factors. This is depicted in figure

11.2.

Although is is more difficult to see what is going on with q = 4, we can see for example that the

eighth variable (Social and Personal Services) has in increased loading in terms of γ18, and a much

decreased loading in terms of the second factor (γ28 is virtually zero. Thus we may feel that we have

achieved some simplification of our factor structure.
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Figure 11.2: Plot overlaying the co-ordinates of factor loadings 1 and 2 before and after rotation
optimised by the varimax criterion

11.6 Factor scoring

Finally, there are occasions where we may wish to estimate values for φi for a given individual i.

These values are referred to as the scores, the process of estimating them, which has to be carried

out after Γ and ψ have been estimated is therefore referred to as scoring.

Two methods are available in R for scoring, Thomson and Bartlett’s. The default is that no scor-

ing takes place (it requires a data matrix). By including scores = "Bartlett") or scores =

"regression" these estimates are obtained.

Bartlett (1937, 1938) propsed a method based upon weighted least squares.

Once we have estimates

x1 − x̄1 =
q∑

k=1

γ̂1kφ1 + ζ1

x2 − x̄2 =
q∑

k=1

γ̂2kφ2 + ζ2

...

xp − x̄p =
q∑

k=1

γ̂pkφp + ζp
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we need to estimate φj for j = 1, . . . , q, however as var(ζj) = ψj are not equal he argued that

weighted least squares was the most appropriate technique.

The weighted least squares estimates thus obtained are:

φ̂i = (ΓTΨ−1Γ)ΓTΨ(xi − x̄) (11.26)

Thomson (1951) is based on assuming that both φ and ζ are multivariate normal, thus a concatena-

tion of the manifest (x) and latent ( φ) variables yT = (φT ,xT ) will also be normal with dispersion

matrix:

var(y) =

(
I ΓT

Γ ΓΓT +ψ

)

The mean of φ is zero by definition, therefore:

E(z|x0) = ΓT (Γ)ΓT + Ψ)−1(xo − µ)

which gives the estimate for the scores as:

z = Γ̂
T

(Γ̂)Γ̂
T

+ ψ̂)−1(xi − m̂u) (11.27)

It might be clear that factor scoring takes no account of uncertainty in the estimates of Γ̂ and ψ̂,

this is one area where Bayesian methods are coming to the fore (Aitkin and Aitkin, 2005)
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Bayesian factor analysis, sparsity priors
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