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George W. Cobb and David S Moore 
. 

How does statistical thinking differ from mathematical thinking? What is the role 
of mathematics in statistics? If you purge statistics of its mathematical content, 
what intellectual substance remains? 

In what follows, we offer some answers to these questions and relate them to a 
sequence of examples that provide an overview of current statistical practice. 
Along the way, and especially toward the end, we point to some implications for 
the teaching of statistics. 

1. INTRODUCTION: AN OVERVIEW OF STATISTICAL THINKING. Statistics 
is a methodological discipline. It exists not for itself but rather to offer to other 
fields of study a coherent set of ideas and tools for dealing with data. The need for 
such a discipline arises from the omnipresence of variability. Individuals vary. 
Repeated measurements on the same individual vary. In some circumstances, we 
want to find unusual individuals in an overwhelming mass of data. In others, the 
focus is on the variation of measurements. In yet others, we want to detect 
systematic effects against the background noise of individual variation. Statistics 
provides means for dealing with data that take into account the omnipresence of 
variability. 

1.1. The role of context. The focus on variability naturally gives statistics a particu- 
lar content that sets it apart from mathematics itself and from other mathematical 
sciences, but there is more than just content that distinguishes statistical thinking 
from mathematics. Statistics requires a different kind of thinking, because data are 
not just numbers, they are numbers with a context. 

Example 1. The mystery of Andover. The finite sequence (3, 5, 23, 37, 6, 8, 20, 22, 1, 3) 
shows a distinctive pattern when plotted (Figure 1) but the numbers and the 
pattern have no meaning or interest until we know their context. They are in fact 
monthly totals of people formally accused of witchcraft in Essex County, 
Massachusetts, beginning in February, 1692. The plot shows two waves of accusa- 
tions, separated by a low point in the summer of 1692. The pattern becomes still 
more meaningful when we know that the first hanging of a convicted witch 
(Bridget Bishop) took place June 10, 1692: it is not hard to imagine the sobering 
effect of that first execution in the small community of Salem Village (now 
Danvers). But why the second wave of accusations? It turns out that the accusa- 
tions in the first wave were directed against residents of Salem Village, Salem 
Town, and all but one of the half-dozen immediately adjacent towns; in the second 
wave the majority of the accusations were directed against residents of the one 
other adjacent town, Andover. Our sources [3, 4] do not provide much explanation 
for what happened in Andover, but the pattern, together with what we know of the 
context, tells at least part of a story and raises some interesting questions. 
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Figure 1. Numbers of people accused of witchcraft in Essex County, MA, 1692. 

Although this first example has almost no mathematical content, its interplay 
between pattern and context is typical of the interpretive part of statistical 
thinking. For a more familiar example of a very different sort, consider testing that 
two normal distributions have equal means. 

Example 2a. A model for comparing normal means. Consider the standard model 
involving two sets of independent, identically distributed (iid) random variables: 

X1, X2, . . ., X, iid N( y1, v1 ) Y1, Y2, . . ., Ym iid N( F2 S 2 ) 

It follows that x = (Exi)/n and sl2 = E(xi-x)2/(n-1) are sufficient statistics 
for ,ul and v12, with parallel results for the Ys. Informally, a statistic is sufficient 
for a parameter if it uses all the information about that parameter contained in the 
sample. More formally the conditional distribution of the data, given the sufficient 
statistic, doesn't depend on the parameter. The Rao-Blackwell Theorem guaran- 
tees that no unbiased estimator can have a smaller variance than one based on a 
sufficient statistic. Both x and sl2 are unbiased: E(x)= ,ul and E(sl2)= crl2. 
Finally, their joint distribution is known: the sample mean x is normal with 
variance (rl2/n, and, independently, (n - l)sl2/rl2 is chi-square on (n- 1) de- 
grees of freedom. Suppose now we want to test Ho ,ul = ,u2. If crl2 = 22 then a 
sufficient and unbiased estimator for the common variance is obtained by pooling: 

Sp2 = [(n - 1)sl2 + (m - 1)522]/(n + m - 2) 

If Ho is true, then (x-y)/sl(1/n) + (1/m) has a Student's t-distribution on 
n + m - 2 degrees of freedom, and we can use the value of t computed from the 
data to test the null hypothesis. If t is far enough from 0, we conclude that 

F1 7& R2. 
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This example differs most strikingly from the first in two ways: mathematical 
content and the role of context. Example 1, which has essentially no mathematical 
content, finds its intellectual substance almost entirely in the interplay between 
pattern and story. Example 2, which has essentially no content apart from mathe- 
matics, gets it intellectual substance without any explicit reference to applied 
context. 

Although mathematicians often rely on applied context both for motivation and 
as a source of problems for research, the ultimate focus in mathematical thinking 
is on abstract patterns: the context is part of the irrelevant detail that must be 
boiled off over the flame of abstraction in order to reveal the previously hidden 
crystal of pure structure. In mathematics, context obscures structure. Like mathe- 
maticians, data analysts also look for patterns, but ultimately, in data analysis, 
whether the patterns have meaning, and whether they have any value, depends on 
how the threads of those patterns interweave with the complementary threads of 
the story line. In data analysis, context provides meaning. 

The difference has profound implications for teaching. To teach statistics well, 
it is not enough to understand the mathematical theory; it is not even enough to 
understand also the additional, non-mathematical theory of statistics. One must, 
like a teacher of literature, have a ready supply of real illustrations, and know how 
to use them to involve students in the development of their critical judgment. In 
mathematics, where applied context is so much less important, improvised exam- 
ples often work well, and teachers of mathematics become skillful at inventing 
examples on the spot (Need a function to illustrate the chain rule? No problem: 
just make one up.) In statistics, however, improvised examples don't work, because 
they don't provide authentic interplay between pattern and context. Much as 
Bertrand Russell likened mathematics to sculpture for the austerity of its abstrac- 
tion, one might think of data analysis as like poetry, where pattern and context are 
inseparable. Imagine yourself teaching a lesson on basic prosody, introducing 
dactylic hexameter. It is not enough to say "TA ta ta, TA ta ta, TA ta ta, . . . ;"your 
students need to hear dactyls in a real poem [20]: "This is the forest primeval. The 
murmuring pines and the hemlocks." In a similar spirit, the teacher of statistics 
needs to know the data literature. If, for example, when you teach plots for data 
distributions, you use data on inter-eruption times for Old Faithful [30] and lengths 
of reigns of English kings and queens [13], your students can learn more than just 
the methods themselves. The bimodal shape of the inter-eruption times suggests 
two kinds of eruptions, and the distribution of monarchs' reigns shows the 
skewness toward high values that is typical of waiting times. 

The contrasting roles of context in mathematics and statistics, especially as 
illustrated in the deliberately extreme first two examples, might seem to lend 
support to the false implication in Bullock's [5] assertion that "Many statisticians 
now claim that their subject is something quite apart from mathematics, so that 
statistics courses do not require any preparation in mathematics." In fact, while we 
find the evidence that statistics is not mathematics persuasive (see [22], [24]), all 
statistics courses require some preparation in mathematics, and some require a 
great deal. Elaborate mathematical theories undergird some parts of statistics, and 
the study of those theories is part of the training of statisticians. But although 
statistics cannot prosper without mathematics, the converse fails. That statistics is 
not a necessary part of a mathematician's training is implicit in the statement by 
the eminent probabilist David Aldous [1] that he "is interested in the applications 
of probability to all scientific fields enscept statistics." 
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What then, is the role of mathematics in the science of statistics? An answer 
should begin with a more systematic look at the logic of analyzing data. 

1.2. A schematic overview of statistical analysis. An old-style course that wanted 
to be conscientious about applications might finish off the second example with a 
little coda of an exercise. The data, although not this invented exercise, are from 
[25]; the full study is described in [21]. 

Example 2b. Calcium and blood pressure. Does increasing the amount of calcium in 
our diet reduce blood pressure? The following numbers give the decrease after 12 
weeks in systolic blood pressure for 21 human subjects. The 10 subjects in Group 1 
took a calcium supplement for 12 weeks; the 11 in Group 2 took a placebo. Test 
the hypothesis that the calcium had no effect on blood pressure. 

Group 1 (calcium): 7, - 4,18,17, - 3, - 5,1, 10,1 1, - 2 
Group 2(placebo): -1, 12, -1, -3, 3, -5, 5, 2, -11, -1, -3 

This exercise, put so tersely, is a caricature, one that encourages the mistaken view 
that once the mathematical derivations from a model are completed, applications 
are largely a matter of routine arithmetic. For a more realistic perspective, 
consider Figure 2, a diagram of the stages in a statistical analysis. Before consider- 
ing this crude outline in detail, two cautions are essential. 

(l) (2) 
Design --> Data --> Patterns 

Model(s) --> Methods --> Results --> Intrepretation 
(3) (4) (5) 

Figure 2. A schematic representation of the phases of data production and analysis. 

1. The summary oversimplifies by suggesting a strict left-to-right progression. In 
reality, the process of data analysis is neither linear not unidirectional. 
Several transitions involve a dialog of sorts, sometimes between adjacent 
elements, but sometimes among more than just two. Thus, for example, the 
choice of design for data production determines the structure of the resulting 
data, but knowledge based on data already in hand can help shape the 
design, as when knowing the size of variation from one subject to another 
helps decide how many subjects will be needed. Similarly, the data may 
suggest a model, but the model leads to methods that send us back to the 
data to check for possible violations of the model's assumptions. Perhaps 
most important of all, as we shall see, the final stage, interpretation of the 
results, depends in a crucial way on the first stage, the kind of design used 
for producing the data. 

2. The rough and qualified ordering of stages here is not meant to suggest that 
we think the topics taught in an introductory statistics course should follow 
the same order. For reasons presented later, we recommend beginning with 
methods for exploring and describing data, then going "back" to data 
production, and from there to formal inference. 

With these cautions assumed, the flowchart can provide a useful framework for 
examining the role of mathematics in statistics and summarizing elements of the 
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non-mathematical substance of the subject. Here are four quick observations: 

1. Design, exploration, and interpretation are core elements of statistical thinl- 
ing. All three elements are heavily dependent on context, but at the introduc- 
to1y level they involve very little mathematics. The (largely non-mathemati- 
cal) theory of experimental design is decades old and well developed; the 
theory of exploration is newer, and at present still primitive, although 
computer-based tools for exploration have become quite sophisticated; the 
theory of interpretation is fragmentary at best. 

2. The classical course in mathematical statistics corresponds so neatly to 
transition (3) that "from models to methods" might almost serve as a course 
title. Context is largely irrelevant here, because models are presented ab- 
stractly, as in Example 2a, and a typical derivation simply applies one 
optimality principle or another (least squares, maximum likelihood) to de- 
duce the method de jour. 

3. Transition (4), from methods to results, is the focus of the old-style cookbook 
course, in which each method is summarized by a set of formulas. Context is 
irrelevant here also, in that you can learn computational altorithms, and in 
fact learn them more efficiently, if you resist any temptation to encumber 
your brain with concern about what the methods are good for. All the same, 
some courses have tried to make the throat-clogging bolus of rote easier to 
get down by sugar-coating it with a thin glaze of ersatz context. Fortunately, 
the computer is fast sweeping courses like these into the dustbin of curricular 
history. 

4. It is perhaps ironic that transitions (3) and (4), the two that have most often 
been the focus of courses at the introductory level, are precisely the two that 
are intellectually most automatic (given our current limited understanding 
and less developed theory of the other transitions) and so offer the least 
room for judgment and creativity. 

To develop these points in more detail, we return to the example of calcium and 
blood pressure. In what follows, we combine the stages of Figure 2 under three 
broader headings: data production, data analysis, and inference. 

2. THE CONTENT OF STATISTICS 

2.1. Data production. The standard model of Example 2a is incomplete in a most 
serious way: it does not distinguish between observational data (e.g., from a sample 
survey) and data from a randomized comparative experiment. This distinction, 
between observation and experiment, is one of the most important in statistics. 
Researchers often want to reach causal conclusions: calcium causes a reduction in 
blood pressure. Experiments often allow causal conclusions, while observational 
studies almost always leave issues of causation unsettled and subject to debate. Yet 
the mathematical models of statistical theory are identical for observational and 
experimental data. 

The calcium study was in fact an experiment: 

Example 2c. The design of the calcium study [21]. Examination of a large sample of 
people revealed a relationship between calcium intake and blood pressure. The 
relationship was strongest for black men. Researchers therefore conducted an 
experiment. 
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The subjects in part of the experiment were 21 healthy black men. A randomly 
chosen group of 10 of the men received a calcium supplement for 12 weeks. The 
control group of 11 men received a placebo pill that looked identical. The 
experiment was double-blind. 

Can we conclude that calcium has caused a reduction in blood pressure? Such 
an inference, that an observed difference may be taken at face value, stands on 
three legs. Two of the three are grounded in data production: 

(1) an argument automatic only for random samples and randomized experi- 
ments that a probability model applies to the data; 

(2) an argument probability-based, and comparatively straightforward that 
the observed difference is "real," i.e., too big to be plausibly explained as 
due just to chance variation; and 

(3) an argument often thorny and fraught with pitfalls, except in the case of 
randomized experiments that the observed difference is not due to some 
confounding influence distinct from the factor of interest. 

The t-test of Example 2a, like all statistical tests and confidence intervals, deals 
only with the second argument: "If we assume that a particular chance model 
applies, how likely is it to get an observed difference this big?" The other two 
arguments depend on the design. 

The clinical trial on the effect of calcium on blood pressure was a randomized 
comparative experiment. Figure 3 presents the design in outline form. The great 
virtue of assigning the subjects at random is that it makes arguments (1) and (3) 
automatic, and so reduces the problem of inferring cause to checking the fit of a 
model, and then, given adequate fit, carrying out a straightforward calculation. The 
random assignment of subjects eliminates bias in forming the treatment groups and 
produces groups that differ only through chance variation before we apply the 
treatments. The comparative design reminds us that all subjects are treated exactly 
alike except for the contents of the pills they take. Thus if we observe differences 
in the mean reduction in blood pressure greater than could be expected to arise by 
chance, we can be confident that the calcium brought about the effect we see. 

Group 1 _ Treatment 1 
, 10 patients Calcium X 

Random Compare 
Allocation X Blood Pressure 

Group2 Treatment 2 / 
11 patients Placebo 

Figure 3. The simplest randomized comparative experiment. 

The other major means of producing data are sample surveys that choose and 
examine a sample in order to produce information about a larger population. 
Interesting examples abound opinion polls sound and unsound, government 
collection of economic and social data, academic data sources such as the National 
Opinion Research Center at the University of Chicago. Statistical designs for 
sampling begin by insisting that impersonal chance should choose the sample. The 
central idea of statistical designs for producing data, through either sampling or 
experimentation, is the deliberate use of chance. Explicit use of chance mecha- 
nisms eliminates some major sources of bias. It also ensures that quite simple 
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probability models describe our data production processes, and therefore that 
standard inference methods apply. However, unlike randomized experiments, 
observational stlldies do not lend themselves in so straightforward a way to an 
inference of causation, as the following example shows. The original study by Best 
and Walker appears as an example in [12]; our presentation here follows [26]. 

E:xample 3. Smoking and health. One of the early observational studies of smoking 
and health compared mortality rates for three groups of men. The rates, in deaths 
per year per 1000 men, were: 

Non-smokers 20.2 Cigarette smokers 20.5, Cigar and pipe smokers 35.5. 

To test whether the observed differences might be due to chance, we could use a 
model similar to the one in Example 2a. The sample sizes were so large that we 
can easily rule out chance variation as an explanation for the obsemed differences, 
leaving us with the apparent conclusion that cigarettes pose little risk but pipes or 
cigars or both are quite dangerous. Indeed, that conclusion would be valid if these 
data had come from a randomized, controlled double-blind experiment like the 
calcium study. However the premise is clearly untenable. Because this is an 
obsen7ational study, we need to ask about other factors, linked to smoking habits, 
that might be responsible for the obserfired difference. Here, age is the main such 
factor: pipe and cigar smokers tend to be older than cigarette smokers, and the 
risk of death increases with age. In this study, the average ages for the three 
groups were: 

Non-smokers 54.9 years, Cigarette smokers 50.5 years, 
Cigar and pipe smokers 65.9 years. 

Only after adjusting the death rates for the differences in age do we get numbers 
more in line with what we have come to expect: 

Non-smokers 20.3, Cigarette smokers 28.3, Cigar and pipe smokers 21.2. 

Taken together, the last two examples offer what we consider two of the most 
important lessons for mathematicians who teach statistics: one, the conclusions 
from a study depend crucially on how the data were produced, and twoS the 
standard mathematical models ignore data production. 

Statistical ideas for producing data to answer specific questions are the most 
influential contributions of statistics to human knowledge. Badly designed data 
production is the most common serious flaw in statistical studies. Well designed 
data production allows us to apply standard methods of analysis and reach clear 
conclusions. Professional statisticians are paid for their expertise in designing 
studies; if the study is well designed (and no unanticipated disaster occurred), you 
don't need a professional to do the analysis. In other words, the design of data 
production is really important. If you just say s4Suppose X1 to Xn are iid 
observations,'vyou aren't teaching statistics. 

2.2. Data analysis: exploration and description Data analysis is the contemporary 
form of 44descriptive statistics,S' powered by more numerous and more elaborate 
descriptive tools, but especially by a philosophy due in large measure to John 
Tukey of Bell Labs and Princeton. The philosophy is captured in the now-common 
name, exploratozy data analysas, or EDA. The goal of EDA is to see what the data 
in hand say, on the analogy of an explorer entering unknown lands. We put aside 
(but not forever) the issue of whether these data represent any larger universe. 
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Table 1 presents an elementary summary [25] of the distinctions between EDA and 
standard inference: 

TABLE 1. EXPLORATORY DATA ANALYSIS VS. FORMAL PROBABILITY-BASED INFERENCE 

Exploratory Data Analysis Statistical Inference 

Purpose is unrestricted exploration Purpose is to answer specific 
of the data, searching for questions, posted before the 
interesting patterns. data were produced 

Conclusions apply only to the Conclusions apply to a larger group 
individuals and circumstances for of individuals or a broader class 
which we have data in hand of circumstances 

Conclusions are informal, based on Conclusions are formal, backed by 
what we see in the data. a statement of our confidence in them 

In practice, exploratory analysis is a prerequisite to formal inference. Most 
real data contain surprises, some of which can invalidate or force modification of 
the inference that was planned. This is one reason why running data through a 
sophisticated (and therefore automated) inference procedure before exploring 
them carefully is the mark of a statistical novice. The dialog between data and 
models continues with more advanced diagnostic tools that allow data to criticize 
specific models. These tools combine the EDA spirit with the results of mathemat- 
ical analysis of the consequences of the models. 

As we have already seen, the model of Example 2a, because it does not 
distinguish between observation and experiment, is incomplete. It is also, like most 
idealized mathematical models for real phenomena, unrealistic. In the words 
attributed to the statistician George Box, "All models are wrong, but some are 
useful." The user of inference methods based on this model must carefully explore 
its adequacy to the setting and the data. Were there flaws in the data production 
(whether sample or experiment) that render inference meaningless? Are the data, 
which are certainly not independent observations on a perfectly normal distribu- 
tion, sufficiently normal to allow use of standard procedures? This question is 
answered by exploratory examination of the data themselves, combined with 
knowledge of how "robust" the planned analysis is under deviations from the 
assumptions of the model. 

Example 2d. Preliminary exploration of the calcium data. An analysis might start 
from a simple outline: plot, shape, center, spread. 

Plot. A stemplot splits each data value into a stem and leaf, then sorts leaves onto 
shared stems. Figure 4 shows a back-to-back stemplot useful for comparing two 
groups: 

Placebo Calcium 
1 - 1 

5 -O 5 
33111 - O 234 

43 O 1 
5 0 7 
2 1 01 

1 78 

Figure 4. Parallel stemplot of reduction in systolic blood pressure for two groups of men. 
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Shape. The distribution for the placebo group is unimodal and symmetric. The 
treatment group, however, contains a faint suggestion of bimodality, which raises 
the possibility of two kinds of subjects. Might there be some who respond to 
calcium, and others who do not? There is no way to tell from these data, but the 
possibility is worth noting. 

Center and spread. A useful plot for comparing centers, spreads and symmetries is 
the boxplot (Figure 5). Each box locates the quartiles and median of a distribution; 
the "whiskers" extend from the quartile to the most extreme points within 1.5 
interquartile ranges of the nearest quartile, and points at a greater distance from 
the median are shown separately. Here we find a difference in medians, but also a 
pronounced difference in spreads, one that should raise suspicions about the 
assumption of equal variances used to justify a pooled estimate in Example 2a. 
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Figure 5. Parallel boxplots of reduction in systolic blood pressure for two groups of men. 

Normal quantile plot. Looking ahead to a t-test to compare means, it is prudent to 
ask whether the data give us reason to question the normal model of Example 2a. 
Here we subtract the group mean from each observation to get residuals, then plot 
the ordered residuals against the corresponding quantiles of a normal distribution; 
see Figure 6. Our ordinates are the 21 ordered residuals, which divide the real line 
into 22 sub-intervals. The corresponding abscissas are the 21 values that divide the 
real line into 22 segments that are equiprobable under the normal model. If the 
data come from a single normal distribution, we can expect the points to fall near a 
line. 
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Figure 6. Normal quantile plot for the blood pressure data. 

For the calcium data, the pattern is reasonably linear, although the vertical 
jump before the three right-most points shows observed residuals that are larger 
than predicted by the normal model, a pattern consistent with the unequal spreads 
in the boxplots. 

Mathematically structured instruction, which tends to emphasize how methods 
follow from models, often provides only the most general warnings about the 
realities of practice. Statistics in practice resembles a dialog between models and 
data. Models for the process that produced our data do indeed play a central role 
in statistical inference. The mathematical exploration of properties and conse- 
quences of models is therefore important (as it is in economics and physics). But 
the data are also allowed to criticize and even falsify proposed models. In the 
calcium examples, the exploratory analysis warns us not to rely heavily on the 
assumption of equal variances, and to use a modified t-test that estimates separate 
variances for the two groups. We can modify Box's dictum into a practical version 
of the statement that statistics is not just mathematics: Mathematical theorems are 
true, statistical methods are sometimes effective when used with skill. 

Wide availability of cheap computing, especially graphics, has combined with 
the desire to "let the data speak" to generate an abundance of new tools: at the 
low end we have the stemplots and boxplots of Example 2c, but there are also 
model-free scatterplot smoothers, resistant regression algorithms, clever ideas for 
display of high-dimensional data on two-dimensional screens, and many still more 
advanced diagnostic tools for specific situations. Standard statistical software 
implements much of this. The books [7] and [9], by Bell Labs scientists influenced 
by Tukey, present much of the basic graphical material. The software packages S 
and S-PLUS, which originated at Bell Labs, implement more of the new graphics 
and also implement several new classes of models. See [8] for detailed discussion of 
the latter. 
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Although it may be tempting for the neophyte to view data analysis as merely a 
collection of clever tools, the value of these tools comes from using them in a 
systematic way, according to strategies that organize the examining of data: 

1. Proceed from simple to complex: first examine each variable individually, 
then look at relationships among them. 

2. Use a hierarchy of tools: first plot the data, then choose appropriate 
numerical descriptions of specific aspects of the data, then if warranted 
select a compact mathematical model for the overall pattern of the data. 

3. Look at both the overall pattern and at any striking deviations from that 
pattern. 

It is part of the unifying (but non-mathematical) theory of EDA that these 
principles apply in each of several settings. Given data on a single quantitative 
variable, we might display the distribution by a stemplot, note that it reasonably 
symmetric, calculate the mean and standard deviation as numerical summaries, 
and use a normal quantile plot to see whether a normal distribution is a suitable 
compact model for the overall pattern. Given two quantitative variables, we draw a 
scatterplot, measure the direction and strength of linear association by the correla- 
tion, and, if warranted, use a fitted straight line as a model for the overall pattern. 
Thus the univariate "Plot, shvpe, center, spread," returns in the context of bivariate 
data as 4'PIot, shape, directaon, st;rength." 

Here, as elsewhere, an analysis is not just a search for patterns, but a search for 
meaningful patterns. The best fit is not necessarily the most usefi>l, as the following 
example illustrates. 

Example 3. Dorrnitoraes and cities. Each point in Figure 7 represents one of the 50 
U.S. states with horizontal coordinate equal to the state's urban population, and 
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Figure 7. Scatterplot of dormitory population versus urban population for the 50 U.S. states. 
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vertical coordinate equal to the number of the state's college students housed in 
dormitories. Several features of the plot's shape stand out. For example, the plot is 
fan shaped, with many points bunched in the lower left: most states have relatively 
small urban populations (a couple of million or so) and relatively small dormitory 
populations as well (under 50,000); only a few states have very large urban 
populations or very large dormitory populations, and the variability from state to 
state is larger (more space between points) for the states with larger values. The 
pattern of association between the two variables is positive and strong: smaller 
urban populations go with smaller dormitory populations, larger urban populations 
with larger dormitory populations and, for all but a few of the states, knowing the 
size of a state's urban population allows us to predict its dormitory population to 
within a fairly narrow range. 

Despite the nice fit between picture and story, the analysis so far has over- 
looked a most important feature. If we take at face value the pattern that states 
with large urban populations also have large dormitory populations, we might be 
tempted to conclude that cities must attract colleges. Although plenty of confirm- 
ing instances come to mind, this naive interpretation is wrong: both our variables 
are indirect measures of the size of the states' populations, so it is hardly surprising 
that the two measures show a strong positive association. To uncover a more 
meaningful relationship, we have to "adjust for the lurking variable:" divide urban 
population by total population to get percent urban, divide dormitory popula- 
tion by total population to get percent living in dormitories, and plot the result 
(Figure 8). 
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Figure 8. Scatterplot of the dorms-and-cities data after adjusting for the "lurking variable"population. 

Now the relationship is weaker, but what it tells us is more interesting. The 
direction is reversed: rural states those with a lower percentage of their residents 
living in metropolitan areas have a higher percentage of their residents living 
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in college dormitories. On reflection, this makes sense. Think about Pullman, 
Washington, or Ames, Iowa; about Norman, Oklahoma, or Lawrence, Kansas. 
Rural states may have fewer colleges and universities in absolute numbers, but 
their students make up a higher percentage of the total population of the state, 
and are more likely to live in dormitories. 

2.3. Formal inference: the argument against chance. Statistical inference provides 
methods for drawing conclusions from data about the population or process from 
which the data were drawn. It now becomes essential (as it was not in data 
analysis) to distinguish sample statistics from population parameters. The true 
values of the parameters are unknown to us. We have the statistics in hand, but 
they would take different values if we repeated out data production. Inference 
must take this sample variability into account. 

Probability describes one kind of variability, the chance variability in random 
phenomena. When a chance mechanism is explicitly used to produce data, proba- 
bility therefore describes the variation we expect to see in repeated samples from 
the same population or repeated experiments in the same setting. That is, 
probability answers the question, "What would happen if we did this many times?" 
Standard statistical inference is based on probability. It offers conclusions from 
data along with an indication of how confident we are in the conclusions. The 
statement of confidence is based on asking "What would happen if I used this 
inference method many times?" That is exactly the kind of question probability can 
answer, which is why we ask it. The indication of our confidence in our methods, 
expressed in the language of probability, is what distinguishes formal inference 
from informal conclusions based on, e.g., an exploratory analysis of data. 

Any particular inference procedure starts with a statistic, perhaps several 
statistics, calculated from the sample data. The sampling distribution is the proba- 
bility distribution that describes how this statistic would vary if we drew many 
samples from the same population. In elementary statistics we present two types of 
inference procedures, confidence intervals and significance tests. A confidence 
interval estimates an unknown parameter. A significance test assesses the evidence 
that some sought-after effect is present in the population. 

A confidence interval consists of a recipe for estimating an unknown parameter 
from sample data, usually of the form "estimate + margin of error" and a confi- 
dence level, which is the probability that the recipe actually produces an interval 
that contains the true value of the parameter. That is, the confidence level answers 
the question, "If I used this method many times, how often would it give a correct 
answer?" 

A significance test starts by supposing that the sought-after effect is not present 
in the population. It asks "In that case, is the sample result surprising or not?"A 
probability (the p-value) says how surprising the sample result is. A result that 
would rarely occur if the effect we seek were absent is good evidence that the 
effect is in fact present. Figure 9 illustrates this reasoning in our medical example. 
The normal curves in that figure represent the sampling distribution of the 
difference x - y between the mean blood pressure decreases in the calcium and 
placebo groups, for the case of no difference between the two population means. 
This distribution, which shows the variability due to chance alone, has mean 0. 
Outcomes greater than 0 come from experiments in which calcium reduces blood 
pressure more than the placebo. If we observe result A, we are not surprised; an 
outcome this far above 0 would often occur by chance. It provides no credible 
evidence that calcium beats the placebo. If we observe result B, on the other hand, 
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Figure 9. The idea of statistical significance: is this observation surprising? 

the experiment has produced an effect so strong that it would almost never occur 
simply by chance. We then have strong evidence that the calcium mean does 
exceed the placebo mean. The p-value (the right tail probability) is 0.24 for point 
A and 0.0005 for point B. These probabilities quantify just how surprising an 
observation this large is when there is no effect in the population. What about the 
actual data? Point C shows the observed value x - y = 5.273. The corresponding 
p-value is 0.055. Calcium would beat the placebo by at least this much in 5.5% of 
many experiments just by chance variation. The experiment gives some evidence 
that calcium is effective, but not extremely strong evidence. A note for those who 
worry about details: These p-value calculations took the variability of the sample 
means to be known. In practice, we must estimate standard deviations from the 
data. The resulting test has a larger p-value: p = 0.072. 

3. TEACHING. In discussing our teaching, we may focus on content, what we 
want our students to learn, or on pedagogy, what we do to help them learn. These 
two topics are of course related. In particular, changes in pedagogy are often 
driven in part by changing priorities for what kinds of things we want students to 
learn. It is nonetheless convenient to address content and pedagogy separately. 
This section, in keeping with the rest of this article, concerns content, and in 
particular contains one side of a conversation between statisticians and mathemati- 
cians who may find themselves teaching statistics. 

3.1. Statistics should be taught as statistics. Statisticians are convinced that 
statistics, while a mathematical science, is not a subfield of mathematics. Like 
economics and physics, statistics makes heavy and essential use of mathematics, yet 
has its own territory to explore and its own core concepts to guide the exploration. 
Given those convictions, we would naturally prefer that beginning statistics be 
taught as statistics. The American Statistical Association and the MAA have 
formed a joint committee to discuss the curriculum in elementary statistics. The 
recommendations of that group reflect the view that statistics instruction should 
focus on statistical ideas. Here are some excerpts [10]; a longer discussion appears 
in [11]: 

Almost any course in statistics can be improved by more emphasis on data 
and concepts, at the expense of less theory and fewer recipes. To the 
maximum extent feasible, calculations and graphics should be automated. 
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Any introductory course should take as its main goal helping students to 
leam the basics of statistical thinking. [These include] the need for data, the 
importance of data production, the omnipresence of variability, the quantifi- 
cation and explanation of variability. 

The recommendations of the ASA/MAA committee reflect changes in the field of 
statistics over the past generation. Academic statistics, unlike mathematics, is 
linked to a larger body of non-academic professional practice. Computing technol- 
ogy has completely changed the practice of statistics. Academic researchers, driven 
in part by the demands of practice and in part by the capability of new technology, 
have changed their taste in research. Bootstrap methods, nonparametric data 
smoothing, regression diagnostics, and more general classes of models that require 
iterative fitting are among the recent fruits of renewed attention to analysis of data 
and scientific inference. Efron and Tibshirani [14] describe some of this work for 
non-specialists. 

3.2. Neither Mathematics Nor Magic. An over-emphasis on probability-based 
inference is one mark of an overly mathematical introduction to statistics, and yet 
the reluctance of mathematically trained teachers to abandon a theory-driven 
presentation of basic statistics has a respectable basis: to avoid presenting statistics 
as magic. It is certainly common to teach beginning statistics as magic. The user of 
statistics is in many ways very like the sorcerer's apprentice. The incantation has an 
automatic effectiveness, rendering theses acceptable and studies publishable. We 
are not meant to understand how the incantation works that is the domain of the 
sorcerer himself. The incantation must follow the recipe exactly, lest disaster ensue 
-exploration and flexibility, like understanding, are forbidden to the apprentice. 
Fortunately, t le sorcerer has provided software that automates the exact following 
of approved incantations. 

The danger of staStistics-as-magic is real. But the proper defense is not a retreat 
to a mathematical presentation that is inadequate to the subject and often 
incomprehensible to students. Mathematacal undersunding as not the only kand of 
understandang. It is not even the most helpful kind in most disciplines that employ 
mathematics, where understanding of the target phenomena and core concepts of 
the discipline take precedence. We should attempt to present an intellectual 
framework that makes sense of the collection of tools that statisticians use and 
encourages their flexible application to solve problems. Students understand 
mathematics when they appreciate the power of abstraction, deduction, and 
symbolic expression, and can use mathematical tools and strategies flexibily in 
dealing with varied problems. Reasoning from uncertain empirical data is a 
similarly powerful and pervasive intellectual method. How can we best lead our 
students to understand, appreciate, and begin to assimilate this intellectual method? 

3.3. Begin with exploratoly data analysis. Although the implied chronology of 
Figure 2 suggests starting with data production, experience says otherwise. For one 
thing, exploratory data analysis makes a better beginning because it is more 
concrete. There is no need to distinguish population and sample, and no need to 
discuss the features of randomization that prote&t against bias. Basic methods are 
conceptually and algorithmically simple, and the data are in hand-actual num- 
bers on a page, as opposed to mere ghosts of data-in-the-future the way they are 
in designing an experiment. Moreover7 providing motivation is not a problem. 
Students like exploratory analysis and find that they can do it, a substantial bonus 
when teaching a subject feared by many. Engaging them early on in the interpreta- 
tion of results, before the harder ideas come along to claim their attention, can 
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help establish good habits that pay dividends when you get to inference. Finally? 
starting with data analysis prepares for design and for inference. Experience with 
data distributions introduces students to the omnipresence of variability, and to 
the potential for bias, the two main reasons we need careful design. If you teach 
design before data analysis, it is harder for students to understand why design 
matters. Experience with data distributions is also the best way to get ready to 
tackle the difficult idea of a sampling distribution. 

We have tried to suggest that there is a coherent (though not mathematical) set 
of ideas and associated tools for exploring data. Students need to practice these 
ideas and tools by writing coherent descriptions of data. To help them, we provide 
both outlines for what to writeS and examples that can serve as models. Figure 10, 
for example7 is the outline for describing a single quantitative variable. 

A. Describe the data 

number of observations 
nature of the variable 
how it was measured 
units of measurement 

B. Plot the data, choose from 

dotplot 
stemplot 
histogram 

C. Describe the overall pattern 

shape 
no clear shape? 
skew or symmetric? 
single or multiple peaks7 

center and spread; choose from 

five-number summary 
mean and standard deviation 

is normality an adequate model (normal quantile plot)9 

D. Look for striking deviations from the overall pattern 

outliers 
gaps or clusters 

E. Interpret your findings in C and D in the language of the problem setting. Suggest plausible 
explanations br your findings. 

Figure 10. Outline for describing data on a single quantitative variable. 

Following this outline requires both knowledge of the tools it mentions and 
judgment to choose among them and interpret the results. Judgment is formed by 
experience with data. Students cannot at first 4'read" graphs any more than they 
can read words or equations. Here is an example of a basic one-variable data 
analysis. Describing relations among several variables requires more elaborate 
tools and finer judgment. 

In a study of resistance to infection [2], researchers injected 72 guinea pigs 
with tubercle bacilli and measured their survival time in days after infection. 
Both a histogram (Figure 11) and a normal quantile plot (Figure 12) show 
that the distribution of survival times is strongly skewed to the right. There 
are no outliers- although some individuals survived far longer than the 
average, this appears to be a characteristic of the overall distribution rather 
than pointing to, for example, errors in measuring or recording these individ- 
uals. 
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Figure 11. Histogram of guinea pig survival times. 
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Figure 12. Normal quantile plot for guinea pig survival times. 

The strong skewness suggests that the five number summary (min = 43 days, 
first quartile = 82.5 days, median = 102.5 days, third quartile = 151.5 days, 
max = 598 days) is a better numerical summary than the mean and standard 
deviation (x= 141.8 days, s = 109.2 days). There is very large variation in 
survival times among the individuals for example, the third quartile is 
almost 150% of the median and the largest 6 observations are more than 
double the median. Without more information, we cannot accurately predict 
the survival time of an infected individual. Moreover, standard t procedures 
should not be used for inference about survival time. Inference could employ 
a non-normal distribution as a model or seek a transformation to a scale that 
is more nearly normal. 

Although many students come to a first statistics course expecting empty 
ritual, EDA offers them the pleasant surprise that the methods exist to serve 
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the search for meaning. This surprise is so welcome that it carries a danger of 
pushing the pendulum too far the other way. Some students may drift into a 
complacent conviction that any story about the data that fits the patterns 
with coherence and plausibility must be true. The timing is right for a dose of 
design and skepticism. 

3.4. Teach design as the bridge between data analysis and inference. An introduc- 
tion to design for data production fits naturally between exploratory analysis and 
inference: sound design is what makes inference possible. Waiting to introduce 
probability distributions until after the basics of design has a number of advan- 
tages. For one thing, this order helps make clear that the justification for 
probability models must come from the randomness in the data production 
process, and so provides some protection against unthinking adoption of probabil- 
ity models. For another, learning about data production introduces students to 
essential concepts like population and sample, parameter and statistic, before they 
encounter the sampling distribution, which is conceptually difficult all by itself. 

The single most important point for students to understand is why randomized 
comparative experiments are the gold standard for evidence of causation. A rich 
source of true-life cautionary tales is the book [6], edited by the physicians Bunker 
and Barnes and the statistician Mosteller, which contains striking examples of 
medical treatments that became standard in the days before medicine adopted 
randomized comparative experiments, and were found to be worthless when 
subjected to proper testing. 

There is of course more to the statistical side of designing experiments and 
sample surveys than "randomize." The designs used in practice are often quite 
complex, and must balance efficiency with the need for information of vaxying 
precision about many factors and their interactions. Simple designs randomized 
experiments comparing two or several treatments, simple random samples from 
one or several populations-illustrate the most important ideas and support the 
inference taught in a first statistics course. You must talk about these designs, but 
need not go farther. Some other important material, for example, procedures for 
developing and testing survey questions and for training and supervising interview- 
ers, is not usually presented in statistics courses. Statistics students should be 
aware that these practical skills do matter, and that data production can go awry 
even when we start with a sound statistical design. How much time to spend here is 
a matter of your judgment of the needs of your audience. 

3.5. Inference: two barriers to understanding. Section 2.3 has described briefly 
how inference works. Because the details are in practice automated, we would like 
students to put most of their effort into grasping the ideas. They are not easy to 
grasp. The first barrier is the notion of a sampling distribution. Choose a simple 
setting, such as using the proportion p of a sample of workers who are unem- 
ployed to estimate the proportion p of unemployed workers in an entire popula- 
tion. Physical examples (sampling beads from a box), computer simulations, and 
encouraging thought experiments all help convey the idea of many samples with 
many values of p. Keep asking, "What would happen if I did this many times?" 
That question is the key to the logic of standard statistical inference. 

Once the idea of a sampling distribution begins to settle, the tools of data 
analysis help us take the next steps. Faced with any distribution, we ask about 
shape, center, and spread. The shape of the sampling distribution of p is approxi- 
mately normal. The mean is equal to the unknown population proportion p. This 
says that p as an estimator of p has no bias, or systematic error. The precision of 
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the estimator is described by the spread of the sampling distribution, which (thanks 
to normality) we measure by its standard deviation. We are now only details away 
from confidence intervals. 

The second major barrier is the reasoning of significance tests. Although the 
basic idea ("Is this outcome surprising?") is not recondite, the details are daunting. 
There's no escape from null and alternative hypotheses and one- versus two-sided 
tests. The logic of testing, which starts out "Suppose for the sake of argument that 
the effect we seek is not present . . . " isn't straightforward. We'd like most of our 
students to understand the idea of a sampling distribution; we know that quite a 
few won't understand the reasoning of significance tests. Our fallback position is to 
insist that they be able to verbalize the meaning of p-values produced by software 
or reported in a journal. This is part of insisting that students write succinct 
summaries of statistical findings. "The study compared two methods of teaching 
reading to third-grade students. A two-sample t test comparing the mean scores of 
the two treatment groups on a standard reading test had p-value p = 0.019. That 
is, the study observed an effect so large that it would occur just by chance only 
about 2% of the time. This is quite strong evidence that the new method does 
result in a higher mean score than the standard method." 

Two concluding remarks about inference. First, a conceptual grasp of the ideas 
is almost pictorial, based on picturing the sampling distribution and following the 
tactics learned in data analysis. No amount of formal mathematics can replace this 
pictorial vision, and no amount of mathematical derivation will help most of our 
students see the vision. The mathematics is essential to our knowing the facts, but 
this does not imply that we should impose the mathematics on our students. 

Second, we want our students to know a good deal more than the big picture 
and several recipes that implement it in specific settings. Here are some further 
points, both practical and conceptual, roughly in order of importance. How far 
down the list you should go depends on your audience. 

* Study of specific inference procedures reveals behaviors that are common and 
that all students should understand. To get higher confidence from the same 
data, you must pay with a larger margin of error. Even effects so small as to 
be practically unimportant are highly significant in the statistical sense if we 
base a significance test on a very large sample. 

* Lots of things can go wrong that make inference of dubious value. Comparing 
subjects who choose to take calcium against others who don't tells little about 
the effects of calcium, because those who choose to take calcium may be very 
health-conscious in general. One extreme outlier could pull the conclusion of 
our medical experiment in either direction, again invalidating the inference. 
Examine the data production. Plot the data. Then, perhaps, go on to infer- 
ence. 

* Inference procedures themselves don't tell us that something went wrong. The 
margin of error in a confidence interval, for example, includes only the 
chance variation in random sampling. As the New York Times says in the box 
that accompanies its opinion poll results, "In addition to sampling error, the 
practical difficulties of conducting any survey of public opinion may introduce 
other sources of error into the poll." 

* Common inference procedures really are based on mathematical models like 
the one that appears in our medical example: X1, X2, . . ., Xn iid N( y1, 1), 
Y1, Y2, . . ., Ym iid N( 2, C2) This model isn't exactly true; is it useful? In fact, 
the two-sample t procedures that follow from this model when we want to 
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compare ,u1 and 2 are quite robust against non-normality, so the model does 
lead to practically useful procedures. But the variance ratio F statistic for 
comparing 1 and CT2 iS extremely sensitive to non-normality, so much so that 
it is of little practical value. Even beginners need to be aware of such issues. 

* We often want to do inference when our data do not come from a random 
sample or randomized comparative experiment. Think, for example, of mea- 
surements on successive parts flowing from an assembly line. Inference is 
justified by a probability model for the process that produced our data, and 
the correctness of the model can to some extent be assessed from the data 
themselves. Randomized data production is the paradigm and the most secure 
setting for inference, but it is not the only allowable setting. 

* Inductive inference from data is conceptually complex. It's not surprising that 
there are alternative ways of thinking about it. Standard statistical theory 
tends to think of inference as if its purpose were to make decisions. A test 
must decide between the null and alternative hypotheses, for example. This 
leads at once to Type I and Type II errors and so on. The decision-making 
approach fits uneasily with the "Is this outcome surprising?" logic expressed 
by p-values. We think that assessing the strength of evidence is a much more 
common goal than making a decision, but not everyone agrees. The Bayesian 
school of thought goes farther, by introducing an explicit description of the 
available prior information into any statistical setting and combining prior 
information with data to reach a decision. Almost all statisticians think this is 
sometimes a good idea. Bayesians think all statistical problems can be made 
to fit this paradigm. This is a (strongly held) minority position. Deep water 
ahead. 

3.6. What About Probability? Probability is an essential part of any mathematical 
education. It is an elegant and powerful field of mathematics that enriches the 
subject as a whole by its interactions with other fields of mathematics. Probability 
is also essential to serious study of applied mathematics and mathematical model- 
ing. The domain of determinism in natural and social phenomena is limited, so 
that the mathematical description of random behavior must play a large role in 
describing the world. Whether our mathematical tastes run to purity or modeling, 
probability helps to satisfy them. Here, however, we are discussing introductory 
statistics rather than mathematics. 

From the point of view of deductive logic that has shaped so much of statistical 
teaching in the past, probability is more basic than statistics: probability provides 
the chance models that describe the variability in observed data. From the point of 
view of the development of understanding, however, we believe that statistics is 
more basic than probability: whereas variability in data can be perceived directly, 
chance models can be perceived only after we have constructed them in our own 
minds. In the ideal Platonic world of mathematics, we can start with a probabilistic 
chicken and use deductive logic to lay a statistical egg, but in the messier world of 
empirical science, we must start with the egg as observed data and construct a 
prior probabilistic chicken as an inference. In an introductory statistics course, the 
chicken's only value is to explain where eggs come from. It seems a bit unfair, in 
that context, at least, to ask beginning students to learn about egg-generators 
before they've become familiar with eggs less extreme, but in the same spirit as 
starting the study of chemistry with quantum mechanics. 

What then, should be the place of probability in beginning instruction in 
statistics? Our position is not standard, though it is gaining adherents: first courses 
in statistics should contain essentially no formal probability theory. 
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Why? First, because informal probability is sufficient for a conceptual grasp of 
inference. Although the theoretical structure of standard statistical inference is 
based on probability, the role of probability is limited to answering the question 
"What would happen if we used this method vety many times?" The answer is 
given by the sampling distribution of a statistic, which records the pattern of 
variation of the outcomes of, for example, many random samples from the same 
population. If we agree that actually deriving these distributions is better left to 
more advanced study, they can be understood as distributions using the tools of 
data analysis, without the apparatus of formal probability. Rules for P(A U B) add 
vety little to a statistics course. 

The second reason to avoid formal probability is that probability is conceptually 
the hardest subject in elementary mathematics. The history of probabilistic ideas (see 
[16] and [27]) is fascinating but a bit frightening. Better minds than ours long found 
the subject confusing in the extreme. Psychologists? beginning with Tversky and his 
collaborators, have demonstrated that confusion persists, even among those who 
can recite the axioms of formal probability and who can do textbook exercises. Our 
intuition of random behavior is gravely and systematically defective; see, e.g., [28] 
and the collection [19]. What is worse, mathematics educators have found no 
effective way to correct our defective intuition. Garfield and Ahlgren [15] conclude 
a review of research by stating that "teaching a conceptual grasp of probability still 
appears to be a very difficult task, fraught with ambiguity and illusion." They 
suggest study of "how useful ideas of statistical inference can be taught indepen- 
dently of technically correct probability."We believe that concentrating on the idea 
of a sampling distribution allows this, at least at the depth appropriate for 
beginners. 

The concepts of statistical inference, starting with sampling distributions, are of 
course also quite tough. We ought to concentrate our attention, and ours students' 
limited patience with hard ideas, on the essential ideas of statistics. We faculty 
imagine that formal probability illumines those ideas. That's simply not true for 
almost all of our students. 

3.7. VVhat About Mathematics Majors? Mathematics majors traditionally meet 
statistics as the second course in a year-long sequence devoted to probability and 
statistical theory. We hope it is clear that we don't regard a tour of sufficient 
statistics, unbiasedness, maximum likelihood estimators, and the Neyman-Pearson 
theorem as a promising way to help students understand the core ideas of 
statistics. On the other hand, mathematics majors should certainly see some of the 
mathematical structure of statistical inference. What ought we do? 

Our preference is to precede the study of theoty by a thorough data-oriented 
introduction to statistical ideas and methods and their applications. That is, 
mathematics students are not necessarily an exception to the principle that a first 
introduction to statistics should not be based on formal probability. If the students 
have strong quantitative backgrounds, a data-oriented course can move quickly 
enough to present genuinely useful statistics and serious applications. The need for 
theory can be made clear as we face issues of practice, and the theory makes much 
more sense when its setting in practice is clear. In many institutions, however, 
constraints or faculty hesitation make this path difficult. In others, there is little 
coordination between the "applied" and theoretical courses, so that the latter does 
not in fact build on the former. 

We ought therefore to reconsider what a one-semester introduction to statistics 
for mathematics majors and other quantitatively strong students should look like. 
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This course would ordinarily and most easily follow a course in probability. Here 
we encounter another barrier: we can't in good conscience retool both semesters of 
the standard probability-statistics sequence to cptimize the introduction to statis- 
tics. Probability is important in its own rightS not just as preparation for statistical 
theory. The more emphasis a department places on applications and modeling in 
its major curriculum, the more the probabilibr course must play an essential role in 
this emphasis. An introduction to probability that emphasizes modeling and 
includes simulation and numerical calculation certainly sets the stage for statistics? 
but we are hesitant to move any strictly statistical ideas into the probability 
semester. The reform of probability and the reform of statistics are distinct issues. 

Our goal should be an integrated statistics course that moves through data 
analysis data production, and inference in turn, emphasizing the organizing 
principles of each. We should certainly take advantage of and strengthen the 
student's mathematical capacities. Although data analysis and data production 
have no unifying theory, mathematical analysis can illumine even data analysis. 
Here are a few examples. 

* A. Consider the optimality properties of measures of center for n observa- 
tions. The mean minimizes the mean squared error; the median minimizes 
the mean absolute error (and need not be unique) the midrange mini- 
mizes the maximum absolute (or squared) errorn tty minimizing the median 
absolute error for n = 3 and examine the unpleasant behavior of the 
resulting measure. 

* B. Students met the Chebychev inequality while studying probability. Now 
they may meet the interesting inequality 1 , - ml < cr linking the mean, 
median, and standard deviation of any distribution [29]. Describe one- 
sample data by the empirical distribution (probability 1/n on each ob- 
served point) to draw conclusions about how far apart the sample mean 
and mediain may be. 

* C. The least-squares regression line is the analog of the mean x for predict- 
ing y from x. Derive it. Then explore, perhaps using software, analogs of 
the other measures mentioned in A. 

Data production lends itself to probability calculations that illustrate how likely 
it is that random assignments will be unbalanced in specific ways; the advantages 
of large samples soon become clear. 

Veiy nice. We can give our students a balanced introduction to statistics that 
makes use of their knowledge of mathematics. The inevitable consequence is that 
we spend less time on inference. We must decide what to preserve and what to cut. 
There is as yet no consensusS becauseS despite much grumbling, the reform of the 
math major sequence has not yet begun. Imagining such a reform is a good place 
to end a discussion of statistics, mathematics and teaching. This is your take-home 
exam: design a better one-semester statistics course for mathematics majors. 
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