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DISENTANGLING SYSTEMATIC AND IDIOSYNCRATIC DYNAMICS
IN PANELS OF VOLATILITY MEASURES

Matteo BARIGOZZI1, Christian BROWNLEES2, Giampiero M. GALLO3 and David VEREDAS4

Abstract
Realized volatilities measured on several assets exhibit a common secular trend and some
idiosyncratic pattern. We accommodate such an empirical regularity extending the class of
Multiplicative Error Models (MEMs) to a model where the common trend is estimated non-
parametrically while the idiosyncratic dynamics are assumed to follow univariate MEMs.
Estimation theory based on seminonparametric methods is developed for this class of models
for large cross-sections and large time dimensions. The methodology is illustrated using two
panels of realized volatility measures between 2001 and 2008: the SPDR Sectoral Indices of
the S&P500 and the constituents of the S&P100. Results show that the shape of the com-
mon volatility trend captures the overall level of risk in the market and that the idiosyncratic
dynamics have an heterogeneous degree of persistence around the trend. An out–of–sample
forecasting exercise shows that the proposed methodology improves volatility prediction over
a number of benchmark specifications.
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1 Introduction

The model suggested in this paper is motivated by the analysis of panels of realized volatility
measures (RV). Visual inspection of the data shows that RVs tend to oscillate around a common
average level which can be associated with the overall level of risk in the market. Disentangling
systematic and idiosyncratic components allows us to understand which movements are due to
common and individual sources. The memory of the idiosyncratic processes gives also interesting
insights on how long individual shocks persist.

From a statistical perspective, we extend the class of Multiplicative Error Models (MEM) for
nonnegative multivariate time series (Engle (2002), Engle and Gallo (2006)), and dynamic models
with slowly moving components as in, inter alia, Engle and Rangel (2008). Such a model could
also be applied to disentangle systematic and idiosyncratic dynamics in panels of market activity,
risk or liquidity measures (e.g. traded volumes, spreads, trading intensities) exhibiting similar
empirical regularities.

We introduce a vector MEM that decomposes the conditional expectation of each series as
the product of a systematic trend (modeled as a nonparametric curve) and an idiosyncratic dy-
namic component modeled as univariate MEMs. A simple estimation approach makes the model
appealing even when the number of series in the panel is large.

We focus on modelling realized variances alone and not the realized covariance in that for
several applications, such as variance derivatives trading, volatilities are the main object of interest.
The construction and modelling of large realized covariance matrices still poses some theoretical
and practical challenges, and is a topic of active research (Chiriac and Voev (2011), Noureldin et al.
(2012a), Bauwens and Storti (2013)). Asset pricing models developed in finance also motivate
decomposing the risk of an assent in a systematic and idiosyncratic components. However, in these
models systematic and idiosyncratic components are additive while here we adopt a multiplicative
framework motivated by the stylized facts of the data.

The estimation approach developed for this class of models combines ideas from the literature
on profile likelihood and copulas. First, building up on the inference from the marginals framework
of Joe (1997) and Joe (2005), the joint conditional likelihood of the model is decomposed in the
contribution of the marginal densities and joint copula dependence. Second, the marginal densities
are used to estimate both the nonparametric common trend and the parametric idiosyncratic dy-
namics. We justify this approach using results from profile likelihood maximization (Staniswalis
(1987) and Staniswalis (1989), Severini and Wong (1992) and Veredas et al. (2007)), a technique
that allows to establish efficiency bounds in a seminonparametric setting. The estimation proce-
dure boils down to a nonparametric estimation of the systematic component and the univariate
estimation of the idiosyncratic marginal dynamics of each series. The large sample properties of
the estimators are derived and, in particular, we show that the asymptotic variance of the estimated
parameters is the smallest possible, given the seminonparametric and two–step nature of the pro-
cedure. The theory is developed in a setting that allows both large cross-sections and large time
dimensions. A Monte Carlo study shows that in finite samples the estimators perform adequately
and that standard inferential procedures behave satisfactorily.

We apply the model to two panels of daily realized volatilities spanning from January 2, 2001
to December 31, 2008. The first panel consists of the nine sectoral indices of the SPDR S&P500
index, while the second contains the ninety constituents of the S&P100 that have continuously
been traded in the sample period. The datasets are related to each other in that the constituents
of the S&P100 are also some of the main underlying assets of the SPDR sectoral indices. The
empirical results of the two applications are consistent to one another. The estimated shape of the
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systematic risk is essentially the same in the two panels, and its level can be associated with the
global level of uncertainty in the economy, which exhibits clear peaks at the beginning and end of
the 2000s in correspondence to the dot–com bubble burst and the financial crisis. Once the system-
atic trend is accounted for idiosyncratic dynamics are mean reverting. Interestingly, the speed of
reversion is rather heterogeneous across assets. For instance, in the SPDR panel, mean reversion
is steady for Consumer Discretionary and Materials while it is much slower for the Technology
and Energy. Moreover, the S&P100 panel exhibits on average more idiosyncratic dynamics in the
sense of slower mean reversion than the SPDR sectors. Inspection of the idiosyncratic dynamics
reveals interesting patterns, like Technology being more volatile during the dot–com bubble burst,
Energy sector experiencing turmoil during the energy crisis in 2005–2006, and Financials being
under distress during with the advent of the Financial crisis. Finally, an out–of–sample forecasting
exercise is used to assess the predictive ability of the specification. We forecast realized volatility
from 2007 to the end of the sample using a number of MEM–based specifications. Results show
that forecasts based on the our model are able to improve the out–of–sample predictive ability in
the majority of cases.

Different strands of literature relate to our work. Starting from the contribution of Engle and
Rangel (2008), there has been interest in capturing secular trends in financial volatility. Among
others, the list of contributions in a univariate setting includes Amado and Teräsvirta (2008), Engle
et al. (2009) and Brownlees and Gallo (2010). Feng (2006), Rangel and Engle (2012), Hafner and
Linton (2010), Long et al. (2011) and Colacito et al. (2011) extend these ideas in a multivariate
setting. The paper relates also to the literature on multivariate extensions of the MEM model, like
the works of Cipollini et al. (2006) and Hautsch (2008). Moreover, there is a long tradition of
decomposing panels of financial time series into a common and an idiosyncratic component in
econometrics, namely in additive conditional heteroskedastic factor models (see, among others,
Diebold and Nerlove (1989), Sentana (1998) Alessi et al. (2009), and Gagliardini and Gourieroux
(2009)). The paper builds on the realized volatility literature developed by, among others, An-
dersen et al. (2003), Aı̈t-Sahalia et al. (2005), Bandi and Russell (2006), Barndorff-Nielsen et al.
(2008). There are also connections with the growing literature on modeling daily volatility using
intra-daily information. Research in this area includes Andersen et al. (2007), Patton and Shep-
pard (2009), Shephard and Sheppard (2010), Hansen et al. (2012) and Chen et al. (2011). Chiriac
and Voev (2011) and Noureldin et al. (2012a) explore models for realized covariance matrices.
This work also fits with the larger segment of the literature that finds evidence of long range de-
pendence in volatility and have proposed ways to capture it. Significant contributions include long
memory models (Andersen et al. (2003), Deo et al. (2006), Andersen et al. (2007), Corsi (2010),
and Luciani and Veredas (2011)). Finally, this paper relates to the recent strand of literature on
panel volatility modeling. Contributions in this area include Bauwens and Rombouts (2007), En-
gle et al. (2008), Engle (2009), Pakel et al. (2011), Wang and Zou (2010), Hautsch et al. (2011)
and Noureldin et al. (2012b).

The paper is structured as follows. Section 2 describes the panels of realized volatility mea-
sures that we use in the empirical application and reports some descriptive statistics that motivate
our modelling approach. Section 3 describes our specification and Section 4 details the estimation
strategy. The asymptotic properties of the estimator are given in Section 5. In Section 6 we carry
out a Monte Carlo exercise to assess the reliability of the proposed estimation approach. Section 7
presents the estimation results for the SPDR sectoral indices and the constituents of the S&P100.
We conclude in Section 8. Assumptions, proofs and additional empirical results are gathered in
Appendix A, B, and C, respectively.
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2 Stylized Facts for Panels of Volatility Measures

We study two panels of realized volatility measures from January 2, 2001 to December 31, 2008.
The first, referred to as SPDR, consists of the nine Select Sector SPDRs Exchange Traded Funds
(ETF) that divide the S&P500 index into sector index funds. The sectors (with the abbreviations
we use and the original ticker names) are Materials (Mat, XLB), Energy (Ener, XLE), Financial
(Fin, XLF), Industrial (Ind, XLI), Technology (Tech, XLK), Consumer Staples (Stap, XLP), Utili-
ties (Util, XLU), Health Care (Heal, XLV), and Consumer Discretionary (Disc, XLY). The second
panel, named S&P100, consists of U.S. equity companies that are part of the S&P100 index. It
contains all the constituents of the S&P100 index as of December 2008 that have been trading in
the full sample period (90 in total). The complete list of S&P100 tickers, company names and
industry sectors is reported in Appendix C.

Among the available estimators of the daily integrated volatility based on intraday returns, we
adopt the realized kernels (Barndorff-Nielsen et al. (2008)).1 They are a family of heteroskedastic
and autocorrelation consistent volatility estimators, robust to various forms of market microstruc-
ture noise present in high frequency data. Our choice is motivated by the appealing theoretical
properties of this family of estimators, as well as their good forecasting performance (e.g. for
predicting Value at Risk, Brownlees and Gallo (2010)). Parallel analysis using alternative estima-
tors (not reported in the paper) suggests that our results do not hinge on the specific measure of
volatility chosen.

We compute optimal realized kernels following the procedure detailed in Barndorff-Nielsen
et al. (2009). Our primary source of data are tick–by–tick intra-daily quotes from the TAQ
database. Data are extracted and filtered using the methods described in Brownlees and Gallo
(2006) and Barndorff-Nielsen et al. (2009). Let ri t j denote the 1–minute frequency returns (sam-
pled in tick time) at minute j on day t for ticker i. The realized Parzen kernel estimator is defined
as

xi t =

H∑
h=−H

Kp

(
h

H + 1

)
γh, with γh =

J∑
j=|h|+1

ri t jri t j−|h|,

and where H is both the bandwidth of the kernel and the maximum order of the autocovariance,
J is the number of 1–minute frequency returns within the day, and Kp(·) denotes the Parzen
kernel. Under appropriate conditions, Barndorff-Nielsen et al. (2008) show that the realized kernel
estimator converges to the integrated variance of returns. The computation of the estimator and
optimal choice of the bandwidth parameter for each series closely follows the guidelines described
by Barndorff-Nielsen et al. (2009).

Figure 1 shows plots of the two panels of percent annualized volatility
√

252xi t; top for SPDR
and bottom for S&P100. The plots suggest that the series cluster around a common time–varying
average level that can be interpreted as systematic volatility. Statistical tests for the selection of
the number of common factors in the panels strongly support the evidence of a one factor structure
(see Luciani and Veredas (2011) for an exhaustive analysis and Andersen et al. (2001) for stylized
facts on a similar panel). The secular movements of systematic volatility can be attached to well
known economic events or system wide innovations. The high level of volatility in the beginning
of the 2000s is related to the aftermath of dot–com bubble burst and the recession. The period that
goes from 2004 to July 2007 is characterized by a low level of uncertainty that corresponds to the
market rally following the recession. Finally, volatility rises with the advent of the financial crisis

1Other alternative estimators are the range (Parkinson (1980), Alizadeh et al. (2002)), the “vanilla” 5–minute real-
ized volatility (Andersen et al. (2003)), or the two-scales estimator (Aı̈t-Sahalia et al. (2005)).
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Figure 1: Realized volatilities

(a) SPDR

(b) S&P100

Annualized realized volatilities for the SPDR select sectors (top) and the 90

S&P100 constituents (bottom) from January 2, 2001 to December 31, 2008.

and it skyrockets to the highest level reached over the last 20 years in the fall of 2008, following
the demise of Lehman Brothers.

Table 1 displays descriptive statistics. The table reports average percent annualized volatility,
standard deviation of volatility (volatility of volatility), daily, weekly (5 days) and monthly (22
days) autocorrelations, average correlation at lag 0 with the other series, and the percentage of
variance explained by the first principal component. For SPDR we report statistics for each sec-
toral index while for S&P100 we report the 25%, 50%, and 75% quantiles of the statistics across
industry sectors. Mean and variability levels of the series are higher for the S&P100 panel rather
then the SPDR, due to the fact the sectoral aggregation decreases the average and dispersion of
volatility. Autocorrelations decay slowly, consistently with the evidence of long range dependence
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widely documented in volatility studies. The average cross-correlation with the other series and
the proportion of variance explained by the first principal components are always above 0.50 and
50% respectively, which confirms the existence of strong co–movements in volatility.

Table 1: Descriptive statistics
vol vov ρ̂day ρ̂week ρ̂month ρ̄ PC1

SPDR
Mat 23.34 11.83 0.72 0.63 0.39 0.82 0.91
Ener 25.68 12.78 0.65 0.61 0.35 0.79 0.87
Fin 25.85 15.71 0.69 0.50 0.35 0.77 0.84
Ind 21.85 11.29 0.66 0.57 0.37 0.81 0.88
Tech 26.82 13.34 0.49 0.41 0.27 0.66 0.58
Stap 16.93 8.21 0.45 0.36 0.19 0.77 0.77
Util 24.12 12.73 0.65 0.55 0.35 0.72 0.70
Heal 17.27 8.61 0.34 0.27 0.17 0.73 0.68
Disc 20.56 10.57 0.64 0.55 0.35 0.82 0.90

S&P100
Mat q0.25 33.80 14.49 0.66 0.55 0.31 0.63 0.62

q0.50 34.73 15.17 0.69 0.56 0.34 0.67 0.72
q0.75 36.42 16.59 0.73 0.60 0.37 0.72 0.83

Ener q0.25 34.00 15.04 0.57 0.50 0.26 0.61 0.61
q0.50 37.98 16.36 0.66 0.57 0.32 0.68 0.72
q0.75 44.28 18.50 0.71 0.66 0.38 0.69 0.74

Fin q0.25 36.45 21.01 0.63 0.27 0.17 0.52 0.49
q0.50 39.77 23.77 0.66 0.47 0.28 0.64 0.70
q0.75 42.93 26.59 0.74 0.56 0.34 0.68 0.76

Ind q0.25 29.25 12.42 0.61 0.49 0.31 0.65 0.64
q0.50 30.61 13.44 0.64 0.54 0.33 0.69 0.73
q0.75 33.19 17.33 0.70 0.56 0.36 0.71 0.80

Tech q0.25 34.96 16.10 0.64 0.52 0.34 0.56 0.49
q0.50 38.53 17.85 0.67 0.58 0.37 0.62 0.58
q0.75 46.20 23.26 0.72 0.61 0.40 0.72 0.78

Util q0.25 28.24 13.58 0.67 0.45 0.25 0.60 0.54
q0.50 29.61 14.09 0.70 0.52 0.30 0.67 0.66
q0.75 31.42 15.20 0.72 0.60 0.34 0.70 0.73

Stap q0.25 25.46 11.43 0.46 0.36 0.22 0.60 0.52
q0.50 28.32 12.45 0.53 0.43 0.24 0.68 0.69
q0.75 29.80 13.30 0.58 0.47 0.30 0.71 0.76

Heal q0.25 29.19 13.02 0.48 0.34 0.22 0.64 0.62
q0.50 30.06 13.55 0.59 0.46 0.29 0.65 0.63
q0.75 32.95 15.00 0.61 0.50 0.34 0.66 0.67

Disc q0.25 32.98 15.49 0.58 0.47 0.30 0.63 0.60
q0.50 35.76 17.41 0.64 0.54 0.36 0.68 0.68
q0.75 41.13 21.01 0.67 0.58 0.41 0.70 0.76

The top part shows descriptive statistics for SPDR. The bottom part shows
the same descriptive statistics for S&P100 with the assets grouped accord-
ing to the same sectors as SPDR. For each group the table shows the 25,
50 and 75 quantiles. The columns report the average annualized volatil-
ity (vol), standard deviation of volatility, volatility of volatility (vov), the
autocorrelations of order 1, 5 and 22 (ρ̂day, ρ̂week and ρ̂month), the average
cross–correlation with the other series in the dataset (ρ̄), and the percentage
of the variance explained by the first principal component (PC1).
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3 A Seminonparametric Vector MEM

The empirical evidence of the previous section suggests that the dynamics of the volatility mea-
sures in the panel can be described by a common secular trend and residual idiosyncratic short run
components. In this section we introduce a novel Seminonparametric Vector Multiplicative Error
Model (SPvMEM) that captures these empirical regularities.

Let xi t be the value of the realized volatility measure for the ith asset in period t, with i =
1, ..., N and t = 1, ..., T , and let zt = t/T denote the (rescaled) time index. The realized measure
xi t is modelled in a multiplicative specification of the form

xi t = ai φ(zt)µi t εi t εi t|Ft−1 ∼ D(1), (1)

where Ft−1 is the information set up to time t − 1, ai is the scale factor of the ith series, φ(zt)
is a deterministic time trend, µi t is an idiosyncratic short term dynamic component and εi t is a
conditionally independent error term with positive support, unit expectation and independent of
zt. More detailed assumptions on the process are given in Appendix A.

The component φ(zt) is a scalar smooth function capturing the low frequency common trend.
It is assumed that φ : [0, 1]→ P ⊂ R+ and that φ belongs to the set Γ = {p ∈ C∞[0, 1] : p(zt) ∈
P for all zt ∈ [0, 1]}. The use of zt = t/T as a regressor is a common assumption in models with
time–varying parameters. In order to derive the asymptotic results, it is useful to think of t/T as a
draw from a uniform distribution on [0, 1]. The trend is further assumed to have unit mean, that is
E[φ(zt)] = 1. In what follows, we denote φ without any reference to zt as an infinite dimensional
nuisance parameter belonging to Γ in the sense of Severini and Wong (1992). Our specification
choice of the trend has important implications for estimation. In a rescaled time framework, i.e.
when zt = t/T , as T increases the number of observations in a neighborhood of each point of the
trend increases as well, and this allows to carry out pointwise inference on the trend. Also, note
that conditionally on zt the process is stationary.

The idiosyncratic component µi t is a nonnegative conditionally predictable scalar process with
unit mean. It is defined as

µi t = µi(Ft−1, δi)

where δi ∈ Di ⊂ Rpδ , is a vector of parameters characterizing the dynamics of the process.
Several functional forms for µi t have been proposed in the MEM literature. Here, we opt for
asymmetric GARCH type dynamics, that is

µi t =
(

1− αi − βi −
γi
2

)
+ αi

xi t−1

aiφ(zt−1)
+ βiµi t−1 + γi

xi t−1

aiφ(zt−1)
1{ri t−1<0}, (2)

where αi > 0, γi ≥ 0 and βi ≥ 0, and ri t−1 denotes the return on day t − 1 of asset i. Thus, in
this case δi = (αi, βi, γi)

T and pδ = 3. This type of functional form is often used in the literature
(see Engle and Rangel, 2008) and it is typically found to be successful for prediction. We assume
that that the probability of {ri t−1 < 0} is 1/2 and that µi t is stationary, that is αi +γi/2 +βi < 1.
Under these assumptions it is straightforward to check that the unconditional mean of (2) is one.
Idiosyncratic dynamics can be equivalently parametrized in an alternative way. Let µ̃i t = aiµi t,
then

µ̃i t = ωi + αi
xi t−1

φ(zt−1)
+ βiµ̃i t−1 + γi

xi t−1

φ(zt−1)
1{ri t−1<0},

with ωi = ai
(
1− αi − βi − γi

2

)
. This alternative parameterization is convenient for estimation,

as we will see later.
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The conditional moments of the process are

E[xi t|Ft−1] = aiφ(zt)µi t and Var[xi t|Ft−1] = a2
iφ

2(zt)µ
2
i tVar(εi t).

Thus, the SPvMEM is a conditionally heteroskedastic process where the conditional mean and
variance change over time and are driven by the level of the common trend and of the idiosyncratic
dynamics. On the other hand, the trend adjusted process xi t/φ(zt) is standard stationary MEM.

The model can be compactly expressed using vector notation. Let xt = (x1 t, . . . , xN t)
T be

the N × 1 dimensional vector of volatility measures. Let a = (a1, . . . , aN )T ∈ A ⊂ RN+ and let
the idiosyncratic dynamics be represented as a N × 1 vector µ(Ft−1, δ) ⊂ RN+ :

µ(Ft−1, δ) = µt =


µ1(Ft−1, δ1)
µ2(Ft−1, δ2)

...
µN (Ft−1, δN )

 ,

with δ = (δ1, . . . , δN ) ∈ D ⊂ RNpδ . The SPvMEM can be written as

xt = φ(zt) · a� µt � εt, (3)

where εt = (ε1 t, ..., εN t)
′ and � denotes the Hadamard component–wise product operator.

We complete the definition of the model described in Equation (3) with the specification of
the distribution of the error term εt which is a N × 1 vector of innovations. Its probability den-
sity function (pdf) and cumulative density function (cdf) are denoted by fε(εt;θ) and Fε(εt;θ)
respectively, where θ ∈ Θ ⊂ Rpθ .

Choosing an appropriate multivariate specification for the innovation term can be challenging
in this setting as there are few multivariate distributions for positive real–valued random vectors
(see Johnson et al. (2000)). The multivariate Exponential and Gamma are the two most prominent
but they are cumbersome and their properties may not always dovetail with those of the volatility
measures. Building up on Cipollini et al. (2006), we follow a modelling strategy based on copulas.
Let Fεi(εi t) denote the marginal cdf of εi t and define ui t = Fεi(εi t) for i = 1, . . . , N , then, by
Sklar’s theorem the joint cdf and pdf of εt can be written respectively as

Fε(εt) = C(u1 t, . . . , uN t) and fε(εt) =
N∏
i=1

fεi(εi t) · c(u1 t, . . . , uN t), (4)

where C(·) is the copula function and c(·) is its derivative with respect to (u1 t, . . . , uN t). The
advantage of copulas is that they allow us to decompose the task of specifying the distribution for
εt in two subtasks: the choice of the marginal pdfs fεi(·) and the copula density c(·).

As far as the choice of the marginal distribution is concerned, we opt for a Gamma distribution.
It is a flexible distribution, it belongs to the exponential family, and it nests the Exponential, Chi–
Square, Erlang, and Maxwell–Boltzmann distributions. If the marginal distribution of εi t is a
Gamma distribution with parameters (ki, νi), then the marginal conditional distribution of xi t is
also Gamma

xi t|Ft−1 ∼ Gamma
(

(aiφ(zt)µi t)
−1ki, νi

)

8



with conditional pdf

fxi (xi t; |Ft−1) =
ki

Γ(νi)aiφ(zt)µi t

(
xi tki

aiφ(zt)µi t

)νi−1

exp

(
− xi tki
aiφ(zt)µi t

)
. (5)

In what follows, we fix ki = νi to ensure that εi t has unit mean, while Var[εi t] = ν−1
i .

As far as the choice of the copula function is concerned, we adopt a Gaussian meta–copula, as
delivers estimators that are easy to compute numerically in large dimensions:

cΦ(u1 t, . . . , uN t; R) = |R|−1/2exp
(
−1

2

(
Φ−1(ut)

)T
(R− I)

(
Φ−1(ut)

))
(6)

where Φ(·) is the Gaussian cdf, R is the correlation matrix and I is the identity matrix. The
marginal and copula parameters are collected in the vector θ defined as (ν1 . . . νN , vech(R))T,
which has a dimension of N +N(N − 1)/2.

Our choices of the marginal and copula function are primarily driven on the grounds of sim-
plicity (Song (2000), Cipollini et al. (2006)). We acknowledge that the Gamma and Gaussian
meta–copula have some limitations in fitting the moments of the data in empirical applications,
and that it might be of interest adopting more sophisticated distributions. For instance, in some
applications measuring tail dependences may be of interest, such as in financial derivatives based
on volatilities.

Nevertheless, the theory developed in this paper carries through different choices of the marginal
densities and for any copula function. As for the marginals, any distribution belonging to the ex-
ponential family delivers simple closed form estimators for φ. Moreover, by Quasi Maximum
Likelihood arguments (see Engle and Gallo, 2006), if the conditional moments are correctly spec-
ified the marginals deliver consistent estimates of the parameters. Concerning the copula choice,
the theory developed in this work allows for general types of copulas, and inference under possible
copula misspecification can be addressed by adapting Chen and Fan (2006) to our theory.

4 Estimation Procedure

The specification introduced in the previous section is a nonlinear model containing both paramet-
ric and nonparametric elements. Since joint estimation of both components is cumbersome, we
propose a three step estimation procedure that stems from profile likelihood estimation (Severini
and Wong, 1992) and inference from the marginals (Joe, 1997, 2005): i) nonparametric estimation
of the common trend φ; ii) estimation of the marginal parameters ξi = (ai, δ

T
i , νi)

T of each series;
and iii) estimation of the copula parameter ψ = vech(R).

i) Conditionally on the idiosyncratic dynamics µi t and the marginal parameters ξi, a natural
estimator of the common trend is a Nadaraya–Watson type estimator applied to the weighted
average of the rescaled series. That is, for any zτ ∈ [0, 1],

φ̂ξNT (zτ ) =

∑T
t=1 K

(
zτ−zt
hNT

)∑N
i=1

xi t
aiµi t

νi∑N
i=1 νi∑T

t=1 K
(
zτ−zt
hNT

) , (7)

where K(·) is a suitable kernel function with a bandwidth hNT that can vary both with N and T
(see the next section for details). This estimator has an intuitive meaning: the common trend at
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Table 2: SPvMEM Estimation Algorithm

Iteration 0

0.1 For each t ∈ [0, T ] define zt = t/T and compute the initial estimate:

φ̂0(zτ ) =

∑T
t=1 K

(
zτ−zt
hNT

)∑N
i=1

xi t
x̄i

1/s2i∑N
i=1 1/s2i∑T

t=1 K
(
zτ−zt
hNT

) ,

where x̄i and s2
i are, respectively, sample mean and variance of the ith series.

0.2 For each i = 1, . . . , N set (ξ0
1, . . . , ξ

0
N ) where ξ0

i = (a0
i , α

0
i , β

0
i , γ

0
i , ν

0
i )

Iteration q > 0

1 For each i = 1, . . . , N maximize the N log–likelihoods

ξ̂qi = arg max
ξi

T∑
t=1

log fxi(xi t; ξi, φ̂
q−1|Ft−1)

2 Compute the N idiosyncratic components evaluated at φ̂q−1

µ̂qi t =

(
1− α̂qi − β̂

q
i −

γ̂qi
2

)
+ α̂qi

xi t−1

âqi φ̂
q−1(zt−1)

+ β̂qi µ̂
q
i t−1 + γ̂qi

xi t−1

âqi φ̂
q−1(zt−1)

1ri t−1<0.

For each zt ∈ [0, 1], given µ̂qi t, compute:

φ̂q(zt) =

∑T
t=1 K

(
zτ−zt
hNT

)∑N
i=1

ν̂i∑N
i=1 ν̂i

xi t
â
q
i µ̂
q
i t∑T

t=1 K
(
zτ−zt
hNT

) .

3 Check for convergence otherwise go back to 1

Copula Estimation

1 The Gaussian meta-copula is estimated with the sample covariance matrix of Φ−1(ûi t) where ûi t =

F̂εi(ε̂i t)

zτ is estimated as a nonparametric regression of a weighted sum (across N ) of xi t adjusted by
the idiosyncratic component aiµi t, where the weights are νi/

∑N
i=1 νi. Since νi is the reciprocal

of the variance of the ith innovation, the weights also have an intuitive interpretation: the least
erratic series xi t (denoted by larger ν’s) receive more weight in the estimation of the common
trend. The technical justification for this weighting scheme is given in the next section when the
estimator is derived. Other weighting schemes are also possible, e.g. equal weights 1/N . As far
as the choice of the kernel function is concerned, it is important to stress that such a choice ought
to be based on the purpose of the application of the SPvMEM. If the objective of the application
is in–sample estimation then a two–sided kernel is more suitable, and the next section develops
the related asymptotic properties of the estimated curve in this setting. On the other hand, if the
objective of the application is out–of–sample forecasting, then one should resort to a one–sided
kernel (see Gijbels et al., 1999).

ii) Analogously, conditionally on the common component φ, we can adjust each series for the
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level of the common trend. It follows from the properties of the Gamma distribution that

xi t
φ(zt)

∣∣∣∣Ft−1 ∼ Gamma
(
(aiµi t)

−1νi, νi
)
. (8)

Thus, given an estimator of the common trend, we can estimate the marginal parameter vector
ξi = (ai, δ

T
i , νi)

T by maximising the marginal likelihood of the trend adjusted series associated to
(8) for each series in the panel. In this way we obtain the estimator ξ̂i T .

iii) Finally, conditionally on the first two steps, the correlation R across the innovations
can be estimated as the sample covariance matrix of the transformed marginal cdfs Φ−1(ui t) =
Φ−1(Fxi(xi t; ξi, φ|Ft−1)).

These considerations motivate us to propose an iterative procedure to estimate the SPvMEM.
The estimation strategy we propose consists of iteratively estimating the first and second step
until convergence and then estimating the copula parameters. The explanation of the algorithmic
procedure is detailed in Table 2. The procedure is initialized as follows. The initial estimate
of the trend requires an educated guess of aiµi t and νi, for all i (step 0.1). As for aiµi t, since
it is the conditional mean of the ith risk adjusted for the common component, we consider the
sample means x̄i. As for νi, since it is the inverse of the variance of a Gamma distribution, we
consider the inverse of the sample variance s2

i (see Hafner and Linton, 2010). The values of the
marginal parameters are also set to an educated initial guess (step 0.2). The parameters α0

i , β
0
i

and γ0
i are set respectively 0.1, 0.8 and 0.1, while ai is set to (1 − α0

i − β0
i − γ0

i )x̄i, and νi to
1/s2

i . After the initial parameters are initialized, the estimation algorithm proceeds as follows.
The estimated parameters at iteration q are obtained by maximizing the N log–likelihoods using
an estimate of the curve obtained at iteration q − 1 (step 1). Next, using the updated estimates of
the conditional dynamics µi t, we update the common trend estimation (step 2). Steps 1 and 2 are
repeated until convergence of the estimated parameters. Convergence is typically achieved within
a few iterations. Finally, the Gaussian meta–copula is estimated with the sample covariance matrix
of the transformed uniformed residuals Φ−1(ûi t) where ûi t = F̂εi(ε̂i t).

5 Asymptotic Theory

This section establishes the asymptotic properties of our estimators. We establish consistency and
asymptotic Gaussianity of the common trend and of the parameters. The asymptotic framework
considered in this section is developed for T → ∞ and both N fixed and N → ∞ and all
the assumptions and proofs are in Appendix A and B respectively. An interesting feature of our
setting is that consistent estimation of the common trend does not necessarily require a large
cross–section. As the sample size T increases, the number of observations in the neighborhood
of each point of the trend increases as well and this allows for consistent inference. However, we
show in this section that, when also the cross–sectional dimension N is allowed to increase to
infinity, consistency is still achieved and some of the inferential procedures simplify. This result is
obtained if we add two additional conditions, one on the choice of the kernel bandwidth and one
on the dependence captured by the copula. In particular, while the former condition allows for a
smaller bandwidth, the latter condition requires a weaker dependence explained by the copula. It
is the analog of the condition imposed on the dependence between idiosyncratic components in
linear models (see e.g. Bai and Ng (2002)).

We adopt the following notation for the log–likelihood of the SPvMEM. The model contains
an infinite dimensional nuisance parameter φ and a 5N + N(N − 1)/2–dimensional vector of
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parameters η = (aT, δT,θT)T. The log–likelihood of observation xt at time t conditional on the
information set Ft−1 is defined as

`t(η, φ) = log fx(xt;η, φ|Ft−1), (9)

using the notation `t(η, φ(zt)) when necessary. It is convenient to rearrange the parameter vector
η. We collect the parameters of the marginals in a 5N–dimensional vector ξ = (ξT

1 . . . ξ
T
N )T,

where ξi = (ai, δ
T
i , νi)

T ∈ Ξi ⊂ R5N and such that Ξi ∩Ξj = ∅ for i 6= j. The parameters of the
copula are collected in a vector ψ ∈ Ψ ⊂ Rpψ . It follows from the joint pdf of the innovations in
equation (4) and Sklar’s theorem that the conditional log–likelihood can be expressed as

LNT (η, φ) =
T∑
t=1

N∑
i=1

`mi t(ξi, φ) +
T∑
t=1

`ct(ξ,ψ, φ), (10)

where

`mi t(ξi, φ) = log fxi(xi t; ξi, φ|Ft−1), and

`ct(ξ,ψ, φ) = log c(u1 t, . . . , uN t;ψ|Ft−1).

Again, we also use the notation `mi t (ξi, φ(zt)) and `ct(ξ,ψ, φ(zt)) when necessary.

In the sequel we use a more detailed notation. We denote by η0 = (ξ1 0, . . . , ξN 0,ψ0) the
true values of the parameters while by φ0 we indicate the true curve and we denote by E0 the
expectation taken under the true model.

In an i.i.d. univariate context and based on Staniswalis (1987, 1989), Severini and Wong
(1992) propose and prove the asymptotic properties of an estimator of φ0 based on smoothed pro-
file log–likelihood maximization. This estimator has been generalized to the univariate dependent
case by Veredas et al. (2007). In the multivariate context of the SPvMEM this technique requires
an estimator of η0, which in principle we could obtain by maximizing the joint log–likelihood
(9). The procedure to estimate φ0 and η0 would be based on iterating between two optimiza-
tions: on one hand the global and parametric optimization with respect to the 5N parameters in
ξ0 = (ξ1 0, . . . , ξN 0) plus the pψ parameters in ψ0 and, on the other hand and at each iteration,
the optimization of the localized (or smoothed) log–likelihood has to be performed T times. This
procedure has two main drawbacks. First, it is computationally intensive, and, second, it requires
an expression for the joint log–likelihood. Even for small values of N this approach seems to be
unfeasible and can be simplified by means of inference from the marginals, which leads to the
estimator introduced in the previous section.

We first show how to derive the estimator of the common trend φ0, followed by the analysis of
the effect of the nonparametric component on the inference on ξ0. In Theorems 1–2 we show the
asymptotic properties of φ̂ξoNT , defined in (7), under the true parameters of the marginals ξ0. In
Theorem 3 and Corollary 1 we study the relation between the estimator of the curve and a generic
value of the parameters ξ. In Theorem 4 we show consistency and the asymptotic distribution of
ξ̂T . Finally, in Theorem 5 we prove consistency of ψ̂T . Theorems 1–4 are proved in the case of
fixed N and large T , and both N and T large.
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5.1 Estimation of the common trend

Given the marginal likelihoods, for any zτ ∈ [0, 1] and for a given value of the parameters ξ, then,
the estimator of the curve is such that

φ̂ξNT (zτ ) = arg sup
φ∈Γ

T∑
t=1

K

(
zτ − zt
hNT

) N∑
i=1

`mi t (ξi, φ(zt)). (11)

Here K(·) is a suitable kernel function satisfying assumption K in Appendix A and hNT is a
bandwidth parameter that can depend on both N and T , as explained in Theorem 2 below. Given
the choice of Gamma distributions for the marginals, this optimization has a closed form solution

φ̂ξNT (zτ ) =

∑T
t=1 K

(
zτ−zt
hNT

)∑N
i=1

xi t
aiµi t

νi∑N
i=1 νi∑T

t=1 K
(
zτ−zt
hNT

) . (12)

This is the estimator proposed in (7) and this derivation shows that the weighting scheme based
on the innovation variances is actually a direct consequence of the maximization in (11).

The following Theorems show consistency and asymptotic Gaussianity of φ̂ξoNT (zτ ), i.e. of
the estimator in (12) when ξ = ξ0.

Theorem 1 – Nonparametric component – Consistency Given the estimator φ̂ξoNT (zτ ) and un-
der assumptions A, B, C.1, I, K, L in Appendix A, and if NThNT → ∞ and hNT → 0 as
NT →∞ we have:

a) if T →∞ and N is finite, then, for any zτ ∈ [0, 1],

φ̂ξoNT (zτ )
P→ φ0(zτ );

b) if T → ∞ and N → ∞ and assumption C.2 in Appendix A holds, the result in part a)
still holds.

Theorem 2 – Nonparametric component – Asymptotic Gaussianity Under assumptions A, B,
C.1, I, K, L, P in Appendix A, and if NThNT →∞ as NT →∞ and one of the following
conditions holds true:

a) T →∞, N finite, and hNT → 0;

b) T →∞, N →∞, Nh2
NT → 0, and assumptions C.2 and D in Appendix A hold;

then, the estimator φ̂ξoNT (zτ ) in (12) is such that√
NThNT

(
φ̂ξoNT (zτ )− φ0(zτ )

)
d→ N (0, Vξo(zτ )) ,
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where, in case a)

Vξo(zτ ) =

(∫ 1

−1
K2(u)du

)
īN ξo(zτ )

j̄2
N ξo

(zτ )
,

īN ξo(zτ ) =
1

N
E0

( N∑
i=1

∂

∂φ
`mi t(ξi o, φ0(zτ ))

)2
 ,

j̄N ξo(zτ ) = − 1

N
E0

[
N∑
i=1

∂2

∂φ2
`mi t(ξi o, φ0(zτ ))

]
,

and in case b)

Vξo(zτ ) =

(∫ 1

−1
K2(u)du

)
iξo(zτ )

j2
ξo

(zτ )
,

iξo(zτ ) = lim
N→∞

īN ξo(zτ ), jξo(zτ ) = lim
N→∞

j̄N ξo(zτ ).

Several remarks on these Theorems are in order. First, the estimator φ̂ξoNT converges to the
true curve φ0 by virtue of Lemma 1 in Appendix B, which proves that φ0 is a maximizer not
only of the localized version of the joint log–likelihood (10) but also of each localized marginal
log–likelihood. Second, with respect to Veredas et al. (2007), asymptotic efficiency is lost since
we are neglecting the copula part of the log–likelihood (10). As for the effect of large N , we
emphasize two results. In the limit N,T →∞, the bandwidth has to decrease at a faster rate, i.e.
the local averages have to be computed using a smaller window of observations when the cross–
section is large in comparison to when it is finite. Moreover the term iξo(zτ ) in the asymptotic
variance contains not only the variances of the marginal scores but also their covariances. Thus
the asymptotic variance is well defined also in the limit N → ∞, provided that we assume these
covariances to be bounded (see assumption D). In particular, we have2

īN ξo(zτ ) =
1

N
E0

[
N∑
i=1

(
∂

∂φ
`mi t(ξi o, φ0(zτ ))

)2
]

+

+
1

N
E0

 N∑
i=1

N∑
j=1
j 6=i

(
∂

∂φ
`mi t(ξi o, φ0(zτ ))

)(
∂

∂φ
`mj t(ξj o, φ0(zτ ))

) =

=
1

N

N∑
i=1

E0

[
ν2
i0(εi t − 1)2

φ2
0(zτ )

]
+

1

N

N∑
i=1

N∑
j=1
j 6=i

E0

[
νi0νj0(εi t − 1)(εj t − 1)

φ2
0(zτ )

]
.(13)

By recalling that E0[εi t] = 1, we see that the first term of (13) is proportional to the variances of
the innovations, while the second is proportional to their covariance. Under assumption C.2, the
first term is bounded for any N while the second one diverges with N as there are N(N − 1)/2
covariance terms. By assumption D, the second term of (13) is bounded for any N . Therefore, in
large panels we require the cross–sectional dependence among the innovations to be weak. Similar
conditions for the idiosyncratic components are made in the context of approximate factor models
(see Bai and Ng (2002)). Assumption D is also supported by the empirical evidence (see Section

2We denote by ∂/∂φ the Fréchet functional derivative.
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7). Finally, analogous results are established by Li and Racine (2006) in additive panel models
with a nonparametric component.

In order to carry out inference, the expressions in Vξo(zτ ) have to be replaced by their sample
analogues. The integral of the squared kernel is a constant specific to the chosen kernel (e.g. it is 1
if we use a Gaussian kernel, 5/7 for a quartic kernel). Then, using the estimators of the parameters
âiT , δ̂iT , ν̂iT , given in Theorem 4 below, we define the estimated residuals

ε̂i t =
xi t

âiTµi t(Ft−1, δ̂iT )φ̂
NT ξ̂T

(zt)
.

The localized Fisher information īN ξo(zτ ) can be estimated, for any zτ ∈ [0, 1], by using the
sample counterpart of (13):

̂̄i
NT ξ̂T

(zτ ) =

∑T
t=1 K

(
zτ−zt
hNT

)[∑N
i=1

ν̂iT
φ̂
NT ξ̂T

(zt)
(ε̂i t − 1)

]2

N
∑T

t=1 K
(
zτ−zt
hNT

) . (14)

Analogously, j̄N ξo(zτ ), is estimated by

̂̄j
NT ξ̂T

(zτ ) =

∑T
t=1 K

(
zτ−zt
hNT

)∑N
i=1

ν̂iT
φ̂ 2
NT ξ̂T

(zt)
(2 ε̂i t − 1)

N
∑T

t=1 K
(
zτ−zt
hNT

) . (15)

Alternatively the denominators in (14) and (15) can be substituted by NThNT . Proofs of the
consistency of these estimators are in Gasser and Müller (1979) and Müller (1984).

Prior to turning to the estimation of the parameters in the next section, we study the relation
between them and the curve φ. Let us first consider the case N = 1, and focus on ξ1 0. In
the seminonparametric setting, the Fisher information matrix for ξ1 0 is the sum of a parametric
component minus a correction due to the presence of the curve:

E0

[
∂`m1 t
∂ξ1

(ξ1 0, φ0)
∂`m1 t
∂ξT

1

(ξ1 0, φ0)

]
− v E0

[(
∂`m1 t
∂φ

(ξ1 0, φ0)

)2
]

vT, (16)

where v is a generic vector of the same size as ξ1 0. Note that, since the second term in (16) is pos-
itive definite, we have a smaller Fisher information with respect to the fully parametric case. We
define a least favorable direction v∗ as the minimizer of the seminonparametric Fisher information
matrix (16) over all possible directions v. Severini and Wong (1992) prove that an estimator of
the curve having as tangent vector the least favorable direction, and called least favorable curve,
delivers an unbiased estimator of the parameter ξ1 0. It can be shown that the explicit form of the
least favorable direction is

v∗ = −
E0

[
∂2`m1 t
∂ξ1∂φ

(ξ1 0, φ0)
]

E0

[
∂2`m1 t
∂φ2 (ξ1 0, φ0)

] . (17)

Since all marginals depend on the curve, when N > 1, in (17) we have to substitute `m1 t with∑
i `

m
i t /N . We denote the least favorable curve in a generic value of the parameters as φξ and we

require it to satisfy the regularity assumption L in Appendix A. The tangent vector to this curve
computed in the true value of the paramters, which is the first derivative of the least favorable
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curve with respect to the parameters, is then defined as

φ′ξo = −
1
N E0

[∑N
i=1

∂2`mi t
∂ξ∂φ (ξi 0, φ0)

]
1
N E0

[∑N
i=1

∂2`mi t
∂φ2 (ξi 0, φ0)

] ≡ − d̄Nξo
j̄N ξo

. (18)

In the following Theorem we show the asymptotic properties of the vector tangent to the estimated
curve φ̂ξoNT .

Theorem 3 – Least Favorable Direction Given the estimator φ̂ξoNT (zτ ) and under assumptions
A, B, C.1, I, K, L, S in Appendix A, and if NThNT → ∞ and hNT → 0 as NT → ∞ we
have:

a) if T →∞ and N is finite, then, for any zτ ∈ [0, 1],

φ̂′ξoNT (zτ )
P→ φ′ξo ,

where φ′ξo is defined in (18);

b) if T → ∞ and N → ∞ and assumption C.2 in Appendix A holds, then, for any zτ ∈
[0, 1],

φ̂′ξoNT (zτ )
P→ 0.

When N is large the tangent vector to the curve becomes identically zero. Intuitively, this is
the result of the fact that when N → ∞ the nonparametric and the parametric components are
asymptotically uncorrelated.

Last, we show the asymptotic properties of the estimated curve for any value for the parame-
ters. Indeed, ξ̂T and φ̂ξNT depend on each other. To break this feedback loop, in the following
Corollary we show that, for any given value of the parameters ξ, the estimator defined in (12) is
an estimator of a least favorable curve, a result which is necessary to prove consistency of the
estimated parameters in Theorem 4. We prove the Corollary only for finite N as, when N → ∞,
the effect of the nuisance parameter φ becomes negligible (see part b of Theorem 3).

Corollary 1 – Least Favorable Curve Under the same Assumptions of Theorem 3.a, for any ξ ∈
Ξ and any zτ ∈ [0, 1],

φ̂ξNT (zτ )
P→ φξ(zτ ).

The first part of the proof of the Corollary relies on assumption N in Appendix A about the
existence of a limiting curve (and its derivatives) for any value of the parameters. In a second part,
we show that for any ξ, the nonparametric estimator φ̂ξNT converges to the least favorable curve
φξ, which is done in Lemma 4.

5.2 Estimation of the parameters

We now turn to the estimation of the marginals and copula parameters, (ξ1 0, . . . , ξN 0) and ψ.
Since Ξi ∩ Ξj = ∅ for i 6= j, estimation of (ξ1 0, . . . , ξN 0) boils down to N independent opti-
mizations of the marginal log–likelihoods,

ξ̂i T = arg max
ξi∈Ξi

T∑
t=1

`mi t (ξi, φ̂ξNT ), i = 1, . . . , N. (19)
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The asymptotic properties are proved in the following Theorem.

Theorem 4 – Parameters of the Marginals Consider the estimator of a least favorable curve in
(12) and for any i = 1, . . . , N , let ξ̂i T be the vector of parametric estimates in (19), then
under assumptions A, B, C.1, I, L, P, S, in Appendix A, we have

a) if T →∞, then ξ̂i T
P→ ξi 0;

b) if T →∞ and N is finite, then

√
T
(
ξ̂T − ξ0

)
d→ N

(
0, (H∗ξo)

−1 I∗ξo (H∗ξo)
−1
)
,

where

I∗ξo =

 Iξ1o ξ1o . . . 0
...

. . .
...

0 . . . IξNo ξNo

− (d̄Nξod̄T
Nξo

)
⊗
īNξo
j̄2
Nξo

,

H∗ξo =

 Hξ1o ξ1o . . . 0
...

. . .
...

0 . . . HξNo ξNo

− (d̄Nξod̄T
Nξo

)
⊗ 1

j̄Nξo
,

where d̄Nξo is the numerator of (18), j̄Nξo is defined in Theorem 2, and, for any i =
1, . . . , N ,

Iξio ξio = E0

[
∂`mi t
∂ξi

(ξi0, φ0)
∂`mi t
∂ξT

i

(ξi0, φ0)

]
, Hξio ξio = −E0

[
∂2`mi t
∂ξi∂ξT

i

(ξi0, φ0)

]
.

c) if T →∞ and N →∞ and under assumptions C.2 and D in Appendix A, then

√
T
(
ξ̂T − ξ0

)
d→ N

(
0,H−1

ξo
Iξo H−1

ξo

)
,

where

Iξo =

 Iξ1o ξ1o . . . 0
...

. . .
...

0 . . . IξNo ξNo

 , Hξo =

 Hξ1o ξ1o . . . 0
...

. . .
...

0 . . . HξNo ξNo

 .

For N fixed, consistency and asymptotic Gaussianity of the estimated parameters hold, pro-
vided we have a consistent estimator of φ0 satisfying assumption N. Theorem 3 guarantees that this
is the case for φ̂ξNT even when N → ∞. Notice that the parameter estimation of the marginals
is based on N univariate maximizations, thus N plays no role in computing the first term of I∗ξo
and H∗ξo . The asymptotic covariance matrix is larger than the parametric lower bound. This is
due to two reasons. First, since we use the marginals to estimate ξ0, we obtain the usual sand-
wich form as in Quasi Maximum Likelihood estimation. Second, as explained in the previous
section, the presence of the curve modifies both the information matrix and the Hessian, and it is
straightforward to see that the asymptotic covariance matrix is greater than or equal to the semi-
nonparametric lower bound, i.e. (H∗ξo)

−1I∗ξo(H
∗
ξo

)−1 � (I∗ξo)
−1. Notice that the correction term

d̄Nξod̄
T
Nξo

is not block diagonal, as the curve is contained in all the marginal distributions. Also by
Theorem 3 this correction term is O(N−2). Thus, if we let N →∞ this term becomes negligible
and the seminonparametric asymptotic covariance converges to its parametric counterpart, i.e. to
H−1
ξo

Iξo H−1
ξo

.
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In short, we see the advantage of inference from the marginals. Estimation reduces to a simple
iterative process between a closed form estimator, φ̂ξNT , and N univariate optimizations with
respect to five parameters each (ξi = (ai, αi, βi, γi, νi)).

Finally, given the estimators φ̂ξNT and ξ̂T = (ξ̂T
1T , . . . , ξ̂

T
N T )T obtained in (12) and (19), we

estimate ψ0 by maximizing the copula log–likelihood:

ψ̂T = arg max
ψ∈Ψ

T∑
t=1

` ct (ξ̂T ,ψ, φ̂ξNT ). (20)

Consistency of this estimator is proved in the following Theorem.

Theorem 5 – Parameters of the Copula Consider the estimator of a least favorable curve in
(12) and the marginals’ parameters estimators ξ̂i T , for i = 1, . . . , N , in (19), let ψ̂T be
the vector of estimators in (20), then under assumptions A, B, C.1, I, L, P in Appendix A, if
T →∞, ψ̂T

P→ ψ0.

6 Monte Carlo Study

Figure 2: Simulation Study: Common Trend.

The figure shows the profile of the common trend (thick line) used in the Monte

Carlo simulations together with the 95% quantile range and the median of the

simulated distribution of the trend estimator (thin lines).

We carry out a simulation study to investigate the finite sample properties of the SPVMEM
components estimators and to assess the reliability of the asymptotic standard errors estimators
for inference. The simulation exercise can be carried out according a structural or a reduced
form approach, and in this section we opt for the latter option. The structural approach consists
of simulating a panel of high frequency prices from a continuous time model with stochastic
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Table 3: Simulation Study: Nonparametric Component Estimator.

simulated simulated simulated simulated
zτ squared variance average 90% CI

bias est. variance coverage
(× 100) (× 100) (× 100)

0.17 0.0005 0.0123 0.0087 0.8322
0.33 0.0015 0.0131 0.0112 0.8260
0.50 0.0008 0.0159 0.0128 0.8406
0.67 0.0021 0.0138 0.0121 0.8340
0.83 0.0007 0.0117 0.0087 0.7521

The table reports the squared bias, variance, average estimated variance and
coverage of the 90% confidence interval of the nonparametric common trend
estimator in different points of the support of the trend.

Table 4: Simulation Study: Parametric Component Estimator.

simulated simulated simulated simulated
squared variance average 90% CI

bias est. variance coverage
(× 100) (× 100) (× 100)

ai 0.0028 0.0914 0.0927 0.9079
αi 0.0000 0.0055 0.0069 0.9384
γi 0.0001 0.0143 0.0171 0.9056
βi 0.0010 0.0461 0.0476 0.8958
νi 0.0002 0.0293 0.0216 0.8945

The table reports the squared bias, variance, average estimated variance and
coverage of the 90% confidence interval of the marginal parameter estimator.

volatility and leverage, constructing the high frequency returns ritj by discretely sampling such
process and then finally constructing the realized measures xit. On the other hand, the reduced
form approach we follow consists of simulating xit directly from the SPVMEM model. Direct
simulation of the SPVMEM requires realizations of the sign of the past daily returns of each
asset. Rather than simulating the daily return process, we assume the sign of daily return to be
iid Bernoulli random deviates with equi probability of being positive or negative and we simulate
them as such. The coefficients of the idiosyncratic components of the SPVMEM are chosen to
reproduce approximately the empirical characteristics of the data: αi, γi and βi are set respectively
to 0.05, 0.06 and 0.90 for each series. The scale factors ai and the marginal variances 1/νi of are
drawn from an Exponential distribution. The plot of the common trend component φ(zt) used
in the simulations is displayed in Figure 2. We also allow for weak cross-sectional dependence
in the innovations εi t. We induce dependence as follows. For each replication of the Monte
Carlo, we simulate a covariance matrix from a Wishart distribution of order N . The parameters of
the Wishart are chosen in way such that its expectation is the identity and the standard deviation
of the off diagonal elements is 0.03. We then construct the correlation matrix by appropriately
standardizing the covariance matrix and simulate a panel of T deviates from a multivariate normal
with mean zero and covariance matrix equal to the simulated correlation matrix. The normal
deviates are then mapped into uniforms random variables through the normal cdf. Finally, we plug
each of the N uniform deviates series into the inverse cdf of Gamma distribution with dispersion
equal to 1/νi. The simulation procedure ensures that marginally the innovations εi t have a Gamma
distribution and exhibit cross–sectional dependence. The Monte Carlo experiment is replicated for
1‘000 times. The dimensions of the panel are equal to N = 100 and T = 5000, which mimics the
dimensions of the S&P100 panel analysed in this paper.
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Table 5: SPDR Estimated Parameters

SPVMEM MEM
ai αi γi βi νi πi ai αi γi βi νi πi

XLB 0.32
(0.033)

0.22
(0.018)

0.13
(0.012)

0.57
(0.026)

0.33
(0.000)

0.86
(0.032)

0.05
(0.012)

0.25
(0.037)

0.13
(0.027)

0.66
(0.035)

0.33
(0.031)

0.97
(0.053)

XLE 0.13
(0.018)

0.26
(0.015)

0.09
(0.013)

0.66
(0.016)

0.34
(0.000)

0.96
(0.023)

0.10
(0.023)

0.25
(0.032)

0.12
(0.027)

0.64
(0.036)

0.34
(0.030)

0.95
(0.050)

XLF 0.22
(0.017)

0.29
(0.011)

0.12
(0.012)

0.54
(0.015)

0.60
(0.000)

0.90
(0.019)

0.02
(0.012)

0.27
(0.057)

0.13
(0.062)

0.67
(0.045)

0.61
(0.066)

1.00
(0.079)

XLI 0.12
(0.013)

0.27
(0.012)

0.08
(0.009)

0.64
(0.015)

0.47
(0.000)

0.94
(0.019)

0.02
(0.009)

0.29
(0.033)

0.11
(0.023)

0.66
(0.032)

0.48
(0.032)

1.00
(0.047)

XLK 0.09
(0.010)

0.24
(0.010)

0.10
(0.006)

0.69
(0.010)

0.69
(0.000)

0.98
(0.014)

0.04
(0.018)

0.27
(0.045)

0.13
(0.027)

0.66
(0.045)

0.70
(0.044)

0.99
(0.065)

XLP 0.04
(0.004)

0.16
(0.005)

0.07
(0.006)

0.78
(0.005)

0.77
(0.000)

0.98
(0.008)

0.02
(0.011)

0.19
(0.045)

0.11
(0.044)

0.74
(0.039)

0.75
(0.065)

0.99
(0.063)

XLU 0.10
(0.006)

0.25
(0.011)

0.05
(0.009)

0.69
(0.010)

0.59
(0.000)

0.97
(0.016)

0.02
(0.012)

0.27
(0.052)

0.06
(0.042)

0.70
(0.040)

0.65
(0.041)

1.00
(0.069)

XLV 0.11
(0.008)

0.37
(0.013)

0.10
(0.009)

0.52
(0.012)

1.15
(0.000)

0.94
(0.018)

0.02
(0.014)

0.39
(0.064)

0.12
(0.043)

0.55
(0.052)

1.22
(0.048)

1.00
(0.085)

XLY 0.24
(0.019)

0.19
(0.011)

0.12
(0.011)

0.61
(0.019)

0.46
(0.000)

0.86
(0.022)

0.02
(0.008)

0.25
(0.036)

0.13
(0.034)

0.68
(0.035)

0.48
(0.038)

0.99
(0.053)

Estimated parameters and standard errors (in parenthesis) for the SPvMEM (left) and the univariate MEM (right).

Tables 3 and 4 summarize the results of the full set of Monte Carlo replications. Table 3 shows
the Monte Carlo squared bias and variance of the trend estimator evaluated in five different points
of the support of the curve. The table also reports the average of the squared estimated asymp-
totic standard error and the coverage rate of the asymptotic 90% confidence interval. The 90%
asymptotic confidence interval is constructed as the trend point estimate plus or minus the normal
quantile multiplying the estimated asymptotic standard error. We also report in Figure 2 the 95%
quantile range and the median of the simulated distribution of the nonparametric trend estima-
tor. Results show that the nonparametric estimator behaves satisfactorily and that the estimator is
rather precise. The average estimated standard error is close to its target, although the simulations
suggest that the estimator is slightly downward biased. The downward bias of the standard error
also affects inference. In fact, the coverage rate of the 90% confidence interval has coverage prob-
ability close to the nominal level but is slightly smaller. Table 4 reports analog summary statistics
for the parametric part of the model. Note that the table reports summary averages across all Monte
Carlo replications and all series in the panel. Again, the estimation procedure delivers satisfactory
estimates. The average estimate standard errors closely tracks their population analogs and the
coverage rate of the 90% confidence interval closely matches the desired level.

Overall, results show that the proposed estimation procedure performs well in moderately large
panels and that the large sample standard error estimators provide adequate inference.

7 Empirical Analysis

In this section we apply the SPvMEM to analyse the SPDR and S&P100 panels. Section 7.1
presents the estimation results over the full sample, while Section 7.2 presents the results of a
forecasting exercise where the model is compared against a number of alternative specifications.

7.1 In–Sample Estimation Results

The estimation of the SPvMEM model (3) on the SPDR and S&P100 panels is carried out using
a quartic kernel with a bandwidth resulting in a trend computed over a three month window. Esti-

20



Table 6: S&P100 Estimated Parameters

SPVMEM MEM
ai αi γi βi νi πi ai αi γi βi νi πi

Disc q0.25 0.11 0.27 0.07 0.60 0.26 0.95 0.06 0.27 0.07 0.62 0.27 0.98
q0.50 0.16 0.30 0.09 0.62 0.31 0.97 0.07 0.29 0.09 0.66 0.32 0.98
q0.75 0.24 0.31 0.10 0.66 0.37 0.98 0.09 0.31 0.10 0.67 0.37 0.99

Ener q0.25 0.10 0.25 0.06 0.65 0.23 0.97 0.09 0.25 0.07 0.65 0.24 0.97
q0.50 0.12 0.26 0.08 0.68 0.32 0.98 0.12 0.26 0.08 0.68 0.34 0.98
q0.75 0.21 0.28 0.09 0.70 0.53 0.98 0.14 0.28 0.09 0.70 0.54 0.99

Fin q0.25 0.10 0.30 0.09 0.53 0.25 0.97 0.05 0.30 0.08 0.56 0.26 0.99
q0.50 0.12 0.35 0.11 0.57 0.30 0.98 0.05 0.35 0.11 0.58 0.31 0.99
q0.75 0.16 0.37 0.13 0.64 0.43 0.98 0.07 0.38 0.13 0.64 0.45 1.00

Heal q0.25 0.09 0.27 0.06 0.58 0.35 0.97 0.07 0.27 0.06 0.56 0.35 0.97
q0.50 0.14 0.31 0.07 0.63 0.46 0.98 0.08 0.31 0.09 0.63 0.46 0.98
q0.75 0.17 0.37 0.09 0.66 0.69 0.98 0.13 0.37 0.10 0.66 0.66 0.99

Ind q0.25 0.10 0.28 0.08 0.58 0.25 0.96 0.06 0.28 0.08 0.58 0.26 0.98
q0.50 0.12 0.33 0.09 0.60 0.28 0.97 0.08 0.33 0.09 0.61 0.29 0.98
q0.75 0.16 0.34 0.12 0.63 0.36 0.98 0.10 0.34 0.11 0.63 0.37 0.99

Mat q0.25 0.17 0.26 0.09 0.59 0.24 0.95 0.09 0.27 0.09 0.59 0.24 0.97
q0.50 0.18 0.29 0.10 0.61 0.26 0.96 0.13 0.29 0.10 0.63 0.27 0.97
q0.75 0.27 0.32 0.10 0.65 0.32 0.96 0.17 0.32 0.10 0.66 0.33 0.98

Stap q0.25 0.07 0.24 0.05 0.61 0.31 0.97 0.05 0.24 0.05 0.59 0.31 0.97
q0.50 0.10 0.30 0.06 0.62 0.39 0.97 0.07 0.31 0.07 0.63 0.39 0.98
q0.75 0.14 0.33 0.07 0.70 0.56 0.98 0.11 0.34 0.08 0.71 0.56 0.98

Tech q0.25 0.11 0.26 0.08 0.49 0.22 0.96 0.06 0.27 0.08 0.51 0.24 0.97
q0.50 0.21 0.29 0.10 0.61 0.27 0.97 0.09 0.31 0.10 0.60 0.28 0.99
q0.75 0.28 0.39 0.12 0.68 0.37 0.99 0.14 0.40 0.12 0.68 0.38 0.99

Util q0.25 0.09 0.27 0.05 0.62 0.30 0.97 0.07 0.28 0.05 0.62 0.31 0.98
q0.50 0.11 0.29 0.09 0.65 0.36 0.98 0.08 0.30 0.09 0.65 0.36 0.98
q0.75 0.13 0.31 0.10 0.68 0.56 0.98 0.10 0.31 0.10 0.67 0.56 0.98

Estimated parameters for the SPvMEM (left) and the univariate MEM (right). The table reports the median, 1st

quartile and 3rd quartile of the parameter estimates across the each industry group.
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mation details are provided in the QQQ Web version of the paper with SPvMEM results reported
on the left panels of Table 5 (individual series of SPDR); for the S&P100 panel the results are
conveniently aggregated by quantiles across industry groups in Table 12 and by individual ticker
in Table QQQ. Asymmetric MEM(1,1)

xit = aiµitεit = µ̃itεit =
(
ωi + (αi + γi1{ri t−1<0})xit−1 + βiµ̃it−1

)
εit

provide estimation benchmark results (on the right panels of the same tables in the Web version).

When contrasted to typical GARCH estimates, the values of the α’s and γ’s are higher while
they are lower for the β’s, as a result of a better informative content of realized measures as esti-
mates of volatility (see Brownlees and Gallo (2010) and Shephard and Sheppard (2010) for similar
evidence). As customary, we have positive asymmetric reaction to negative news. The estimated
persistence αi + γi/2 + βi reveals important differences across assets. For SPDR the sectors with
higher persistence are Consumer Staples and Technology, meaning that these are the sectors with
longer lasting idiosyncratic departures from the systematic component. For S&P100 the differ-
ences between the least and the most persistent idiosyncratic components are wide and, in general,
they appear to be higher than the ones in SPDR. We interpret this as the result that individual
assets have a higher level of idiosyncrasy in comparison to sectoral ETFs. The systematic scale
factors are fairly close to the sample average volatilities (see Table 1). Last, the estimates of the
Gamma distribution also differ substantially across sectors and assets, implying differences in the
marginal distributions. By contrast, in the vast majority of cases, the persistence implied by the
MEMs are essentially equal to one, hinting at the presence of integrated dynamics (violation of the
stationarity condition), and the unconditional volatilities (denoted by ai for comparison purposes
with our model) are often far (especially for SPDR) from the sample average volatilities.

Figure 3 displays the scatter plot of the estimated (log) unconditional mean versus persistence
for the SPvMEM in the SPDR panel. Technology is the sector with the highest persistence and
unconditional volatility, followed by Energy and Utilities. The Industrial, and Health Care and
Consumer Staple sectors have lower levels of volatility but still have persistent dynamics while
Consumer Discretionary, Materials, and Financials, have lower levels of volatility and low persis-
tence. As far as the univariate MEM results are concerned (not reported in the plot), the estimated
αi+γi/2+βi collapse to unity as a consequence of the strong volatility persistence, meaning that
it is essentially the same in all sectors regardless of the unconditional level of volatility. Moreover,
the model implied estimate of unconditional volatility is often excessively large as a consequence
of the fact that persistence is close to unity.

Figure 4 shows (from top to bottom) the estimated mean
√

252 aiφ(zt)µi t, the systematic
component

√
φ(zt), and the idiosyncratic components

√
252 aiµi t for SPDR (left) and S&P100

(right). The fitted mean series accurately track the movements of realized volatilities. The sys-
tematic volatility for both panels are essentially close with minor differences for the 2002 burst
in volatility recorded differently in the two sets of data (averages vs individual stocks). The plot
of the systematic volatility components also displays the (pointwise) 95% confidence bands. Note
that, especially in the S&P100 panel, the width of interval is rather tight and the bands are hard
to see. The horizontal line at one is used as a benchmark to identify periods of systematic risk
amplification and contraction. The systematic trend can be interpreted in terms of the underlying
movements in the business cycle and financial markets. We trace the increase in volatility follow-
ing the market drop in mid 2002 with a cut to a half to its unconditional value during the years
of volatility moderation and the sudden increase to three times its normal value toward the last
quarter of 2008. The idiosyncratic volatilities are stationary and vary around the unconditional
means.
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Figure 3: SPDR Persistence versus volatility

Scatter plots of persistence (X-axis) versus unconditional volatility (Y-axis) for

the SPvMEM.

To get deeper insights, Figure 5 displays the idiosyncratic volatilities of the Energy, Finan-
cial and Technology sectors only, which allow to visually identify periods of distress around the
systematic trend. At the beginning of 2001, Technology was the most volatile sector due to the
aftermath of the burst of the dot com bubble. Between 2005 and 2007, concerns about oil prices
generated an increased level of uncertainty in the Energy sector. Finally, the Financial sector had
a surge in volatility starting from July 2007 with the beginning of the credit crunch.

Table 7 reports the sample correlation matrix R as defined in Section 3 for the SPDR while
Figure 6 provides analog estimate for the S&P100 in a heat map. The average correlations are
around 0.40 and 0.25 in the SDPR and S&P100 panels respectively. In comparison to the original
data, we see that the common trend captures a significant amount of cross–sectional dependence.
The heat map of the S&P100 unveils clustering among stocks that belong to the same sector that
are not visible from the raw data. This is the case for Technology, Financials, Energy and Utilities.

Last, we find that residuals of the model do not exhibit significant serial dependence. Table 8
reports the estimates of the lag one autocorrelation matrix for the SPDR while Figure 7 provides
the lag one autocorrelation matrix for S&P100 in a heat map. The autocorrelations are negligible
and there is virtually no significant evidence. Also, the cross autocorrelations are exiguous and we
find no systematic spillover pattern across series. Overall, the cross autocorrelations are small and
no dynamic pattern is detected.
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Figure 4: Volatility decomposition

(a) Fit SPDR (b) Fit S&P100

(c) Systematic volatility SPDR (d) Systematic volatility S&P100

(e) Idiosyncratic volatilities SPDR (f) Idiosyncratic volatilities S&P100

The top row shows the estimated fit of the annualized volatilities entailed by the model:√
252 ai φ(zt) µi t. The middle row shows the systematic volatility

√
φ(zt), and the bottom row shows

the annualized idiosyncratic volatilities
√

252 ai µi t. Left column is for SPDR and right column for

S&P100.

7.2 Out–of–Sample Forecasting Analysis

To assess the predictive ability of our proposed specification we carry out a forecasting exercise.
We compare the SPvMEM against four alternative specifications: a MEM(1,1), a MEM(2,2), a
Composite Likelihood MEM(1,1) (CL–MEM(1,1), cf. Engle et al. (2008)) and a (univariate)
Seminonparametric MEM (SPMEM). All the MEM specifications considered allow for asymmet-
ric reactions to past negative returns. In detail:
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Table 7: SPDR Residual Copula Dependence

XLB XLE XLF XLI XLK XLP XLU XLV XLY
XLB 1
XLE 0.37 1
XLF 0.29 0.25 1
XLI 0.44 0.36 0.44 1
XLK 0.27 0.27 0.36 0.30 1
XLP 0.25 0.21 0.21 0.23 0.28 1
XLU 0.33 0.30 0.20 0.28 0.22 0.19 1
XLV 0.26 0.22 0.26 0.26 0.51 0.42 0.22 1
XLY 0.37 0.28 0.45 0.41 0.36 0.26 0.25 0.29 1

The table reports the estimated Gaussian meta-copula correlation matrix for the SPDR panel.

Table 8: SPDR Residual Lag 1 Autocorrelation

XLB XLE XLF XLI XLK XLP XLU XLV XLY
XLB -0.00 0.03 0.03 0.03 0.04 0.02 0.09 0.02 0.00
XLE 0.03 -0.02 0.02 0.03 0.02 0.07 0.04 0.02 0.00
XLF -0.01 0.03 -0.01 -0.00 0.05 0.03 0.06 0.01 0.00
XLI 0.04 0.03 0.01 -0.02 0.03 0.03 0.06 0.03 -0.00
XLK 0.04 -0.02 0.01 0.02 -0.02 0.00 0.04 -0.01 0.00
XLP 0.03 0.03 0.01 0.04 0.03 -0.01 0.06 -0.01 0.02
XLU 0.03 0.01 0.02 0.04 0.02 0.05 0.01 0.03 0.03
XLV 0.01 0.00 0.01 0.02 0.01 0.04 0.04 -0.03 -0.00
XLY 0.04 0.04 0.02 0.00 0.05 0.03 0.09 0.03 -0.02

The table reports the residual lag one autocorrelation matrix for the SPDR panel.

Table 9: SPDR Out–of–sample Forecasting

SPVMEM MEM(1,1) MEM(2,2) CL-MEM(1,1) SPMEM
XLB 69.18 67.79 69.05 86.06 73.81
XLE 62.78 64.05 64.04 75.27 68.26
XLF 89.53 86.84 86.10 121.47 86.55
XLI 75.45 77.37 168.06 131.10 81.88
XLK 100.84 101.87 226.81 182.50 102.30
XLP 116.90 120.10 123.27 152.77 126.64
XLU 86.41 92.91 184.00 146.47 94.28
XLV 130.73 142.53 148.27 175.00 145.37
XLY 85.49 88.75 89.09 125.27 93.17

Out–of–sample QL losses for the SPvMEM, MEM(1,1), MEM(2,2), Composite Like-
lihood MEM(1,1) and (univariate) SPMEM.
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Table 10: S&P100 Out–of–sample Forecasting

SPVMEM MEM(1,1) MEM(2,2) CL-MEM(1,1) SPMEM
Disc Mean 65.47 66.11 79.56 105.96 66.70

q10 56.12 56.79 56.78 78.37 55.95
q90 75.84 76.39 132.10 143.99 78.39

Ener Mean 67.81 73.22 135.90 116.34 69.57
q10 47.61 47.24 45.51 61.28 47.72
q90 117.24 150.49 346.55 259.27 124.07

Fin Mean 75.98 77.45 107.68 108.34 79.24
q10 59.25 58.97 58.36 83.35 61.40
q90 97.28 101.22 181.95 138.90 102.77

Heal Mean 82.37 91.09 97.88 122.59 84.18
q10 57.07 68.79 75.65 97.19 58.11
q90 100.57 119.03 136.95 152.94 102.12

Ind Mean 67.48 70.31 90.76 108.16 68.44
q10 57.63 57.01 55.55 82.67 58.80
q90 79.73 97.67 173.82 135.09 81.51

Mat Mean 68.07 68.76 64.54 91.43 68.91
q10 57.55 58.54 54.90 75.37 58.43
q90 73.79 76.91 70.83 112.36 75.86

Stap Mean 80.51 81.25 95.05 114.22 81.81
q10 62.16 62.48 58.28 74.34 60.61
q90 94.81 94.46 141.41 134.90 95.66

Tech Mean 72.44 71.94 79.27 127.07 72.51
q10 58.33 57.68 54.12 95.50 55.80
q90 93.34 93.13 128.50 165.02 92.98

Util Mean 70.63 70.47 91.54 107.64 72.27
q10 57.86 56.27 52.07 82.07 59.17
q90 89.70 91.28 129.84 144.28 88.45

Out–of–sample QL losses for the SPvMEM, MEM(1,1), MEM(2,2), Composite Likeli-
hood MEM(1,1) and (univariate) SPMEM. The table reports the average loss, the 10%
quantile and 90% quantile of each industry group.
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Figure 5: Idiosyncratic volatilities for Energy, Financial and Technology

The figure shows the idiosyncratic volatility for Energy (top), Financials (middle) and Tech-

nology (bottom).

1. MEM without trend: xit = aiµitεit = µ̃itεit, with µ̃it specified as

(a) MEM(1,1): ωi + (αi + γi1{ri t−1<0})xit−1 + βiµ̃it−1

(b) MEM(2,2): ωi + (α1i + γi1{ri t−1<0})xit−1 + β1iµ̃it−1 + α2ixit−2 + β2iµ̃it−2

(c) CL–MEM(1,1): ω + (α+ γ1{ri t−1<0})xit−1 + βµ̃it−1

2. SPMEM(1,1) (individual trend): xit = aiφi(zt)µitεit = φi(zt)µ̃itεit, with µ̃it specified as
in MEM(1,1) and φi(zt) an asset specific, univariate version of expression 7.

Models without trend are the MEM(1,1), seen above, possibly extended in the specification to
accommodate a second lag (MEM(2,2). Since parameter coefficients estimated over a panel of fi-
nancial time series may cluster, the CL–MEM(1,1) consists of assuming parameters to be constant
across series. The last specification allows volatility trends to be series specific and hence allows
for assessing what the benefits are of estimating the common trend by pooling series.

The forecasting exercise is designed as follows. Starting from the beginning of 2007 we pro-
duce the series of one step ahead forecasts for each model using parameter estimates updated on
the last weekday of each week. The prediction of the nonparametric trend is constructed by keep-
ing constant the last estimate for the forecast horizon. The series of forecasts produced by the five
approaches are evaluated using the QL loss function (Patton (2010)).

The choice of the kernel and the bandwidth for the out–of–sample exercise require further
details. First, building up on Gijbels et al. (1999) among others, we fit the SPvMEM using a
one sided quartic kernel for the forecasting application. Second, the bandwidth is chosen using
an out–of–sample cross–validation criterion. We consider different bandwidths corresponding to
different window lengths varying from one month to six months. We then estimate the models
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Figure 6: S&P100 Residual Copula Dependence

The heatmap displays the estimated Gaussian meta-copula correlation matrix for the

S&P100 panel.

Figure 7: S&P100 Residual Lag 1 Autocorrelation

The heatmap displays the residual lag one autocorrelation matrix for the S&P100 panel.
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from the beginning of the sample until June 2006 using the different bandwidths and choose the
bandwidth which delivers the one step ahead best forecasts over the last six months of 2007.

Results are shown in Tables 9 and 10. We report out–of–sample losses for each of the series of
the SPDR and cross sectional means and quantiles across industry groups for the S&P100. The ev-
idence from the two forecasting exercises is similar. The SPvMEM delivers the best out-of-sample
performance in the majority of cases. The second best performing model is the baseline MEM(1,1)
which closely tracks the SPvMEM. The performance of the MEM(2,2), on the other hand, varies
substantially. In a number of cases the QL loss of this specification is much larger than the baseline
MEM(1,1). The CL-MEM(1,1) does not appear to improve the predictions of the MEM(1,1). As
it can be observed in Tables 5 and 6 parameters may vary quite considerably in the cross section
so that, contrary to the encouraging results in GARCH panels, pooling in the MEM case may not
be the best estimation strategy. The SPMEM generally performs closely to the SPvMEM but the
latter generally performs better. Interestingly, in the SPDR dataset the discrepancy between the
two models is larger than for the S&P100. Overall, the SPvMEM improves predictive ability in
the majority of cases. An interesting outcome of the forecast comparison is that the SPvMEM
delivers better results for the SPDR and for the averages of the S&P100 uniformly relative to the
SPMEM. In the former model, jointly estimating the systemic risk component truly exploits the
properties of interdependence across assets.

8 Conclusions

Modeling large panels of volatilities may prove a formidable task if one allows for dynamic in-
terdependence. We follow parsimony in parametric specification, exploiting the stylized fact that
volatilities appear to be driven by an underlying factor that captures the secular systematic trend.
We propose a novel SeminonParametric Vector MEM (SPvMEM) specification that decomposes
risk measures in a systematic and idiosyncratic components, and it allows for cross–section de-
pendence in the innovations. The systematic component is a secular trend and the idiosyncratic
components are parametric. We develop an estimation technique that is based on profile likelihood
estimation and inference from the marginals. Regardless of the dimension of the panel, estima-
tion boils down to univariate likelihood maximization and the computation of a sample correlation
matrix. The ease of estimation of our model makes it appealing in large dimensional applications.

We analyse two panels of daily realized volatility measures between 2001 and 2008. The first
panel consists of the nine SPDR Sectoral Indices of the S&P500, and the second panel contains
the ninety constituents of the S&P100 that have been continuously trading in the sample period.
There is evidence of a common trend in both panels. Once the common component is accounted
for all series exhibit mean reversion around it. The model also unveils dependencies in volatility
innovations across assets and sectoral clusters for Technology, Financial, Energy and Utilities
companies. A forecasting horse race against a set of competing specifications shows that the
SPvMEM delivers the best out–of–sample performance for the majority of series in both panels.

Further refinements or uses of the model can be envisaged. As realized measures are estima-
tors, we would need to investigate the benefits of taking the measurement error in the volatility
estimation into explicit account in the modelling step (see Hansen and Lunde (2010)). As in other
contributions, a relationship between macroeconomic variables and the common component can
help highlight some determinants of the changes in risk levels or, reverting the perspective, the
spillover effects of market volatility onto the real economy.
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Appendix A - Assumptions

We group sets of assumptions by letter commenting hereafter on what they are needed for. As-
sumption A is similar to Veredas et al. (2007). Assumption K is standard in non–parametric esti-
mation. Assumption B and P are standard in Maximum Likelihood estimation. Assumptions C.1,
I, L, N, and S are adapted from Severini and Wong (1992) and Veredas et al. (2007). Assumptions
C.2 and D are new to this paper.

A) Properties of the vector of innovations.

B) Existence of unique maxima.

C) Differentiability conditions (i.e. bounded derivatives) on the log–likelihoods. In particular
C.2 allows for the large N setting.

D) Bounded cross–sectional covariance among innovations as N →∞.

I) Identification assumption for both the parameters and the curve.

K) Properties of the kernel.

L) Smoothness of the curve necessary to define the least favorable direction.

N) Regularity conditions for the estimated curve and its derivatives.

P) Existence of the asymptotic variance–covariance matrices of the estimated parameters.

S) Bounded mixed derivatives needed to show the convergence of the estimated tangent vector
to the least favorable direction.

Assumption A

A.1 The detrended process xi t/φ0(zt) = ai0µi t(δi0)εi t is a strong mixing process for any i =
1, . . . N , where, for some p > 2 and r ∈ N, the mixing coefficients {αj} must satisfy

∞∑
j=1

jr−1α
1−2/p
j <∞.

Furthermore, for some even integer q ≤ 2r

E0[|µi t(δi0)εi t|q] < m,

where m is a constant not depending on zt.

A.2 εt is a conditionally independent random vector process such that, for any i = 1, . . . N ,

εi t|Ft−1 ∼ Gamma(νi0, νi0),

and E0[εi t] = 1, Var0[εi t] = ν−1
i0 .

A.3 For any i = 1, . . . , N , we have

0 < min
i

(νi0) ≤ νi0 ≤ max
i

(νi0) <∞.

35



Assumption B The true values of the parameters are such that ξ0 ∈ int(Ξ) and ψ0 ∈ int(Ψ),
with Ξ ⊂ R5N , Ψ ⊂ Rpψ and Ξ, Ψ both compact sets. We also use the notation η0 =
(ξT

0,ψ
T
0)T ∈ int(Λ) ⊂ R5N+ψ, with Λ compact.

The least favorable curve is such that, for any ξ ∈ Ξ and any zt ∈ [0, 1], φξ(zt) ∈ int(P),
with P ⊂ R+ compact.

Assumption C

C.1 We assume that for each ξi ∈ Ξi, i = 1, . . . , N and zt ∈ [0, 1],

sup
ξi∈Ξi

sup
φ∈Γ

sup
zt∈[0,1]

E0

[∣∣∣∣ ∂k∂ξki ∂l

∂zlt

∂j

∂φj
`mi t (ξi, φ(zt))

∣∣∣∣q] <∞,
for j = 0, 1, 2, 3, k = 0, 1, 2, l = 0, 1, 2 and q = 2.

The same holds also for E0 [`ct(ξ,ψ, φ(zt))].

C.2 We also assume that:

sup
N∈N

sup
ξ∈Ξ

sup
φ∈Γ

sup
zt∈[0,1]

E0

[∣∣∣∣∣ 1

N

N∑
i=1

∂k

∂ξk
∂l

∂zlt

∂j

∂φj
`mi t (ξi, φ(zt))

∣∣∣∣∣
q]
<∞,

for j = 0, 1, 2, 3, k = 0, 1, 2, l = 0, 1, 2, and q = 2.

We use the notation ∂/∂φ to indicate the Fréchet functional derivative.

Assumption D Define Cov0[εi t, εj t] = τij , then there exists a positive real constant M such that

1

N

N∑
i=1

N∑
j=1

|τij | < M <∞.

Assumption I

I.1 For any i = 1, . . . , N and for fixed but arbitrary η̃ ∈ Λ, ξ̃i ∈ Ξi, ψ̃ ∈ Ψ and φ̃ ∈ P , let

ρ(η, φ) = Ẽ [`t(η, φ)] , ρmi (ξi, φ) = Ẽ [`mi t(ξi, φ)] , ρc(ξ,ψ, φ) = Ẽ [`ct(ξ,ψ, φ)]

where expectation is taken with respect to the distribution of xt with parameters φ̃ and η̃,
ξ̃i, or ψ̃ respectively. Then, if φ 6= φ̃, we have

ρ(η, φ) < ρ(η̃, φ̃), ρmi (ξi, φ) < ρmi (ξ̃i, φ̃), ρc(ξ,ψ, φ) < ρc(ξ̃, ψ̃, φ̃).

I.2 Let φξ(zt) be such that
∂

∂φ
E0 [`mi t (ξi, φξ(zt))] = 0,

for any zt ∈ [0, 1] and for each fixed ξi ∈ Ξi, i = 1, . . . , N . Then, we assume that φξ(zt)
is unique and that for any ε > 0 there exists a δ > 0 such that, if

sup
ξi∈Ξi

sup
zt∈[0,1]

∣∣∣∣ ∂∂φE0

[
`mi t (ξi, φ̄(zt))

]∣∣∣∣ ≤ δ,
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then
sup
ξ∈Ξ

sup
zt∈[0,1]

∣∣φ̄(zt)− φξ(zt)
∣∣ ≤ ε.

Assumption K Assume that the kernel function K(·) is of order k > 3/2 with support [−1, 1]
and it is such that∫ 1

−1
K(u)du = 1,

∫ 1

−1
uK(u)du = 0,

∫ 1

−1
upK(u)du <∞,

∫ 1

−1
uqK2(u)du <∞,

for p = 0, . . . , 3 and q = 0, . . . , 6. Assume also that

sup
u∈[−1,1]

∣∣∣∣∂rK(u)

∂ur

∣∣∣∣ <∞, r = 0, . . . , 4.

The conditions on the bandwidth vary and are stated in Theorem 2.

Assumption L Given the least favorable curve φξ, then, for any zt ∈ [0, 1] and any ξ ∈ Ξ, define

φ′ξ(zt) ≡
∂φξ
∂ξ

(zt) and φ′′ξ(zt) ≡
∂2φξ
∂ξ2

(zt),

and define the norm of a vector w as

||w|| = sup
zt∈[0,1]

|w(zt)|.

Then, we assume that φ′ξ(zt) and φ′′ξ(zt) exist and

||φ′ξ|| <∞ and ||φ′′ξ|| <∞.

Assumption N For any zt ∈ [0, 1] and ξ ∈ Ξ, the estimated curve φ̂ξNT (zt) converges in proba-
bility to some constant both if T →∞ and N is small and if both N,T →∞. Denote that
constant as φ̃ξ(zt). For any ξ ∈ Ξ, we require that φ̃ξ ∈ Γ and, and for all r, s = 0, 1, 2
such that r + 2 ≤ 2, that

∂r+s

∂zrt ∂ξ
s
φ̃ξ(zt) and

∂r+s

∂zrt ∂ξ
s
φ̂ξNT (zt),

exist. We require that

sup
ξ∈Ξ
||φ̂ξNT − φ̃ξ|| = oP (1),

sup
ξ∈Ξ
||φ̂′ξNT − φ̃′ξ|| = oP (1),

sup
ξ∈Ξ
||φ̂′′ξNT − φ̃′′ξ|| = oP (1),

where the norm is defined in Assumption L.
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Finally, for some δ > 0, we require that∣∣∣∣∣∣∣∣ ∂∂zt φ̂ξoNT − ∂

∂zt
φ̃0

∣∣∣∣∣∣∣∣ = oP (T−δ),∣∣∣∣∣∣∣∣ ∂∂zt φ̂′ξoNT − ∂

∂zt
φ̃′0

∣∣∣∣∣∣∣∣ = oP (T−δ).

Assumption P The following matrices are positive definite:

Iξioξio = E0

[
∂`mi t
∂ξi

(ξi0, φ0)
∂`mi t
∂ξT

i

(ξi0, φ0)

]
, for i = 1, . . . , N,

Iψo = E0

[
∂` ct
∂ψ

(ξ0,ψ0, φ0)
∂` ct
∂ψT

(ξ0,ψ0, φ0)

]
,

Hξioξio = −E0

[
∂2`mi t
∂ξi∂ξT

i

(ξi 0, φ0)

]
, for i = 1, . . . , N,

Hψ0 = −E0

[
∂2` ct
∂ψ∂ψT

(ξ0,ψ0, φ0)

]
.

Moreover, the matrices I∗ξ0
and H∗ξo defined in Theorem 4 are positive definite.

We also assume

j̄Nξo(zτ ) = − 1

N
E0

[
N∑
i=1

∂2`mi t
∂φ2

(ξi 0, φ0(zτ ))

]
> 0, zτ ∈ [0, 1].

Assumption S Assume that for all r, s = 0, . . . , 4, r+s ≤ 4, and any i = 1, . . . , N , the derivative

∂r+s`mi t
∂ξri ∂φ

s
(ξi, φ)

exist for almost all xt and assume that

E0

[
sup
η ∈Λ

sup
φ∈Γ

∣∣∣∣∣
∣∣∣∣∣∂r+s`mi t∂ξri ∂φ

s
(ξi, φ)

∂r+s`mi t
∂ξr

T

i ∂φ
s
(ξi, φ)

∣∣∣∣∣
∣∣∣∣∣
]
<∞.
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Appendix B - Proofs of Theorems

Additional results

We need four Lemma to prove the Theorems and Corollary 1. Notice that, although not explicitly
indicated in the proofs, all density functions fxi and c are to be considered as conditional on Ft−1.

Lemma 1 Under assumptions C.1 and S

E0

[
∂`mi t
∂ξi

(ξi 0, φ0)

]
= 0, for i = 1, . . . , N,

E0

[
∂` ct
∂ξi

(ξ0,ψ0, φ0)

]
= 0, for i = 1, . . . , N,

E0

[
∂` ct
∂ψ

(ξ0,ψ0, φ0)

]
= 0,

E0

[
∂`mi t
∂φ

(ξi 0, φ0(zτ ))

]
= 0, for i = 1, . . . , N, zτ ∈ [0, 1],

E0

[
∂` ct
∂φ

(ξ0,ψ0, φ0(zτ ))

]
= 0, for zτ ∈ [0, 1].

Proof. We prove just the first relation, the proof of the others being analogous:

E0

[
∂

∂ξi
`mi t (ξi 0, φ0)

]
=

=

∫
x

(
∂

∂ξi
log fxi(ξi 0, φ0)

)( N∏
k=1

fxk(ξk 0, φ0)

)
c(ξ0,ψ0, φ0)dxt =

=

∫
x

(
∂

∂ξi
fxi(ξi 0, φ0)

) (∏N
k=1 fxk(ξk 0, φ0)

)
fxi(ξi 0, φ0)

c(ξ0,ψ0, φ0)dxt =

=
∂

∂ξi

(∫
x

(
N∏
k=1

fxk(ξk 0, φ0)

)
c(ξ0,ψ0, φ0)dxt

)
=

∂

∂ξi
1 = 0. �

Lemma 2 Under assumptions C.1, S and P, for any i, j = 1, . . . , N

E0

[
∂`mi t
∂ξi

(ξi 0, φ0)
∂`ct
∂ψT

(ξ0,ψ0, φ0)

]
= 0, (B-1)

and

E0

[
∂`mi t
∂ξi

(ξi 0, φ0)
∂`mj t
∂ξT

j

(ξj 0, φ0)

]
= 0. (B-2)

Proof. Equation (B-1) is in the appendix in Joe (2005). The proof of (B-2) is similar. Let x−i t
be the vector xt when omitting the i-th component. We omit the dependence on φ0 for
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simplicity. Then the expectation in (B-2) is equivalent to

E0

[
∂`mi t
∂ξi

(ξi 0)
∂`mj t
∂ξT

j

(ξj 0)

]
=

=

∫
x

(
∂

∂ξi
log fxi(ξi 0)

)(
∂

∂ξT
j

log fxj (ξj 0)

)(
N∏
k=1

fxk(ξk 0)

)
c(ξ0,ψ0)dxt =

=

∫
xi

(
∂

∂ξi
log fxi(ξi 0)

)[∫
x−i

(
∂

∂ξT
j

log fxj (ξj 0)

)(
N∏
k=1

fxk(ξk 0)

)
c(ξ0,ψ0)dx−i t

]
dxi t =

=

∫
xi

(
∂

∂ξi
log fxi(ξi 0)

)∫
x−i

(
∂

∂ξT
j

fxj (ξj 0)

) N∏
k 6=j;k=1

fxk(ξk 0)

 c(ξ0,ψ0)dx−i t

dxi t =

=

∫
xi

(
∂

∂ξi
log fxi(ξi 0)

)
∂

∂ξT
j

[∫
x−i

(
N∏
k=1

fxk(ξk 0)

)
c(ξ0,ψ0)dx−i t

]
dxi t =

=

∫
xi

(
∂

∂ξi
log fxi(ξi 0)

)
∂

∂ξT
j

fxi(ξi 0)dxi t = 0. �

Lemma 3 Under assumptions C.1, N and S

a) for any zt ∈ [0, 1], as T →∞,∣∣∣∣∣
∣∣∣∣∣ 1√
T

∂

∂ξi

∂
∑T

t=1 `
m
i t

∂φ
(ξi 0, φ0)(φ̂ξoNT (zt)− φ0(zt))

∣∣∣∣∣
∣∣∣∣∣
2

= oP (1), for i = 1, . . . , N,∣∣∣∣∣
∣∣∣∣∣ 1√
T

∂

∂ψ

∂
∑T

t=1 `
c
t

∂φ
(ξ0,ψ0, φ0)(φ̂ξoNT (zt)− φ0(zt))

∣∣∣∣∣
∣∣∣∣∣
2

= oP (1).

b) for any zt ∈ [0, 1], as T →∞,∣∣∣∣∣
∣∣∣∣∣ 1√
T

∂
∑T

t=1 `
m
i t

∂φ
(ξi 0, φ0)(φ̂′ξoNT (zt)− φ′0(zt))

∣∣∣∣∣
∣∣∣∣∣
2

= oP (1), for i = 1, . . . , N,∣∣∣∣∣
∣∣∣∣∣ 1√
T

∂
∑T

t=1 `
c
t

∂φ
(ξ0,ψ0, φ0)(φ̂′ξoNT (zt)− φ′0(zt))

∣∣∣∣∣
∣∣∣∣∣
2

= oP (1).

c) for any ξi ∈ Ξi and ψ ∈ Ψ,

T∑
t=1

`mi t(ξi, φ̂ξ T )−
T∑
t=1

`mi t(ξi, φξ) = r(1)(ξi), for i = 1, . . . , N,

T∑
t=1

`ct(ξ,ψ, φ̂ξ T )−
T∑
t=1

`ct(ξ,ψ, φξ) = r(3)(ψ),
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such that, as T →∞,

sup
ξi∈Ξi

∣∣∣∣∣
∣∣∣∣∣ 1

T

∂2r(1)

∂ξi∂ξT
i

(ξi)

∣∣∣∣∣
∣∣∣∣∣
2

= oP (1), for i = 1, . . . , N

sup
ψ∈Ψ

∣∣∣∣∣
∣∣∣∣∣ 1

T

∂2r(3)

∂ψ∂ψT
(ψ)

∣∣∣∣∣
∣∣∣∣∣
2

= oP (1).

d) for any ξi ∈ Ξi and ψ ∈ Ψ,

T∑
t=1

`mi t(ξi, φ̂ξ T ) =
T∑
t=1

`mi t(ξi, φξ) +

+
∂

∂φ

T∑
t=1

`mi t(ξi, φξ)(φ̂ξ(zt)− φξ(zt)) +

+r(2)(ξi), for i = 1, . . . , N,
T∑
t=1

`ct(ξ,ψ, φ̂ξ T ) =
T∑
t=1

`ct(ξ,ψ, φξ) +

+
∂

∂φ

T∑
t=1

`ct(ξ,ψ, φξ)(φ̂ξ(zt)− φξ(zt)) +

+r(4)(ψ),

such that, as T →∞,∣∣∣∣∣
∣∣∣∣∣ 1√
T

∂r(2)

∂ξi
(ξi 0)

∣∣∣∣∣
∣∣∣∣∣
2

= oP (1), for i = 1, . . . , N∣∣∣∣∣
∣∣∣∣∣ 1√
T

∂r(4)

∂ψ
(ψ0)

∣∣∣∣∣
∣∣∣∣∣
2

= oP (1).

Proof. The proof is in Lemma 2 and 3 by Severini and Wong (1992) and we use the Central Limit
Theorem 2.11 in Wooldridge and White (1988).

Lemma 4 Under assumptions C.1 and K, assumption N is satisfied with φ̃ξ = φξ, i.e., as T →∞,
ThNT →∞, hNT → 0,

sup
ξ∈Ξ
||φ̂ξNT − φξ|| = sup

ξ∈Ξ
sup

zτ∈[0,1]
|φ̂ξNT (zτ )− φξ(zτ )| = oP (1), (B-3)

sup
ξ∈Ξ
||φ̂′ξNT − φ′ξ|| = sup

ξ∈Ξ
sup

zτ∈[0,1]
|φ̂′ξNT (zτ )− φ′ξ(zτ )| = oP (1), (B-4)

sup
ξ∈Ξ
||φ̂′′ξNT − φ′′ξ|| = sup

ξ∈Ξ
sup

zτ∈[0,1]
|φ̂′′ξNT (zτ )− φ′′ξ(zτ )| = oP (1), (B-5)

where φ̂ξNT (zτ ) and φξ(zτ ) are defined in (B-73) and (B-75) respectively. If also assump-
tion C.2 holds then the same results are valid also if N →∞.
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Proof. We define

λ̄N (ξ, φ(zτ )) =
1

N
E0

[
N∑
i=1

`mi t(ξi, φ(zτ ))

]
, (B-6)

and

L̃NT (ξ, φ(zτ )) =
T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
`mi t(ξi, φ(zt)). (B-7)

Then define R(zt) = φ0(zt)/φ(zt). We then have

L̃NT (ξ, φ(zτ )) =
T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
`mi t(ξi, φ0(zt)R(zt)) =

=

T∑
t=1

N∑
i=1

K(ut)`
m
i t(ξi, φ0(zt)(R(zτ ) +R′(zτ )hNTut)) =

=
T∑
t=1

N∑
i=1

K(ut)`
m
i t(ξi, φ0(zt)R(zτ )) +

+
T∑
t=1

N∑
i=1

K(ut)R
′(zτ )hNTut

∂

∂R
`mi t(ξi, φ0(zt)R(zτ )) =

= ANT +BNT . (B-8)

Notice that ANT can be written as

ANT = ÃNT +OP (T−1), (B-9)

where ÃNT is a sum of mixing random variables. To see this consider for simplicity the
case γi = 0 and notice that

µi t(δi) = ωi + αi
xi t−1

aiφ(zt−1)
+ βiµi t−1 =

ωi
1− βi

+

t∑
k=1

αiβ
k−1
i

xi t−k
aiφ(zt−k)

(B-10)

where ωi = 1− αi − βi. We then have

µi t(δi) =
ωi

1− βi
+

t∑
k=1

αiβ
k−1
i

xi t−k
aiφ0(zt−k)

R(zt−k) =

=

[
ωi

1− βi
+

t∑
k=1

αiβ
k−1
i

xi t−k
aiφ0(zt−k)

R(zτ )

]
+

+

t∑
k=1

αiβ
k−1
i

xi t−k
aiφ0(zt−k)

R′(zt−k̄)(zt−k − zτ ) =

= χ1i t + χ2i t, (B-11)

where zt−k < zt−k̄ < zt, i.e. 0 ≤ k̄ ≤ k. Then,

χ2i t =
t∑

k=1

αiβ
k−1
i

xi t−k
aiφ0(zt−k)

R′(zt−k̄)(zt−k−zτ ) =
1

T

t∑
k=1

αiβ
k−1
i

xi t−k
aiφ0(zt−k)

R′(zt−k̄) (t− k − τ) .
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Notice that E0[χ2i t] = O(T−1) and

E0[χ2
2i t] =

1

T 2
E0

( t∑
k=1

αiβ
k−1
i

xi t−k
aiφ0(zt−k)

R′(zt−k̄) (t− k − τ)

)2
 ≤

≤ 1

T
E0

[
1

T

{
t∑

k=1

(
xi t−k

aiφ0(zt−k)

)2
}{

t∑
k=1

(αiβ
k−1
i R′(zt−k̄) (t− k − τ))2

}]
≤

≤ O

(
1

T

)
.

Thus Var0[χ2i t] = O(T−1), which implies χ2i t = OP (T−1).

By using a Taylor approximation of ANT we obtain (B-9). Therefore, each term of the
sum in ÃNT is the log–likelihood with the generic trend φ(zt) replaced by φ0(zt)R(zτ ) and
µi t replaced by χ1i t. Notice that with this substitution ÃNT is just function of the process

x̃i t =
xi t

aiφ0(zt)
=
ai 0εi tµi t(δi0)

ai
,

which is mixing by assumption A.1, and of R(zτ ) which for a fixed zτ can be treated as
a constant. By using the Weak Law of Large Numbers by McLeish (1975) and Lemma
2.1 of White and Domowitz (1984) for ÃNT and using (B-9), we have, as T → ∞ and
ThNT →∞,

ANT
NThNT

P→ E0

[
ANT

NThNT

]
. (B-12)

Now let us compute

E0

[
ANT

NThNT

]
=

1

NThNT
E0

[
T∑
t=1

N∑
i=1

K(ut)`
m
i t(ξi, φ0(zt)R(zτ ))

]
=

=
1

NThNT

T∑
t=1

K(ut)E0

[
N∑
i=1

`mi t(ξi, φ0(zτ + hNTut)R(zτ ))

]
=

=
1

NThNT

T∑
t=1

K(ut)E0

[
N∑
i=1

`mi t(ξi, φ0(zτ )R(zτ ))

]
+

+
1

NThNT

T∑
t=1

K(ut)hNTutφ
′
0(zτ )E0

[
N∑
i=1

∂

∂φ
`mi t(ξi, φ0(zτ )R(zτ ))

]
.

Notice that φ0(zτ )R(zτ ) = φ(zτ ). When T → ∞ and ThNT → ∞ and using expressions
analogous to (B-33) in the proof of Theorem 2 we have

E0

[
ANT

NThNT

]
→ 1

N
E0

[
N∑
i=1

`mi t(ξi, φ(zτ ))

]
= λ̄N (ξ, φ(zτ )).

Then, it is possible to show that Var0[BNT /NThNT ] = O(h2
NT ). Therefore, as hNT →

0 and by assumption C.1, BNT /NThNT
P→ E0[BNT /NThNT ]. But, as T → ∞ and
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ThNT →∞ and using expressions analogous to (B-33) in the proof of Theorem 2 we have

E0

[
BNT

NThNT

]
→ 0.

Therefore, we have, for any ξ ∈ Ξ, any zτ ∈ [0, 1], and any φ ∈ P ,

L̃NT (ξ, φ(zτ ))

NThNT

P→ λ̄N (ξ, φ(zτ )), as T →∞, ThNT →∞, hNT → 0.

Following the same reasoning as in the proof of Lemma 8 by Severini and Wong (1992), we
can also prove that, as T →∞, ThNT →∞, and hNT → 0,

sup
ξi∈Ξi

sup
φ∈Γ

sup
zτ∈[0,1]

∣∣∣∣∣ ∂k∂ξki ∂l

∂zlt

∂j

∂φj

(
L̃NT (ξ, φ(zτ ))

NThNT
− λ̄N (ξ, φ(zτ ))

)∣∣∣∣∣ = oP (1), (B-13)

for k, l, j = 0, 1, 2.

Then, φ̂ξNT (zτ ) is such that

φ̂ξNT (zτ ) = arg sup
φ∈Γ
L̃NT (ξ, φ(zτ )), (B-14)

which implies
1

NThNT

∂L̃NT (ξ, φ̂ξNT (zτ ))

∂φ
= 0. (B-15)

While, φξ(zτ ) is such that, for N fixed,

φξ(zτ ) = arg sup
φ∈Γ

λ̄N (ξ, φ(zτ )), (B-16)

which implies
∂λ̄N (ξ, φξ(zτ ))

∂φ
= 0. (B-17)

First, let us prove (B-3). For any ε > 0, there exists δ > 0 such that, as T →∞, ThNT →
∞, and hNT → 0,

P

{
sup
ξ∈Ξ

sup
zτ∈[0,1]

∣∣∣φ̂ξNT (zτ )− φξ(zτ )
∣∣∣ > ε

}
≤

≤ P

{
sup
ξ∈Ξ

sup
zτ∈[0,1]

∣∣∣∣∣∂λ̄N (ξ, φ̂ξNT (zτ ))

∂φ

∣∣∣∣∣ > δ

}
=

= P

{
sup
ξ∈Ξ

sup
zτ∈[0,1]

∣∣∣∣∣ 1

NThNT

∂L̃NT (ξ, φ̂ξNT (zτ ))

∂φ
−
∂λ̄N (ξ, φ̂ξNT (zτ ))

∂φ

∣∣∣∣∣ > δ

}
≤

≤ P

{
sup
ξ∈Ξ

sup
zτ∈[0,1]

sup
φ∈Γ

∣∣∣∣∣ 1

NThNT

∂L̃NT (ξ, φ(zτ ))

∂φ
− ∂λ̄N (ξ, φ(zτ ))

∂φ

∣∣∣∣∣ > δ

}
→ 0,

where we used assumption I.2, (B-15), and (B-13). Hence,

sup
ξ∈Ξ

sup
zτ∈[0,1]

|φ̂ξNT (zτ )− φξ(zτ )| = oP (1),
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which implies that, for any ξ ∈ Ξ and any zτ ∈ [0, 1],

φ̂ξNT (zτ )
P→ φξ(zτ ), as T →∞, ThNT →∞, hNT → 0. (B-18)

Then, we prove (B-4). From (B-15) and (B-17), we have

0 =
1

NThNT

∂L̃NT (ξ, φ̂ξNT (zτ ))

∂φ
−
∂λ̄N (ξ, φξ(zτ ))

∂φ
=

=
1

NThNT

∂L̃NT (ξ, φ̂ξNT (zτ ))

∂φ
−
∂λ̄N (ξ, φ̂ξNT (zτ ))

∂φ
+
∂λ̄N (ξ, φ̂ξNT (zτ ))

∂φ
−
∂λ̄N (ξ, φξ(zτ ))

∂φ
=

= RNT (ξ, φ̂ξNT (zτ )) + ∆N (ξ, φ̄(zτ ))
(
φ̂ξNT (zτ )− φξ(zτ )

)
, (B-19)

where φ̄(zτ ) lies between φ̂ξNT (zτ ) and φξ(zτ ), and

RNT (ξ, φ̂ξNT (zτ )) =
1

NThNT

∂L̃NT (ξ, φ̂ξNT (zτ ))

∂φ
−
∂λ̄N (ξ, φ̂ξNT (zτ ))

∂φ
,

∆N (ξ, φ̄(zτ )) =
∂2λ̄N (ξ, φ̄(zτ ))

∂φ2
.

By differentiating (B-19) with respect to ξ, we have

0 =
∂

∂ξ
RNT (ξ, φ̂ξNT (zτ )) +

∂

∂ξ
∆N (ξ, φ̄(zτ ))

(
φ̂ξNT (zτ )− φξ(zτ )

)
+

+∆N (ξ, φ̄(zτ ))
(
φ̂′ξNT (zτ )− φ′ξ(zτ )

)
. (B-20)

From assumption C.1 we have

sup
ξ∈Ξ

sup
zτ∈[0,1]

∣∣∣∣ ∂∂ξ∆N (ξ, φ̄(zτ ))

∣∣∣∣ = OP (1),

and from (B-13) we have

sup
ξ∈Ξ

sup
zτ∈[0,1]

∣∣∣∣ ∂∂ξRNT (ξ, φ̂ξNT (zτ ))

∣∣∣∣ = oP (1).

Therefore, from (B-20), we have

sup
ξ∈Ξ

sup
zτ∈[0,1]

|φ̂′ξNT (zτ )− φ′ξ(zτ )| = oP (1),

which implies that, for any ξ ∈ Ξ and any zτ ∈ [0, 1],

φ̂′ξNT (zτ )
P→ φ′ξ(zτ ), as T →∞, ThNT →∞, hNT → 0. (B-21)

Finally, as N,T →∞, ThNT →∞, hNT → 0, (B-13) becomes

sup
ξ∈Ξi

sup
φ∈Γ

sup
zt∈[0,1]

∣∣∣∣∣ ∂k∂ξki ∂l

∂zlt

∂j

∂φj

(
L̃NT (ξ, φ(zτ ))

NThNT
− λ(ξ, φ(zτ ))

)∣∣∣∣∣ = oP (1),

where λ(ξ, φ(zτ )) = limN→∞ λ̄N (ξ, φ(zτ )) which exists by assumption C.2. Using this
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assumption (B-3) can be proved as well. Similarly, (B-4) can be proved by taking the limit
for N → ∞ in (B-19) and (B-20). All limits exist by virtue of assumption C.2. Using the
same approach we can prove also (B-5). �

Proof of Theorem 1

a) Define for any zτ ∈ [0, 1] the smoothed likelihood

L̃NT (ξ0, φ(zτ )) ≡
T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
`mi t (ξi 0, φ(zt)). (B-22)

Then the estimated curve is such that

φ̂ξoNT (zτ ) = arg sup
φ∈Γ
L̃NT (ξ0, φ(zτ )), (B-23)

and, from Lemma 1 and assumption P, the true value of the curve for N fixed is such that it
maximizes the marginal log–likelihoods:

φ0(zτ ) = arg sup
φ∈Γ

λ̄N (ξ0, φ(zτ )), (B-24)

where

λ̄N (ξ0, φ(zτ )) =
1

N
E0

[
N∑
i=1

`mi t (ξi 0, φ(zτ ))

]
. (B-25)

Then, following the same argument as in the proof of Lemma 4, we can use the Weak Law of
Large Numbers by McLeish (1975) and Lemma 2.1 of White and Domowitz (1984). Thus, we
have, for any zτ ∈ [0, 1] and φ ∈ P ,

L̃NT (ξ0, φ(zτ ))

NThNT

P→ λ̄N (ξ0, φ(zτ )), as T →∞, ThNT →∞, hNT → 0. (B-26)

Furthermore, since, for any zτ ∈ [0, 1],

sup
φ∈Γ

L̃NT (ξ0, φ(zτ ))

NThNT

P→ sup
φ∈Γ

λ̄N (ξ0, φ(zτ )), as T →∞, ThNT →∞, hNT → 0,

given (B-23) and (B-24), we have, for any zτ ∈ [0, 1],

L̃NT (ξ0, φ̂ξoNT (zτ ))

NThNT

P→ λ̄N (ξ0, φ0(zτ )), as T →∞, ThNT →∞, hNT → 0. (B-27)

By applying (B-26) to the left hand side of (B-27), we have, for any zτ ∈ [0, 1],

λ̄N (ξ0, φ̂ξoNT (zτ ))
P→ λ̄N (ξ0, φ0(zτ )), as T →∞, ThNT →∞, hNT → 0.

Assumptions I and S imply that, for any zτ ∈ [0, 1], and for any N fixed, we have

φ̂ξoNT (zτ )
P→ φ0(zτ ), as T →∞, ThNT →∞, hNT → 0.
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b) Now let us consider the case N →∞. By assumption C.2 we know that

sup
N∈N

∣∣λ̄N (ξ0, φ(zτ ))
∣∣ <∞.

Therefore, the following limit exists, and we define

λ(ξ0, φ(zτ )) = lim
N→∞

λ̄N (ξ0, φ(zτ )).

Summing up we have that for any N ∈ N

φ0(zτ ) = arg sup
φ∈Γ

λ(ξ0, φ(zτ )). (B-28)

Moreover,

L̃NT (ξ0, φ(zτ ))

NThNT

P→ λ(ξ0, φ(zτ )), as N,T →∞, ThNT →∞, hNT → 0. (B-29)

By the same arguments as before we have, for any zτ ∈ [0, 1],

L̃NT (ξ0, φ̂ξoNT (zτ ))

NThNT

P→ λ(ξ0, φ0(zτ )), as N,T →∞, ThNT →∞, hNT → 0,

and
λ(ξ0, φ̂ξoNT (zτ ))

P→ λ(ξ0, φ0(zτ )), as N,T →∞, ThNT →∞, hNT → 0,

which imply that, for any zτ ∈ [0, 1], we have

φ̂ξoNT (zτ )
P→ φ0(zτ ), as N,T →∞, ThNT →∞, hNT → 0.

This completes the proof. �

Proof of Theorem 2

Given the estimated curve φ̂ξoNT , we have, for any zτ ∈ [0, 1] and for i = 1, . . . , N ,

∂

∂φ
`mi t(ξi, φ̂ξoNT (zτ )) =

∂

∂φ
`mi t(ξi, φ0(zτ ))+

∂2

∂φ2
`mi t(ξi, φ̄(zτ ))(φ̂ξoNT (zτ )−φ0(zτ )), (B-30)
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where φ̄(zτ ) lies between φ̂ξoNT (zτ ) and φ0(zτ ). Then, taking the first order conditions of (B-23),
from (B-30), for any zτ ∈ [0, 1], we have

0 =
1

NThNT

∂

∂φ
L̃NT (ξ0, φ̂ξoNT (zτ )) =

1

NThNT

T∑
t=1

K

(
zτ − zt
hNT

) N∑
i=1

∂

∂φ
`mi t(ξi 0, φ0(zt))︸ ︷︷ ︸

ANT

+

+
1

NThNT

T∑
t=1

K

(
zτ − zt
hNT

)[ N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ̄(zt))

]
(φ0(zτ )− φ0(zt))︸ ︷︷ ︸

DNT

+

+
1

NThNT

T∑
t=1

K

(
zτ − zt
hNT

)[ N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zt))

]
︸ ︷︷ ︸

BNT

(φ̂ξoNT (zτ )− φ0(zτ )) +

+
1

NThNT

T∑
t=1

K

(
zτ − zt
hNT

)[ N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ̄(zt))

]
︸ ︷︷ ︸

C1NT

(φ̂ξoNT (zτ )− φ0(zτ )) +

− 1

NThNT

T∑
t=1

K

(
z0 − zt
hNT

)[ N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zt))

]
︸ ︷︷ ︸

C2NT

(φ̂ξoNT (zτ )− φ0(zτ )). (B-31)

By re-arranging (B-31), and defining CNT = C1NT − C2NT , we obtain

√
NThNT (φ̂ξoNT (zτ )− φ0(zτ )) = −

√
NThNT (ANT +DNT )

(BNT + CNT )
. (B-32)

Let us consider each term on the right hand side of (B-32) separately.

Define ut = (zτ − zt)/hNT , then, for zτ ∈ (0, 1), as T →∞ and ThNT →∞, we have

1

ThNT

T∑
t=1

g(ut)K (ut)→
∫ 1

−1
g(u)K(u)du, (B-33)

for g(u) = up, with p = 0, . . . , 3 and g(u) = uqK(u) with q = 0, . . . , 6. All integrals in (B-33)
are finite because of assumption K.
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ANT. We have

E0[ANT ] =
1

NThNT
E0

[
T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂

∂φ
`mi t(ξi 0, φ0(zt))

]
=

=
1

NThNT

T∑
t=1

E0

[
N∑
i=1

∂

∂φ
`mi t(ξi 0, φ0(zτ + hNTut))K(ut)

]
=

=
1

NThNT

T∑
t=1

K(ut)E0

[
N∑
i=1

∂

∂φ
`mi t(ξi 0, φ0(zτ ))

]
+

+
1

NThNT

T∑
t=1

hNTutφ
′
0(zτ )K(ut)E0

[
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

]
.

If we use (B-33) and assumption K we have, as T →∞ and ThNT →∞,

E0[ANT ]→ 1

N
E0

[
N∑
i=1

∂

∂φ
`mi t(ξi 0, φ0(zτ ))

]
= 0. (B-34)

If N is fixed the expectation in (B-34) is zero by Lemma 1 in this paper. When N → ∞, by
assumption C.2, (B-34) is bounded for any N , and, again by Lemma 1 in this paper, we have, as
T →∞, ThNT →∞, and N →∞,

E0[ANT ]→ 0. (B-35)

Then,

E0

[
A2
NT

]
=

1

N2T 2h2
NT

E0

( T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂

∂φ
`mi t(ξi 0, φ0(zt))

)2
 =

=
1

N2T 2h2
NT

T∑
t=1

E0

( N∑
i=1

∂

∂φ
`mi t(ξi 0, φ0(zτ + hNTut))

)2

K2(ut)

+

+
1

N2T 2h2
NT

T∑
t,s=1
t6=s

E0

[(
N∑
i=1

∂

∂φ
`mi t(ξi 0, φ0(zτ + hNTut)

)
K(ut)

(
N∑
i=1

∂

∂φ
`mi s(ξi 0, φ0(zτ + hNTus))

)
K(us)

]
=

= E0[A2
1NT ] + E0[A2

2NT ]. (B-36)

By using (B-33) and assumption K, we have, as T →∞ and ThNT →∞,

E0[A2
2NT ]→ 1

N2
E0

[(
N∑
i=1

∂

∂φ
`mi t(ξi 0, φ0(zτ )

)(
N∑
i=1

∂

∂φ
`mi s(ξi 0, φ0(zτ ))

)]
= 0, (B-37)

by independence, since we are computing likelihoods in the true value of parameters, and Lemma
1 in this paper.
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The other term in (B-36) is

E0

[
A2

1NT

]
=

1

N2T 2h2
NT

T∑
t=1

K2(ut)E0

( N∑
i=1

∂

∂φ
`mi t(ξi 0, φ0(zτ ))

)2
+

+
1

N2T 2h2
NT

T∑
t=1

h2
NTu

2
tφ
′2
0 (zτ )K2(ut)E0

( N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

)2
 .

If we use (B-37), (B-33), and assumption K, we have, as T →∞ and ThNT →∞,

E0

[
A2
NT

]
→ 1

N2ThNT
κ1 E0

( N∑
i=1

∂

∂φ
`mi t(ξi 0, φ0(zτ ))

)2
+

+
hNT
N2T

φ
′2
0 (zτ )κ2 E0

( N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

)2
 =

=
1

NThNT
īNξo(zτ )

[
κ1 + h2

NTφ
′2
0 (zτ )κ2

]
. (B-38)

where we have defined

κ1 =

∫ 1

−1
K2(u)du, κ2 =

∫ 1

−1
u2K2(u)du, (B-39)

and
1

N2
E0

( N∑
i=1

∂

∂φ
`mi t(ξi 0, φ0(zτ ))

)2
 =

īNξo(zτ )

N
.

Therefore, since E0[ANT ]→ 0, as T →∞ and ThNT →∞, we have

Var0 [ANT ]→ 1

NThNT
īNξo(zτ )

[
κ1 + h2

NTφ
′2
0 (zτ )κ2

]
. (B-40)

We can then apply the Weak Law of Large Numbers to ANT which implies

ANT
P→ 0, as T →∞, ThNT →∞. (B-41)

If assumptions C.2 and D hold and we define iξo(zτ ) = limN→∞ īNξo(zτ ), this limit exists and is
bounded. Thus when T →∞, ThNT →∞, and N →∞

Var0 [ANT ]→ 1

NThNT
iξo(zτ )

[
κ1 + h2

NTφ
′2
0 (zτ )κ2

]
. (B-42)

Analogously as in (B-41) we have

ANT
P→ 0, as N,T →∞, ThNT →∞. (B-43)
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BNT. We have

E0[BNT ] =
1

NThNT
E0

[
T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2

∂φ2
`mi t(ξi 0, φ0(zt))

]
=

=
1

NThNT

T∑
t=1

E0

[
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ + hNTut))K(ut)

]
=

=
1

NThNT

T∑
t=1

K(ut)E0

[
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

]
+

+
1

NThNT

T∑
t=1

hNTutφ
′
0(zτ )K(ut)E0

[
N∑
i=1

∂3

∂φ3
`mi t(ξi 0, φ0(zτ ))

]
.

If we use (B-33) and assumption K we have, as T →∞ and ThNT →∞,

E0[BNT ]→ 1

N
E0

[
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

]
= −j̄Nξo(zτ ). (B-44)

If assumption C.2 holds then limN→∞ j̄Nξo(zτ ) = jξo(zτ ) exists and is finite and, as T → ∞,
ThNT →∞, and N →∞,

E0[BNT ]→ 1

N
E0

[
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

]
= −jξo(zτ ).

Then let us compute the variance. We have

E0[B2
NT ] =

1

N2T 2h2
NT

E0

( T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2

∂φ2
`mi t(ξi 0, φ0(zt))

)2
 =

=
1

N2T 2h2
NT

T∑
t=1

E0

( N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ + hNTut))

)2

K2(ut)

+

+
1

N2T 2h2
NT

T∑
t,s=1
t6=s

E0

[(
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ + hNTut))

)
K(ut)

(
N∑
i=1

∂2

∂φ2
`mi s(ξi 0, φ0(zτ + hNTus))

)
K(us)

]
=

= E0[B2
1NT ] + E0[B2

2NT ]. (B-45)

By using (B-33) and assumption K, we can prove that, as T →∞ and ThNT →∞,

E0[B2
2NT ]→ j̄2

Nξo(zτ ). (B-46)
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The other term in (B-45) becomes

E0[B2
1NT ] =

1

N2T 2h2
NT

T∑
t=1

K2(ut)E0

( N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

)2
+

+
1

N2T 2h2
NT

T∑
t=1

h2
NTu

2
tφ
′2
0 (zτ )K2(ut)E0

( N∑
i=1

∂3

∂φ3
`mi t(ξi 0, φ0(zτ ))

)2
+

+
2

N2T 2h2
NT

T∑
t=1

hNTutφ
′
0(zτ )K2(ut)E0

[(
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

)
(

N∑
i=1

∂3

∂φ3
`mi t(ξi 0, φ0(zτ ))

)]
.

If we use (B-33) and assumption K we have, as T →∞ and ThNT →∞,

E0

[
B2

1NT

]
→ 1

N2ThNT
κ1 E0

( N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

)2
+

+
hNT
N2T

φ
′2
0 (zτ )κ2 E0

( N∑
i=1

∂3

∂φ3
`mi t(ξi 0, φ0(zτ ))

)2
 =

=
1

ThNT
κ1S̄N (zτ ) +

hNT
T

φ
′2
0 (zτ )κ2Q̄N (zτ ), (B-47)

where κ1 and κ2 are defined in (B-39),

κ3 =

∫ 1

−1
u2K(u)du, (B-48)

and

S̄N (zτ ) =
1

N2
E0

( N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

)2
 ,

Q̄N (zτ ) =
1

N2
E0

( N∑
i=1

∂3

∂φ3
`mi t(ξi 0, φ0(zτ ))

)2
 . (B-49)

Then, by combining (B-44), (B-45), (B-46), and (B-47), we have, as T →∞ and ThNT →∞,

Var0[BNT ]→ 1

ThNT
κ1S̄N (zτ ) +

hNT
T

φ
′2
0 (zτ )κ2Q̄N (zτ ).

We can then apply the Weak Law of Large Numbers to BNT which implies

BNT
P→ −j̄Nξo(zτ ) as T →∞, ThNT →∞. (B-50)
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Moreover, if assumption C.2 holds, then jξo(zτ ) = limN→∞ j̄Nξo(zτ ), S(zτ ) = limN→∞ S̄N (zτ )
and Q(zτ ) = limN→∞ Q̄N (zτ ) exist and are finite. Therefore,

BNT
P→ −jξo(zτ ) as N,T →∞, ThNT →∞. (B-51)

CNT. We have

CNT =
1

NThNT

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2

∂φ2

(
`mi t(ξi 0, φ̄(zt))− `mi t(ξi 0, φ0(zt))

)
.

By Theorem 1 we know that, when N is fixed,

φ̂ξoNT (zτ )
P→ φ0(zτ ), as T →∞, ThNT →∞.

and since for any zτ ∈ [0, 1], we have |φ̄(zτ )− φ0(zτ )| ≤ |φ̂ξoNT (zτ )− φ0(zτ )|, we also have

φ̄(zτ )
P→ φ0(zτ ), as T →∞, ThNT →∞, (B-52)

which implies

|CNT | ≤
1

NThNT

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

) ∣∣∣∣ ∂2

∂φ2
`mi t(ξi 0, φ̄(zt))−

∂2

∂φ2
`mi t(ξi 0, φ0(zt))

∣∣∣∣ ≤
≤ 1

NThNT

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

) ∣∣∣∣ ∂3

∂φ3
`mi t(ξi 0, φ0(zt))

∣∣∣∣ ∣∣φ̄(zτ )− φ0(zτ )
∣∣ ≤ (B-53)

≤ 1

NThNT

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

) ∣∣∣∣ ∂3

∂φ3
`mi t(ξi 0, φ0(zt))

∣∣∣∣ ∣∣∣φ̂ξoNT (zτ )− φ0(zτ )
∣∣∣ .

Therefore, by using (B-52), we have

|CNT |
P→ 0 as T →∞, ThNT →∞. (B-54)

If assumption C.2 holds then all terms in (B-53) are bounded even when we let N → ∞. Then,
by using Theorem 1, we have

|CNT |
P→ 0 as N,T →∞, ThNT →∞. (B-55)

DNT. This is the bias term and it can be decomposed as

DNT =
1

NThNT

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2

∂φ2
`mi t(ξi 0, φ̄(zt))(φ0(zτ )− φ0(zt)) =

=
1

NThNT

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2

∂φ2
`mi t(ξi 0, φ0(zt))(φ0(zτ )− φ0(zt)) +

+
1

NThNT

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂3

∂φ3
`mi t(ξi 0, φ0(zt))(φ̄(zt)− φ0(zt))(φ0(zτ )− φ0(zt)) =

= D1NT +D2NT .
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Since for any zτ ∈ [0, 1], we have |φ̄(zτ )− φ0(zτ )| ≤ |φ̂ξoNT (zτ )− φ0(zτ )|, we have

|D2NT |
P→ 0 as T →∞, ThNT →∞, (B-56)

by Theorem 1 and (B-52). If assumption C.2 holds this is true even when N →∞.

Let us consider D1NT , we have:

E0[D1NT ] =
1

NThNT
E0

[
T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2

∂φ2
`mi t(ξi 0, φ0(zt))(φ0(zτ )− φ0(zt))

]
=

=
1

NThNT

T∑
t=1

E0

[
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ + hNTut))(φ0(zτ )− φ0(zτ + hNTut))K(ut)

]
=

=
1

NThNT

T∑
t=1

(
hNTutφ

′
0(zτ ) +

h2
NTu

2
t

2
φ
′′
0(zτ )

)
K(ut)

{
E0

[
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

]
+

+E0

[
N∑
i=1

∂3

∂φ3
`mi t(ξi 0, φ0(zτ ))hNTutφ

′
0(zτ ))

]}
=

=
1

NThNT

T∑
t=1

hNTutφ
′
0(zτ )K(ut)E0

[
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

]
+

+
1

NThNT

T∑
t=1

h2
NTu

2
t

2
φ
′′
0(zτ )K(ut)E0

[
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

]
+

+
1

NThNT

T∑
t=1

h2
NTu

2
tφ
′2
0 (zτ )K(ut)E0

[
N∑
i=1

∂3

∂φ3
`mi t(ξi 0, φ0(zτ ))

]
+

+
1

NThNT

T∑
t=1

h3
NTu

3
t

2
φ
′′
0(zτ )φ′0(zτ )K(ut)E0

[
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

]
.

If we use (B-33) and assumption K we have, as T →∞ and ThNT →∞,

E0[D1NT ] → h2
NTκ3

φ
′′
0(zτ )

2

1

N
E0

[
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

]
+

+ h2
NTκ3φ

′2
0 (zτ )

∂

∂φ

1

N
E0

[
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

]
=

= h2
NTκ3

[
−φ

′′
0(zτ )

2
j̄Nξo(zτ )− φ′20 (zτ )

∂

∂φ
j̄Nξo(zτ )

]
=

= h2
NTκ3B̄N (zτ ), (B-57)

where j̄Nξo(zτ ) is defined in (B-44), κ3 is defined in (B-48) and

B̄N (zτ ) = −j̄Nξo(zτ )
φ
′′
0(zτ )

2
− ∂

∂φ
j̄Nξo(zτ )φ

′2
0 (zτ ).
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Now, let us compute the variance. We have

E0

[
D2

1NT

]
=

1

N2T 2h2
NT

E0

( T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2

∂φ2
`mi t(ξi 0, φ0(zt))(φ0(zt)− φ0(zτ ))

)2
 =

=
1

N2T 2h2
NT

T∑
t=1

(φ0(zτ )− φ0(zτ + hNTut))
2 K2(ut)

E0

( N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ + hNTut))

)2
+

+
1

N2T 2h2
NT

T∑
t,s=1
t6=s

(φ0(zτ )− φ0(zτ + hNTut)) (φ0(zτ )− φ0(zτ + hNTus)) K(ut)K(us)

E0

[(
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ + hNTut))

)(
N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ + hNTus))

)]
=

= E0[D2
1,1NT ] + E0[D2

1,2NT ]. (B-58)

By using (B-33) and assumption K, we can prove that, as T →∞ and ThNT →∞,

E0[D2
1,2NT ]→ O(h3

NT ). (B-59)

The other term in (B-58) becomes

E0[D2
1,1NT ] =

1

N2T 2h2
NT

T∑
t=1

h2
NTu

2
tφ
′2
0 (zτ )K2(ut)E0

( N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

)2
+O(h3

NT ).

If we use (B-33) and assumption K we have, as T →∞ and ThNT →∞,

E0[D2
1,1NT ] → hNT

N2T
φ
′2
0 (zτ )κ2 E0

( N∑
i=1

∂2

∂φ2
`mi t(ξi 0, φ0(zτ ))

)2
+O(h3

NT ) =

=
hNT
T

φ
′2
0 (zτ )κ2S̄N (zτ ) +O(h3

NT ), (B-60)

where κ2 is defined in (B-39) and S̄N (zτ ) is defined in (B-49).

Therefore, by combining (B-57), (B-58), (B-59), and (B-60), and keeping only terms up toO(h2
NT )

we have, as T →∞ and ThNT →∞,

Var0 [D1NT ]→ hNT
T

φ
′2
0 (zτ )κ2S̄N (zτ ). (B-61)

Since by (B-56), DNT = D1NT + oP (1), as T → ∞ and ThNT → ∞, we can then apply the
Weak Law of Large Numbers to DNT which implies

DNT
P→ h2

NTκ3B̄N (zτ ), as T →∞, ThNT →∞. (B-62)
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Moreover, if assumption C.2 holds, thenB(zτ ) = limN→∞ B̄N (zτ ) and S(zτ ) = limN→∞ S̄N (zτ )
exist and are finite. Thus, as T →∞, ThNT →∞, and N →∞,

Var0 [D1NT ]→ hNT
T

φ
′2
0 (zτ )κ2S(zτ ). (B-63)

and
DNT

P→ h2
NTκ3B(zτ ), as N,T →∞, ThNT →∞. (B-64)

We now consider the limiting distribution of (B-32) up to terms of order O(h2
NT ). First con-

sider the case i) in Theorem 2, i.e. when N is fixed and T is large. Then, from (B-32) and using
(B-41) and (B-62) we have(

φ̂ξo T (zτ )− φ0(zτ )− h2
NT B̄N (zτ )κ3

)
P→ 0 as T →∞, ThNT →∞.

By applying the Central Limit Theorem by Wooldridge and White (1988) and Slutsky’s Theorem,
we have convergence in distribution, as T →∞ and ThNT →∞:√
NThNT

(
φ̂ξo T (zτ )− φ0(zτ )− h2

NT B̄N (zτ )κ3

)
d→ N

(
0, Ṽξo(zτ ) +Wξo(zτ ) + Uξo(zτ )

)
.

Using (B-40), (B-50), (B-54), and (B-61), the asymptotic variance is

Ṽξo(zτ ) = NThNT
Var0 [ANT ]

E0 [BNT ]2
=
īN ξo(zτ )

j̄2
N ξo

(zτ )

[
κ1 + h2

NTφ
′2
0 (zτ )κ2

]
, (B-65)

Wξo(zτ ) = NThNT
Var0 [DNT ]

E0 [BNT ]2
= Nh2

NT

φ
′2
0 (zτ )S̄N (zτ )

j̄2
N ξo

(zτ )
,

Uξo(zτ ) = NThNT
2 Cov0 [ANT , DNT ]

E0 [BNT ]2
.

If we also let hNT → 0, and by the Cauchy–Schwarz inequality, we have

Ṽξo(zτ )→ Vξo(zτ ), Wξo(zτ )→ 0, Uξo(zτ ) ≤
√

2Vξo(zτ )Wξo(zτ )→ 0,

where

Vξo(zτ ) =
īN ξo(zτ )

j̄2
N ξo

(zτ )
κ1.

Moreover, also the bias term becomes negligible and we have√
NThNT

(
φ̂ξo T (zτ )− φ0(zτ )

)
d→ N (0, Vξo(zτ )) , as T →∞, ThNT →∞.

Now let us consider case ii) in Theorem 2, i.e. when both N and T are large. By assuming that
assumptions C.4 and D hold and using (B-43) and (B-64), we have from (B-32)(

φ̂ξo T (zτ )− φ0(zτ )− h2
NTB(zτ )κ3

)
P→ 0 as N,T →∞, NThNT →∞.

Then, by applying the Central Limit Theorem by Wooldridge and White (1988) and Slutsky’s
Theorem, we have convergence in distribution, as N,T →∞ and NThNT →∞:√

NThNT

(
φ̂ξo T (zτ )− φ0(zτ )− h2

NTB(zτ )κ3

)
d→ N

(
0, Ṽξo(zτ ) +Wξo(zτ ) + Uξo(zτ )

)
.
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Using (B-42), (B-51), (B-55), and (B-63) we have

Ṽξo(zτ ) =
iξo(zτ )

j2
ξo

(zτ )

[
κ1 + h2

NTφ
′2
0 (zτ )κ2

]
, (B-66)

Wξo(zτ ) = Nh2
NT

φ
′2
0 (zτ )S(zτ )

j2
ξo

(zτ )
,

Uξo(zτ ) = lim
N→∞

NThNT
2 Cov0 [ANT , DNT ]

E0 [BNT ]2
.

If we also let Nh2
NT → 0 which implies hNT → 0, and by the Cauchy–Schwarz inequality, we

have

Ṽξo(zτ )→ Vξo(zτ ), Wξo(zτ )→ 0, Uξo(zτ ) ≤
√

2Vξo(zτ )Wξo(zτ )→ 0,

where

Vξo(zτ ) =
iξo(zτ )

j2
ξo

(zτ )
κ1.

Moreover, also the bias term becomes negligible and we have√
NThNT

(
φ̂ξo T (zτ )− φ0(zτ )

)
d→ N (0, Vξo(zτ )) , as N,T →∞, NThNT →∞.

This completes the proof. �

Proof of Theorem 3

a) From the first order conditions of (B-23), for any zτ ∈ [0, 1] and any ξ ∈ Ξ, we have

∂L̃NT
∂φ

(ξ0, φ̂ξoNT (zτ )) = 0.

Then compute the derivative with respect to ξ, i.e., for any zτ ∈ [0, 1],

0 =
∂

∂ξ

(
∂L̃NT
∂φ

(ξ0, φ̂ξoNT (zτ ))

)
=

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2`mi t
∂ξ∂φ

(ξ0, φ̂ξoNT (zt)) +

+

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2`mi t
∂φ2

(ξ0, φ̂ξoNT (zt)) φ̂
′
ξoNT (zt).

Solving for φ̂′ξoNT we have, for any zτ ∈ [0, 1],

φ̂′ξoNT (zτ ) = −
1

NThNT

∑T
t=1

∑N
i=1 K

(
zτ−zt
hNT

)
∂2`mi t
∂ξ∂φ (ξ0, φ̂ξoNT (zt))

1
NThNT

∑T
t=1

∑N
i=1 K

(
zτ−zt
hNT

)
∂2`mi t
∂φ2 (ξ0, φ̂ξoNT (zt))

= −αNT (zτ )

βNT (zτ )
. (B-67)
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Moreover, using a Taylor expansion in a neighborhood of φ0, and for T sufficiently large,∣∣∣∣∣
∣∣∣∣∣αNT (zτ )− 1

NThNT

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2`mi t
∂ξ∂φ

(ξ0, φ0(zt))

∣∣∣∣∣
∣∣∣∣∣
2

=

=

∣∣∣∣∣
∣∣∣∣∣ 1

NThNT

∂

∂φ

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2`mi t
∂ξ∂φ

(ξ0, φ̄(zt)) (φ̂ξoNT (zt)− φ0(zt))

∣∣∣∣∣
∣∣∣∣∣
2

≤ (B-68)

≤

∣∣∣∣∣
∣∣∣∣∣ 1

NThNT

∂

∂φ

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2`mi t
∂ξ∂φ

(ξ0, φ̄(zt))

∣∣∣∣∣
∣∣∣∣∣
2

sup
zt∈[0,1]

∣∣∣φ̂ξoNT (zt)− φ0(zt)
∣∣∣ = oP (1),

where φ̄ is between φ̂ξoNT and φ0. The previous result is a consequence of Theorem 1 on the
consistency of φ̂ξoNT and assumption S. Similarly we can prove, for any zτ ∈ [0, 1], and for T
sufficiently large,∣∣∣∣∣βNT (zτ )− 1

NThNT

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2`mi t
∂φ2

(ξ0, φ0(zt))

∣∣∣∣∣ = oP (1). (B-69)

Define,

α∗NT (zτ ) =
1

NThNT

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2`mi t
∂ξ∂φ

(ξ0, φ0(zt)),

β∗NT (zτ ) =
1

NThNT

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
∂2`mi t
∂φ2

(ξ0, φ0(zt)).

Using calculations similar to those in the proof of Theorem 2 and by applying the Weak Law of
Large Numbers, we have, for any zτ ∈ [0, 1], as T →∞, ThNT →∞, and hNT → 0,

α∗NT (zτ )
P→ 1

N
E0

[
N∑
i=1

∂2`mi t
∂ξ∂φ

(ξ0, φ0(zτ ))

]
= d̄N ξo(zτ ),

(B-70)

β∗NT (zτ )
P→ 1

N
E0

[
N∑
i=1

∂2`mi t
∂φ2

(ξ0, φ0(zτ ))

]
= −j̄N ξo(zτ ).

By combining, (B-68) and (B-69) with (B-70), we have, as T → ∞, ThNT → ∞, and
hNT → 0,∣∣∣∣αNT (zτ )− d̄N ξo(zτ )

∣∣∣∣
2
≤ ||αNT (zτ )−α∗NT (zτ )||2 +

∣∣∣∣α∗NT (zτ )− d̄N ξo(zτ )
∣∣∣∣

2
= oP (1),

|βNT (zτ )− (−j̄N ξo(zτ ))| ≤ |βNT (zτ )− β∗NT (zτ )|+ |β∗NT (zτ )− (−j̄N ξo(zτ ))| = oP (1),

which, substituted in (B-67), implies

φ̂′ξoNT (zτ )
P→
d̄N ξo(zτ )

j̄N ξo(zτ )
, as T →∞, ThNT →∞, hNT → 0. (B-71)

b) If assumption C.2 holds then we know that limN→∞ j̄N ξo(zτ ) = jξo(zτ ) exists and is finite.
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Concerning the first term in (B-70), since each marginal depends only on its parameters ξi, we
have

d̄N ξo(zτ ) =
1

N

E0


∂2`m1 t
∂ξ1∂φ

(ξ1 0, φ0(zτ ))

0
...
0

+ . . .+ E0


0
...
0

∂2`mN t
∂ξN∂φ

(ξN 0, φ0(zτ ))


 =

=
1

N
E0


∂2`m1 t
∂ξ1∂φ

(ξ1 0, φ0(zτ ))
...
...

∂2`mN t
∂ξN∂φ

(ξN 0, φ0(zτ ))

 . (B-72)

Therefore, limN→∞ d̄N ξo(zτ ) = 0, for any zτ ∈ [0, 1]. This completes the proof. �

Proof of Corollary 1

The proof follows the same steps as in Lemma 4 and 5 in Severini and Wong (1992). We define
φ̂ξNT (zτ ) such that it solves (B-23) when computed in generic values of the parameters ξ ∈ Ξ,
i.e., for any zτ ∈ [0, 1],

∂

∂φ

{
1

NThNT

T∑
t=1

N∑
i=1

K

(
zτ − zt
hNT

)
`mi t(ξi, φ̂ξNT (zt))

}
= 0. (B-73)

According to assumption N, the limit in probability of φ̂ξNT exists and we denote it as φ̃ξ. In order
to prove the Corollary, we have to show that assumption N holds and that φ̃ξ is a least favorable
curve, i.e. its derivative is equal to the least favorable direction, which for ξ = ξ0 is defined in
(18).

First, notice that, if ξ = ξ0, the result is a direct consequence of Theorems 1 and 3. Indeed,
from Theorem 1.a, we know that, for any zτ ∈ [0, 1],

φ̂ξoNT (zτ )
P→ φ0, as T →∞, ThNT →∞, hNT → 0.

Therefore, φ̃ξo = φ0. Moreover, from Theorem 3.a, we have that, for any zτ ∈ [0, 1],

φ̂′ξoNT (zτ )
P→ φ′0(zτ ), as T →∞, ThNT →∞, hNT → 0,

which implies φ̃′ξo = φ′0. Thus, φ̃ξo = φ0 is a least favorable curve.

Now let us move to the case in which we consider a generic value of the parameters ξ ∈ Ξ.
Lemma 4 in this paper proves that, assumption N is always satisfied, i.e. there exists a curve φ̃ξ
such that, as T →∞, ThNT →∞, hNT → 0, for any zτ ∈ [0, 1] and any ξ ∈ Ξ,

φ̂ξNT (zτ )
P→ φ̃ξ(zτ ), φ̂′ξNT (zτ )

P→ φ̃′ξ(zτ ).

In particular, (B-18) and (B-21) in Lemma 4 show that, for any zτ ∈ [0, 1] and any ξ ∈ Ξ, as
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T →∞, ThNT →∞, hNT → 0,

φ̂ξNT (zτ )
P→ φξ(zτ ), φ̂′ξNT (zτ )

P→ φ′ξ(zτ ), (B-74)

where φξ(zτ ) is such that it solves (B-25), i.e., for any zτ ∈ [0, 1] and any fixed ξ ∈ Ξ,

∂

∂φ

{
1

N

N∑
i=1

E0 [`mi t(ξi, φξ(zτ ))]

}
= 0. (B-75)

Therefore, given (B-74) and Lemma 4, assumption N is always satisfied with φ̃ξ = φξ.

Finally, by using the same arguments as in Theorem 3.a, and a Taylor series approximation of
(B-75) in a neighborhood of φξ, we can prove that

φ′ξ =
d̄N ξ(zτ )

j̄N ξ(zτ )
, as T →∞, ThNT →∞, hNT → 0, (B-76)

where j̄N ξ(zτ ) and d̄N ξ(zτ ) are analogous to the ones defined in Theorem 3.a. Therefore, by
comparing (B-76) with (18) in the paper, we recognize φ′ξ as a least favorable direction, which

implies that φξ is a least favorable curve and φ̂ξNT is its estimator. To conclude also notice that,
when considering ξ = ξ0, we have φ0 = φξo and φ′0 = φ′ξo where the latter is defined in equation
(18). This completes the proof. �

Proof of Theorem 4

a) Given the estimator φ̂ξNT in (12), we define, for any i = 1, . . . , N ,

LmiT (ξi, φ̂ξNT ) =
T∑
t=1

`mi t(ξi, φ̂ξNT ).

We first prove consistency of ξ̂i T , such that (see (19)),

ξ̂i T = arg max
ξi∈Ξi

LmiT (ξi, φ̂ξNT ). (B-77)

We also define the function
γi(ξi) = E0 [`mi t(ξi, φξ)] ,

where φξ is the least favorable curve computed in a generic value of the parameters ξ. From
Lemma 1 and assumption H the true value of the parameters is such that

ξi 0 = arg max
ξi∈Ξi

γi(ξi). (B-78)

Then, following the same argument as in the proof of Lemma 4 and using (B-13), we can use the
Weak Law of Large Numbers by McLeish (1975) and Lemma 2.1 of White and Domowitz (1984),
which imply that, for any ξi ∈ Ξi,

1

T
LmiT (ξi, φξ)

P→ γi(ξi), as T →∞. (B-79)
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Moreover,

1

T

∣∣∣LmiT (ξi, φ̂ξNT )− LmiT (ξi, φξ)
∣∣∣ ≤ 1

T

T∑
t=1

∣∣∣`mi t(ξi, φ̂ξNT )− `mi t(ξi, φξ)
∣∣∣ =

=
1

T

T∑
t=1

∣∣∣∣ ∂∂φ`mi t(ξi, φξ)
∣∣∣∣ sup
zτ∈[0,1]

∣∣∣φ̂ξNT (zτ )− φξ(zτ )
∣∣∣ ≤

≤ 1

T

T∑
t=1

sup
ξi∈Ξi

∣∣∣∣ ∂∂φ`mi t(ξi, φξ)
∣∣∣∣ sup
ξi∈Ξi

sup
zτ∈[0,1]

∣∣∣φ̂ξNT (zτ )− φξ(zτ )
∣∣∣ .

From Theorem 1 we have (notice that if assumption C.2 holds the following is true also when
N →∞)

sup
zτ∈[0,1]

∣∣∣φ̂ξNT (zτ )− φξ(zτ )
∣∣∣ = oP (1), as T →∞,

therefore, for any ξi ∈ Ξi,

1

T

∣∣∣LmiT (ξi, φ̂ξNT )− LmiT (ξi, φξ)
∣∣∣ P→ 0, as T →∞. (B-80)

By combining (B-79) and (B-80), we have, for any ξi ∈ Ξi,

1

T
LmiT (ξi, φ̂ξNT )

P→ γi(ξi), as T →∞. (B-81)

Furthermore,

sup
ξi∈Ξi

1

T
LmiT (ξi, φ̂ξNT )

P→ sup
ξi∈Ξi

γi(ξi), as T →∞,

which, by means of (B-77) and (B-78), is equivalent to

1

T
LmiT (ξ̂i T , φ̂ξ̂T NT )

P→ γi(ξi 0), as T →∞,

where the curve is now estimated in ξ̂T = (ξ̂T
1T . . . ξ̂

T
N T )T. From (B-81), the term on the left hand

side is such that
1

T
LmiT (ξ̂i T , φ̂ξ̂T NT )

P→ γi(ξ̂i T ), as T →∞,

thus
γi(ξ̂i T )

P→ γi(ξi 0), as T →∞.

Given assumptions I and S, we have consistency, for any i = 1, . . . , N ,

ξ̂i T
P→ ξi 0, as T →∞. (B-82)

b) Given a consistent estimator of the curve φ̂ξNT , the estimated marginals’ parameters, ξ̂1T , . . . , ξ̂N T ,
have to satisfy (19). First order conditions and a Taylor series expansion around the true values
ξi 0 give, for any i = 1, . . . , N ,

0 =
1

T

∂LmiT
∂ξi

(ξ̂i T , φ̂ξNT ) =
1

T

∂LmiT
∂ξi

(ξi 0, φ̂ξNT )︸ ︷︷ ︸
Aiξi T

+
1

T

∂2LmiT
∂ξi∂ξT

i

(ξ̄i, φ̂ξNT )︸ ︷︷ ︸
−Biξ̄i T

(ξ̂i T − ξi 0), (B-83)
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where ξ̄i is between ξ̂i T and ξi 0. By rearranging (B-83), we get
√
T (ξ̂i T − ξi 0) =

√
TAiξi T

(
Biξ̄i T

)−1
. (B-84)

Since both terms depend on the estimated curve, we cannot apply directly the Law of Large Num-
bers or the Central Limit Theorem.

By Lemma 3.d we have, for any ξi ∈ Ξi, and any i = 1, . . . , N ,∣∣∣∣∣∣∣∣ 1

T

∂

∂ξi

(
LmiT (ξi, φ̂ξNT )− LmiT (ξi, φξ)

)∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣ 1

T

∂

∂ξi

(
∂LmiT
∂φ

(ξi, φξ)(φ̂ξNT − φξ) + r(2)(ξi)

)∣∣∣∣∣∣∣∣
2

,

where φξ is the least favorable curve. Using the last equality and a Taylor expansion around φ0,
we have∣∣∣∣∣∣∣∣Ai ξi T − 1

T

∂LmiT
∂ξi

(ξi 0, φ0)

∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣∣∣ 1

T

∂

∂ξi

∂LmiT
∂φ

(ξi 0, φ0)(φ̂ξoNT − φ0)

∣∣∣∣∣∣∣∣
2

+

+

∣∣∣∣∣∣∣∣ 1

T

∂LmiT
∂φ

(ξi 0, φ0)(φ̂′ξoNT − φ
′
0)

∣∣∣∣∣∣∣∣
2

+

+

∣∣∣∣∣
∣∣∣∣∣ 1

T

∂r(2)

∂ξi
(ξi 0)

∣∣∣∣∣
∣∣∣∣∣
2

,

where the vectors φ̂′ξoNT and φ′0 are defined in Theorem 3 and assumption L, respectively. By
Lemma 3.a,b,d, we have, for any i = 1, . . . , N ,

Ai ξi T
P→ 1

T

∂LmiT
∂ξi

(ξi 0, φ0), as T →∞.

By defining

A∗i ξi T =
1

T

∂LmNT
∂ξi

(ξi 0, φ0),

the Weak Law of Large Numbers and Lemma 1 in this paper, imply

A∗i ξi T
P→ E0

[
∂`mi t
∂ξi

(ξi 0, φ0)

]
= 0, as T →∞. (B-85)

A similar reasoning holds for Biξ̄i T . First, define

Biξi T = − 1

T

∂2LmiT
∂ξi∂ξT

i

(ξi 0, φ̂ξNT ).

Then, notice that, since
∣∣∣∣ξ̄i − ξi 0∣∣∣∣2 ≤ ∣∣∣∣∣∣ξ̂i T − ξi 0∣∣∣∣∣∣2 = oP (1) by part a) of this Theorem, and

by using a Taylor series expansion in a neighborhood of ξi 0, we have∣∣∣∣Biξ̄i T − Biξi T ∣∣∣∣2 = oP (1).

From Lemma 3.c, we have, for any ξi ∈ Ξi and any i = 1, . . . , N ,

sup
ξi∈Ξi

∣∣∣∣∣∣∣∣ 1

T

∂2LmiT
∂ξi∂ξT

i

(ξi, φ̂ξNT )− 1

T

∂2LmiT
∂ξi∂ξT

i

(ξi, φξ)

∣∣∣∣∣∣∣∣
2

= oP (1), as T →∞,
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which, computed in ξi 0, implies

Bi ξi T
P→ − 1

T

∂2LmiT
∂ξi∂ξT

i

(ξi 0, φ0), as T →∞.

By defining

B∗i ξi T = − 1

T

∂2LmiT
∂ξi∂ξT

i

(ξi 0, φ0),

the Weak Law of Large Numbers and Lemma 1 in this paper, imply

B∗i ξi T
P→ −E0

[
∂2`mi t
∂ξi∂ξT

i

(ξi 0, φ0)

]
= Hξioξio , as T →∞. (B-86)

By combining (B-85) and (B-86) in (B-84), we have, for any i = 1, . . . , N ,(
ξ̂i T − ξi 0

)
P→ 0, as T →∞.

In order to study the asymptotic covariance matrix of the parameters of the marginals, we have
to take into account the presence of the nuisance parameter, which depends on all parameters
ξ = (ξT

1 . . . ξ
T
N )T. For this reason, by using (B-84) jointly for all marginals and Lemma 3, we can

write

√
T
(
ξ̂T − ξ0

)
=
√
T

 A∗1 ξ1 T
...

A∗N ξN T



(
B∗1 ξ1 T

)−1
. . . 0

...
. . .

...

0 . . .
(
B∗N ξN T

)−1

 =
√
TA∗ξ T

(
B∗ξ T

)−1
.

By the Central Limit Theorem by Wooldridge and White (1988) and Slutsky’s Theorem, we have

√
T
(
ξ̂T − ξ0

)
d→ N (0,Ω∗) as T →∞.

where the asymptotic covariance matrix is

Ω∗ =
(
E0

[
B∗ξ T

])−1 Var0

[
A∗ξ T

] (
E0

[
B∗ξ T

])−1
.

First consider the case in which there is no correction due to the presence of a curve. Then

Var0

[
A∗ξ T

]
= E0

[
A∗ξ TA∗

T
ξ T

]
=

 Iξ1o ξ1o . . . 0
...

. . .
...

0 . . . IξNo ξNo

 , (B-87)

where we used (B-85), Lemma 2, and we have defined

Iξio ξio = E0

[
∂`mi t
∂ξi

(ξi0, φ0)
∂`mi t
∂ξT

i

(ξi0, φ0)

]
.

If we now correct for the presence of the curve we have to compute the correction using the least
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favorable direction. Thus, by adapting (16) in the paper to the multivariate case, (B-87) becomes

I∗ξo = E0

[
A∗ξ TA∗

T
ξ T

]
=

 Iξ1o ξ1o . . . 0
...

. . .
...

0 . . . IξNo ξNo

−φ′0 1

N
E0

( N∑
i=1

∂`mi t
∂φ

(ξ0, φ0)

)2
φ′0T.

Now, by using φ′0 as defined in (18) in the paper and in Theorem 3, we have

I∗ξo = E0

[
A∗ξ TA∗

T
ξ T

]
=

 Iξ1o ξ1o . . . 0
...

. . .
...

0 . . . IξNo ξNo

− d̄Nξod̄T
Nξo ⊗

īNξo
j̄2
Nξo

, (B-88)

where d̄Nξo is defined in (B-70). More precisely, using (B-72) we can define

d̄Nξo =

 d̄N ξ1 o(zτ )
...

d̄N ξN o
(zτ )

 ,

and we have

I∗ξo =

 Iξ1o ξ1o . . . 0
...

. . .
...

0 . . . IξNo ξNo

−
 d̄Nξ1 o

d̄T
Nξ1 o

. . . d̄Nξ1 o
d̄T
NξN,o

...
. . .

...
d̄NξN o

d̄T
Nξ1 o

. . . d̄NξN o
d̄T
NξN,o

⊗ īNξo
j̄2
Nξo

,

Analogously, when correcting for the curve we can compute:

H∗ξo = E0

[
B∗ξ T

]
=

 Hξ1o ξ1o . . . 0
...

. . .
...

0 . . . HξNo ξNo

− (d̄Nξod̄T
Nξo

)
⊗ 1

j̄Nξo
. (B-89)

By combining (B-88) and (B-89) we have Ω∗ = (H∗ξo)
−1 I∗ξo (H∗ξo)

−1, and

√
T
(
ξ̂T − ξ0

)
d→ N

(
0, (H∗ξo)

−1 I∗ξo (H∗ξo)
−1
)

as T →∞.

c) Let us consider each term of (B-88) separately. We see that the sums on the first term on the
right hand side is O(1). Moreover, the second term on the right hand side is the product of a term
īNξo/j̄

2
Nξo

which is bounded for any N provided assumptions C.2 and D hold, times the mixed
derivatives d̄Nξo which, by Theorem 3.b, are of order O(N−1). Therefore, we have

lim
N→∞

I∗ξo =

 Iξ1o ξ1o . . . 0
...

. . .
...

0 . . . IξNo ξNo

 = Iξo .

Analogously, provided assumptions C.2 holds, the same argument as before applies for (B-89),
and we have

lim
N→∞

H∗ξo =

 Hξ1o ξ1o . . . 0
...

. . .
...

0 . . . HξNo ξNo

 = Hξo .
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Thus, by applying the Central Limit Theorem by Wooldridge and White (1988) and Slutsky’s
Theorem, we have

√
T
(
ξ̂T − ξ0

)
d→ N

(
0,H−1

ξo
Iξo H−1

ξo

)
, as N,T →∞.

This completes the proof. �

Proof of Theorem 5

We proceed as in Theorem 4.a. Define

LcT (ξ̂T ,ψ, φ̂ξNT ) =
T∑
t=1

` ct (ξ̂T ,ψ, φ̂ξNT ).

We prove consistency of ψ̂T , which is such that (see (20) in the paper),

ψ̂T = arg max
ψ∈Ψ

LcT (ξ̂T ,ψ, φ̂ξNT ), (B-90)

We define the function
µ(ψ) = E0 [` ct (ξ0,ψ, φξ)] .

From Lemma 1 and assumption H the true value of the parameters is such that

ψ0 = arg max
ψ∈Ψ

µ(ψ). (B-91)

Then, following the same argument as in the proof of Lemma 4 and using (B-13), we can use the
Weak Law of Large Numbers by McLeish (1975) and Lemma 2.1 of White and Domowitz (1984),
which imply that, for any ψ ∈ Ψ,

1

T
LcT (ξ0,ψ, φξ)

P→ µ(ψ), as T →∞. (B-92)

Similarly to what proved above we can use Corollary 1 and (B-82) to prove that, for any ψ ∈ Ψ,

1

T

∣∣∣LcT (ξ̂T ,ψ, φ̂ξNT )− LcT (ξ0,ψ, φξ)
∣∣∣ P→ 0, as T →∞. (B-93)

Therefore, by combining (B-92) and (B-93), we have, for any ψ ∈ Ψ,

1

T
LcT (ξ̂T ,ψ, φ̂ξNT )

P→ µ(ψ), as T →∞. (B-94)

Furthermore, by means of (B-90) and (B-91), we get

1

T
LcT (ξ̂T , ψ̂T , φ̂ξ̂T NT )

P→ µ(ψ0), as T →∞.

From (B-94), the term on the left hand side is such that

1

T
LcT (ξ̂T , ψ̂T , φ̂ξ̂T NT )

P→ µ(ψ̂T ), as T →∞,

thus
µ(ψ̂T )

P→ µ(ψ0), as T →∞.

65



Given assumptions I and S, we have consistency

ψ̂T
P→ ψ0, as T →∞.

This completes the proof. �
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Appendix C - Data Description and Detailed Estimation Results

Table 11: S&P100 constituents
Ticker Name Sector
AA Alcoa Inc Materials
AAPL Apple Inc. Information Technology
ABT Abbott Labs Health Care
AEP American Electric Power Utilities
ALL Allstate Corp. Financials
AMGN Amgen Health Care
AMZN Amazon Corp. Consumer Discretionary
AVP Avon Products Consumer Staples
AXP American Express Financials
BA Boeing Company Industrials
BAC Bank of America Corp. Financials
BAX Baxter International Inc. Health Care
BHI Baker Hughes Energy
BK Bank of New York Mellon Corp. Financials
BMY Bristol-Myers Squibb Health Care
BNI Burlington Northern Santa Fe C Industrials
CAT Caterpillar Inc. Industrials
C Citigroup Inc. Financials
CL Colgate-Palmolive Consumer Staples
CMCSA Comcast Corp. Consumer Discretionary
COF Capital One Financial Financials
COST Costco Co. Consumer Staples
CPB Campbell Soup Consumer Staples
CSCO Cisco Systems Information Technology
CVS CVS Caremark Corp. Consumer Staples
CVX Chevron Corp. Energy
DD Du Pont (E.I.) Materials
DELL Dell Inc. Information Technology
DIS Walt Disney Co. Consumer Discretionary
DOW Dow Chemical Materials
DVN Devon Energy Corp. Energy
EMC EMC Corp. Information Technology
ETR Entergy Corp. Utilities
EXC Exelon Corp. Utilities
FDX FedEx Corporation Industrials
F Ford Motor Consumer Discretionary
GD General Dynamics Industrials
GE General Electric Industrials
GILD Gilead Sciences Health Care
GS Goldman Sachs Group Financials
HAL Halliburton Co. Energy
HD Home Depot Consumer Discretionary
HNZ Heinz (H.J.) Consumer Staples
HON Honeywell Int’l Inc. Industrials
HPQ Hewlett-Packard Information Technology
(cont.)
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(cont.)
IBM International Bus. Machines Information Technology
INTC Intel Corp. Information Technology
JNJ Johnson & Johnson Health Care
JPM JPMorgan Chase & Co. Financials
KO Coca Cola Co. Consumer Staples
LMT Lockheed Martin Corp. Industrials
LOW Lowe’s Cos. Consumer Discretionary
MCD McDonald’s Corp. Consumer Discretionary
MDT Medtronic Inc. Health Care
MMM 3M Company Industrials
MO Altria Group, Inc. Consumer Staples
MRK Merck & Co. Health Care
MSFT Microsoft Corp. Information Technology
MS Morgan Stanley Financials
NKE NIKE Inc. Consumer Discretionary
NSC Norfolk Southern Corp. Industrials
ORCL Oracle Corp. Information Technology
OXY Occidental Petroleum Energy
PEP PepsiCo Inc. Consumer Staples
PFE Pfizer, Inc. Health Care
PG Procter & Gamble Consumer Staples
QCOM QUALCOMM Inc. Information Technology
RF Regions Financial Corp. Financials
SGP Schering-Plough Health Care
SLB Schlumberger Ltd. Energy
SLE Sara Lee Corp. Consumer Staples
SO Southern Co. Utilities
S Sprint Nextel Corp. Telecommunications Services
T AT&T Inc. Telecommunications Services
TGT Target Corp. Consumer Discretionary
TWX Time Warner Inc. Consumer Discretionary
TXN Texas Instruments Information Technology
TYC Tyco International Industrials
UNH UnitedHealth Group Inc. Health Care
UPS United Parcel Service Industrials
USB U.S. Bancorp Financials
UTX United Technologies Industrials
VZ Verizon Communications Telecommunications Services
WAG Walgreen Co. Consumer Staples
WFC Wells Fargo Financials
WMB Williams Cos. Energy
WMT Wal-Mart Stores Consumer Staples
WY Weyerhaeuser Corp. Materials
XOM Exxon Mobil Corp. Energy
XRX Xerox Corp. Information Technology
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Table 12: S&P100 Parameter Estimates

SPVMEM MEM
ai αi γi βi νi πi ai αi γi βi νi πi

AA 0.35
(0.041)

0.28
(0.020)

0.08
(0.013)

0.63
(0.019)

0.27
(0.000)

0.94
(0.029)

0.16
(0.036)

0.28
(0.034)

0.08
(0.021)

0.65
(0.029)

0.28
(0.027)

0.97
(0.045)

AAPL 0.55
(0.037)

0.34
(0.018)

0.12
(0.012)

0.53
(0.018)

0.48
(0.000)

0.93
(0.027)

0.34
(0.080)

0.34
(0.054)

0.12
(0.035)

0.55
(0.051)

0.51
(0.037)

0.95
(0.076)

ABT 0.10
(0.013)

0.28
(0.016)

0.09
(0.011)

0.65
(0.013)

0.34
(0.000)

0.98
(0.021)

0.07
(0.020)

0.29
(0.037)

0.09
(0.027)

0.65
(0.030)

0.34
(0.030)

0.98
(0.049)

AEP 0.10
(0.012)

0.26
(0.013)

0.09
(0.010)

0.67
(0.012)

0.38
(0.000)

0.98
(0.018)

0.07
(0.019)

0.26
(0.029)

0.10
(0.023)

0.67
(0.027)

0.38
(0.026)

0.99
(0.041)

ALL 0.09
(0.011)

0.29
(0.015)

0.10
(0.012)

0.65
(0.014)

0.34
(0.000)

0.98
(0.021)

0.05
(0.016)

0.29
(0.034)

0.10
(0.028)

0.65
(0.030)

0.34
(0.028)

0.99
(0.048)

AMGN 0.17
(0.025)

0.38
(0.024)

0.07
(0.018)

0.54
(0.025)

0.28
(0.000)

0.95
(0.036)

0.13
(0.025)

0.38
(0.034)

0.08
(0.025)

0.53
(0.032)

0.29
(0.023)

0.96
(0.049)

AMZN 0.43
(0.043)

0.31
(0.016)

0.10
(0.014)

0.59
(0.016)

0.32
(0.000)

0.95
(0.023)

0.17
(0.053)

0.31
(0.036)

0.10
(0.032)

0.62
(0.030)

0.35
(0.034)

0.98
(0.049)

AVP 0.13
(0.014)

0.41
(0.013)

0.06
(0.009)

0.55
(0.013)

0.67
(0.000)

0.98
(0.019)

0.30
(0.080)

0.40
(0.052)

0.08
(0.043)

0.48
(0.061)

0.64
(0.041)

0.92
(0.083)

AXP 0.10
(0.014)

0.35
(0.016)

0.12
(0.013)

0.57
(0.016)

0.30
(0.000)

0.98
(0.024)

0.04
(0.013)

0.36
(0.033)

0.11
(0.025)

0.58
(0.030)

0.30
(0.027)

1.00
(0.047)

BA 0.11
(0.018)

0.24
(0.020)

0.11
(0.014)

0.68
(0.018)

0.24
(0.000)

0.98
(0.028)

0.06
(0.017)

0.24
(0.030)

0.11
(0.021)

0.69
(0.026)

0.25
(0.024)

0.99
(0.041)

BAC 0.12
(0.009)

0.37
(0.020)

0.14
(0.013)

0.52
(0.017)

0.42
(0.000)

0.97
(0.027)

0.05
(0.014)

0.37
(0.058)

0.14
(0.038)

0.54
(0.048)

0.44
(0.043)

0.99
(0.077)

BAX 0.07
(0.008)

0.31
(0.011)

0.09
(0.009)

0.64
(0.009)

0.65
(0.000)

1.00
(0.015)

0.08
(0.035)

0.31
(0.063)

0.09
(0.047)

0.63
(0.049)

0.64
(0.048)

0.99
(0.083)

BHI 0.20
(0.045)

0.27
(0.023)

0.06
(0.014)

0.67
(0.022)

0.20
(0.000)

0.98
(0.033)

0.14
(0.036)

0.26
(0.025)

0.07
(0.015)

0.68
(0.024)

0.21
(0.022)

0.98
(0.036)

BK 0.12
(0.014)

0.32
(0.009)

0.07
(0.012)

0.63
(0.006)

0.59
(0.000)

0.99
(0.013)

0.08
(0.049)

0.32
(0.051)

0.08
(0.066)

0.63
(0.033)

0.58
(0.057)

1.00
(0.069)

BMY 0.16
(0.018)

0.26
(0.011)

0.02
(0.009)

0.70
(0.011)

0.46
(0.000)

0.97
(0.016)

0.08
(0.027)

0.26
(0.031)

0.02
(0.026)

0.71
(0.028)

0.46
(0.028)

0.98
(0.043)

BNI 0.22
(0.028)

0.34
(0.019)

0.08
(0.015)

0.58
(0.019)

0.28
(0.000)

0.96
(0.028)

0.19
(0.041)

0.33
(0.036)

0.09
(0.029)

0.58
(0.036)

0.27
(0.026)

0.96
(0.053)

C 0.10
(0.015)

0.33
(0.021)

0.16
(0.015)

0.56
(0.017)

0.25
(0.000)

0.98
(0.028)

0.03
(0.012)

0.34
(0.033)

0.16
(0.024)

0.58
(0.025)

0.25
(0.025)

1.00
(0.043)

CAT 0.19
(0.029)

0.35
(0.023)

0.07
(0.016)

0.57
(0.023)

0.21
(0.000)

0.96
(0.033)

0.12
(0.028)

0.35
(0.034)

0.08
(0.024)

0.58
(0.032)

0.21
(0.028)

0.97
(0.048)

CL 0.07
(0.009)

0.35
(0.016)

0.05
(0.010)

0.61
(0.014)

0.39
(0.000)

0.98
(0.022)

0.07
(0.026)

0.36
(0.054)

0.06
(0.033)

0.59
(0.048)

0.39
(0.037)

0.98
(0.074)

CMCSA 0.13
(0.021)

0.33
(0.020)

0.08
(0.013)

0.60
(0.019)

0.27
(0.000)

0.97
(0.028)

0.09
(0.031)

0.33
(0.042)

0.08
(0.027)

0.60
(0.041)

0.28
(0.034)

0.98
(0.060)

COF 0.20
(0.030)

0.37
(0.019)

0.13
(0.014)

0.55
(0.018)

0.27
(0.000)

0.98
(0.027)

0.08
(0.025)

0.37
(0.033)

0.13
(0.025)

0.56
(0.030)

0.27
(0.025)

1.00
(0.047)

COST 0.23
(0.031)

0.37
(0.022)

0.05
(0.015)

0.55
(0.023)

0.26
(0.000)

0.94
(0.032)

0.13
(0.047)

0.38
(0.052)

0.04
(0.038)

0.57
(0.051)

0.26
(0.039)

0.96
(0.075)

CPB 0.09
(0.006)

0.27
(0.013)

0.04
(0.010)

0.68
(0.011)

0.58
(0.000)

0.98
(0.018)

0.09
(0.031)

0.29
(0.077)

0.05
(0.063)

0.66
(0.069)

0.56
(0.065)

0.97
(0.109)

CSCO 0.31
(0.040)

0.49
(0.022)

0.10
(0.018)

0.40
(0.021)

0.25
(0.000)

0.94
(0.032)

0.15
(0.040)

0.50
(0.043)

0.10
(0.036)

0.42
(0.036)

0.26
(0.034)

0.97
(0.059)

CVS 0.14
(0.015)

0.24
(0.010)

0.00
(0.008)

0.74
(0.011)

0.55
(0.000)

0.98
(0.015)

0.10
(0.031)

0.24
(0.033)

0.01
(0.024)

0.74
(0.032)

0.56
(0.032)

0.98
(0.047)

CVX 0.08
(0.015)

0.35
(0.022)

0.08
(0.015)

0.59
(0.020)

0.22
(0.000)

0.98
(0.031)

0.12
(0.027)

0.34
(0.035)

0.09
(0.025)

0.56
(0.034)

0.22
(0.027)

0.95
(0.050)

DD 0.17
(0.022)

0.30
(0.018)

0.10
(0.015)

0.60
(0.018)

0.25
(0.000)

0.96
(0.026)

0.09
(0.027)

0.30
(0.037)

0.10
(0.031)

0.62
(0.034)

0.26
(0.033)

0.97
(0.052)

DELL 0.21
(0.036)

0.39
(0.027)

0.09
(0.018)

0.52
(0.026)

0.19
(0.000)

0.95
(0.039)

0.09
(0.028)

0.40
(0.037)

0.08
(0.027)

0.54
(0.035)

0.19
(0.029)

0.98
(0.053)

DIS 0.11
(0.010)

0.27
(0.013)

0.09
(0.011)

0.66
(0.013)

0.38
(0.000)

0.98
(0.019)

0.06
(0.019)

0.27
(0.044)

0.09
(0.037)

0.66
(0.041)

0.39
(0.043)

0.99
(0.063)

DOW 0.17
(0.017)

0.25
(0.012)

0.11
(0.011)

0.67
(0.010)

0.37
(0.000)

0.97
(0.016)

0.08
(0.032)

0.26
(0.039)

0.10
(0.036)

0.68
(0.029)

0.39
(0.040)

0.99
(0.052)
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SPVMEM MEM
ai αi γi βi νi πi ai αi γi βi νi πi

DVN 0.11
(0.020)

0.26
(0.016)

0.05
(0.011)

0.70
(0.014)

0.40
(0.000)

0.98
(0.022)

0.17
(0.058)

0.24
(0.043)

0.07
(0.027)

0.69
(0.040)

0.41
(0.036)

0.97
(0.060)

EMC 0.22
(0.032)

0.25
(0.015)

0.09
(0.011)

0.68
(0.013)

0.35
(0.000)

0.98
(0.021)

0.11
(0.031)

0.26
(0.028)

0.09
(0.022)

0.69
(0.024)

0.36
(0.025)

0.99
(0.038)

ETR 0.09
(0.011)

0.30
(0.017)

0.10
(0.014)

0.63
(0.015)

0.27
(0.000)

0.98
(0.024)

0.07
(0.016)

0.29
(0.031)

0.10
(0.025)

0.63
(0.028)

0.28
(0.025)

0.98
(0.044)

EXC 0.13
(0.016)

0.33
(0.012)

0.08
(0.013)

0.60
(0.012)

0.34
(0.000)

0.97
(0.019)

0.10
(0.035)

0.32
(0.041)

0.09
(0.039)

0.61
(0.037)

0.33
(0.041)

0.97
(0.059)

F 0.35
(0.032)

0.34
(0.010)

0.07
(0.009)

0.60
(0.009)

0.67
(0.000)

0.97
(0.014)

0.20
(0.087)

0.34
(0.054)

0.07
(0.047)

0.61
(0.042)

0.64
(0.046)

0.98
(0.072)

FDX 0.15
(0.026)

0.31
(0.015)

0.05
(0.014)

0.63
(0.017)

0.25
(0.000)

0.96
(0.024)

0.06
(0.028)

0.30
(0.029)

0.05
(0.028)

0.65
(0.028)

0.25
(0.033)

0.98
(0.043)

GD 0.14
(0.021)

0.33
(0.018)

0.07
(0.014)

0.59
(0.018)

0.29
(0.000)

0.96
(0.026)

0.08
(0.024)

0.33
(0.034)

0.07
(0.028)

0.61
(0.031)

0.29
(0.030)

0.98
(0.048)

GE 0.10
(0.014)

0.34
(0.020)

0.12
(0.016)

0.56
(0.018)

0.26
(0.000)

0.96
(0.028)

0.03
(0.014)

0.35
(0.043)

0.11
(0.035)

0.59
(0.038)

0.27
(0.035)

0.99
(0.060)

GILD 0.24
(0.050)

0.41
(0.023)

0.06
(0.018)

0.53
(0.024)

0.20
(0.000)

0.97
(0.034)

0.17
(0.058)

0.41
(0.035)

0.07
(0.028)

0.53
(0.034)

0.20
(0.031)

0.97
(0.051)

GS 0.16
(0.027)

0.43
(0.023)

0.13
(0.018)

0.47
(0.014)

0.22
(0.000)

0.97
(0.028)

0.07
(0.033)

0.44
(0.045)

0.13
(0.036)

0.48
(0.027)

0.23
(0.038)

0.99
(0.055)

HAL 0.23
(0.034)

0.25
(0.014)

0.10
(0.012)

0.68
(0.010)

0.40
(0.000)

0.98
(0.018)

0.13
(0.089)

0.25
(0.059)

0.10
(0.052)

0.69
(0.042)

0.41
(0.058)

0.99
(0.077)

HD 0.17
(0.026)

0.30
(0.018)

0.09
(0.013)

0.62
(0.018)

0.26
(0.000)

0.96
(0.026)

0.07
(0.024)

0.30
(0.033)

0.10
(0.024)

0.64
(0.029)

0.27
(0.028)

0.98
(0.045)

HNZ 0.04
(0.006)

0.19
(0.008)

0.06
(0.006)

0.77
(0.007)

0.56
(0.000)

0.99
(0.011)

0.04
(0.018)

0.19
(0.031)

0.07
(0.025)

0.76
(0.028)

0.56
(0.034)

0.99
(0.043)

HON 0.14
(0.021)

0.33
(0.015)

0.09
(0.011)

0.60
(0.013)

0.33
(0.000)

0.98
(0.021)

0.08
(0.032)

0.33
(0.038)

0.09
(0.028)

0.61
(0.031)

0.33
(0.034)

0.99
(0.051)

HPQ 0.11
(0.015)

0.25
(0.014)

0.12
(0.011)

0.68
(0.012)

0.37
(0.000)

0.99
(0.019)

0.06
(0.020)

0.26
(0.030)

0.11
(0.023)

0.68
(0.026)

0.38
(0.026)

0.99
(0.042)

IBM 0.10
(0.015)

0.30
(0.021)

0.14
(0.015)

0.59
(0.021)

0.22
(0.000)

0.96
(0.031)

0.04
(0.013)

0.31
(0.032)

0.14
(0.024)

0.60
(0.028)

0.24
(0.029)

0.98
(0.044)

INTC 0.28
(0.043)

0.43
(0.022)

0.13
(0.019)

0.45
(0.025)

0.20
(0.000)

0.94
(0.035)

0.14
(0.044)

0.43
(0.046)

0.13
(0.039)

0.47
(0.046)

0.21
(0.040)

0.97
(0.068)

JNJ 0.04
(0.006)

0.26
(0.016)

0.13
(0.011)

0.66
(0.013)

0.37
(0.000)

0.99
(0.021)

0.02
(0.009)

0.27
(0.040)

0.12
(0.027)

0.66
(0.031)

0.38
(0.033)

1.00
(0.052)

JPM 0.14
(0.016)

0.37
(0.020)

0.14
(0.014)

0.54
(0.017)

0.30
(0.000)

0.98
(0.027)

0.05
(0.016)

0.38
(0.039)

0.13
(0.027)

0.55
(0.033)

0.31
(0.028)

1.00
(0.052)

KO 0.09
(0.009)

0.33
(0.012)

0.07
(0.011)

0.61
(0.014)

0.36
(0.000)

0.97
(0.019)

0.04
(0.016)

0.33
(0.041)

0.06
(0.038)

0.62
(0.043)

0.38
(0.048)

0.99
(0.063)

LMT 0.14
(0.016)

0.31
(0.018)

0.09
(0.012)

0.61
(0.016)

0.35
(0.000)

0.96
(0.025)

0.06
(0.020)

0.32
(0.038)

0.09
(0.028)

0.63
(0.032)

0.37
(0.029)

0.99
(0.051)

LOW 0.27
(0.038)

0.31
(0.020)

0.10
(0.014)

0.59
(0.021)

0.25
(0.000)

0.95
(0.030)

0.11
(0.034)

0.32
(0.032)

0.09
(0.024)

0.61
(0.031)

0.25
(0.029)

0.98
(0.047)

MCD 0.08
(0.009)

0.23
(0.011)

0.05
(0.009)

0.73
(0.010)

0.43
(0.000)

0.98
(0.016)

0.04
(0.017)

0.23
(0.037)

0.05
(0.029)

0.74
(0.030)

0.43
(0.037)

0.99
(0.050)

MDT 0.08
(0.012)

0.25
(0.012)

0.09
(0.007)

0.69
(0.011)

0.60
(0.000)

0.98
(0.017)

0.06
(0.026)

0.25
(0.037)

0.09
(0.023)

0.69
(0.034)

0.61
(0.034)

0.98
(0.051)

MMM 0.11
(0.017)

0.37
(0.021)

0.10
(0.016)

0.54
(0.022)

0.23
(0.000)

0.96
(0.031)

0.09
(0.020)

0.37
(0.037)

0.11
(0.026)

0.54
(0.036)

0.23
(0.030)

0.96
(0.053)

MO 0.13
(0.010)

0.32
(0.010)

0.07
(0.009)

0.61
(0.009)

0.70
(0.000)

0.97
(0.014)

0.10
(0.049)

0.33
(0.067)

0.08
(0.059)

0.61
(0.059)

0.67
(0.059)

0.97
(0.094)

MRK 0.17
(0.013)

0.34
(0.014)

0.07
(0.009)

0.59
(0.011)

1.00
(0.000)

0.97
(0.018)

0.22
(0.084)

0.34
(0.089)

0.10
(0.059)

0.55
(0.081)

0.89
(0.057)

0.94
(0.124)

MS 0.30
(0.043)

0.39
(0.021)

0.16
(0.016)

0.49
(0.019)

0.24
(0.000)

0.96
(0.029)

0.12
(0.056)

0.40
(0.052)

0.16
(0.040)

0.51
(0.044)

0.24
(0.042)

0.99
(0.071)

MSFT 0.16
(0.019)

0.37
(0.019)

0.09
(0.016)

0.52
(0.021)

0.23
(0.000)

0.94
(0.029)

0.05
(0.015)

0.38
(0.029)

0.08
(0.026)

0.56
(0.029)

0.24
(0.030)

0.98
(0.043)

NKE 0.24
(0.025)

0.28
(0.015)

0.10
(0.013)

0.61
(0.017)

0.35
(0.000)

0.94
(0.024)

0.08
(0.029)

0.26
(0.049)

0.10
(0.042)

0.67
(0.045)

0.36
(0.044)

0.98
(0.069)
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SPVMEM MEM
ai αi γi βi νi πi ai αi γi βi νi πi

NSC 0.22
(0.032)

0.28
(0.014)

0.06
(0.013)

0.66
(0.015)

0.28
(0.000)

0.97
(0.022)

0.12
(0.045)

0.28
(0.030)

0.06
(0.027)

0.68
(0.029)

0.29
(0.029)

0.98
(0.044)

ORCL 0.27
(0.037)

0.45
(0.023)

0.08
(0.018)

0.47
(0.022)

0.24
(0.000)

0.96
(0.034)

0.15
(0.042)

0.45
(0.046)

0.09
(0.036)

0.48
(0.041)

0.25
(0.032)

0.98
(0.064)

OXY 0.13
(0.021)

0.25
(0.020)

0.08
(0.014)

0.68
(0.019)

0.25
(0.000)

0.98
(0.028)

0.14
(0.030)

0.25
(0.028)

0.09
(0.020)

0.68
(0.027)

0.26
(0.022)

0.97
(0.040)

PEP 0.06
(0.007)

0.23
(0.014)

0.09
(0.009)

0.70
(0.012)

0.42
(0.000)

0.98
(0.019)

0.03
(0.013)

0.23
(0.042)

0.09
(0.030)

0.71
(0.034)

0.43
(0.040)

0.99
(0.056)

PFE 0.11
(0.016)

0.42
(0.007)

−0.03
(0.009)

0.58
(0.010)

0.70
(0.000)

0.98
(0.013)

0.08
(0.069)

0.41
(0.055)

−0.02
(0.062)

0.58
(0.062)

0.66
(0.075)

0.98
(0.089)

PG 0.07
(0.008)

0.32
(0.018)

0.08
(0.013)

0.61
(0.016)

0.33
(0.000)

0.97
(0.025)

0.06
(0.017)

0.33
(0.050)

0.08
(0.037)

0.60
(0.045)

0.33
(0.042)

0.97
(0.070)

QCOM 0.21
(0.036)

0.29
(0.018)

0.13
(0.015)

0.61
(0.016)

0.27
(0.000)

0.97
(0.025)

0.15
(0.052)

0.30
(0.040)

0.14
(0.034)

0.60
(0.031)

0.28
(0.037)

0.97
(0.054)

RF 0.05
(0.006)

0.26
(0.011)

0.08
(0.009)

0.70
(0.010)

0.55
(0.000)

1.00
(0.016)

0.06
(0.016)

0.26
(0.029)

0.08
(0.025)

0.69
(0.026)

0.53
(0.024)

0.99
(0.041)

S 0.29
(0.028)

0.29
(0.011)

0.12
(0.009)

0.63
(0.008)

0.75
(0.000)

0.98
(0.014)

0.10
(0.043)

0.30
(0.034)

0.11
(0.029)

0.65
(0.025)

0.77
(0.029)

1.00
(0.044)

SGP 0.24
(0.017)

0.27
(0.010)

0.00
(0.009)

0.70
(0.008)

0.90
(0.000)

0.97
(0.013)

0.08
(0.040)

0.27
(0.047)

0.00
(0.041)

0.72
(0.033)

0.96
(0.040)

0.99
(0.061)

SLB 0.24
(0.043)

0.29
(0.023)

0.07
(0.016)

0.64
(0.023)

0.19
(0.000)

0.96
(0.034)

0.15
(0.031)

0.28
(0.024)

0.08
(0.016)

0.65
(0.023)

0.19
(0.021)

0.97
(0.034)

SLE 0.12
(0.010)

0.28
(0.008)

0.02
(0.007)

0.69
(0.008)

0.75
(0.000)

0.98
(0.012)

0.10
(0.047)

0.30
(0.054)

0.02
(0.046)

0.67
(0.051)

0.73
(0.047)

0.98
(0.078)

SO 0.04
(0.008)

0.27
(0.013)

0.07
(0.011)

0.68
(0.009)

0.36
(0.000)

0.99
(0.017)

0.03
(0.015)

0.28
(0.034)

0.07
(0.029)

0.68
(0.025)

0.37
(0.034)

0.99
(0.045)

T 0.15
(0.016)

0.29
(0.012)

0.08
(0.011)

0.65
(0.010)

0.46
(0.000)

0.98
(0.017)

0.06
(0.022)

0.30
(0.035)

0.08
(0.035)

0.66
(0.030)

0.47
(0.032)

1.00
(0.049)

TGT 0.17
(0.024)

0.26
(0.016)

0.10
(0.013)

0.67
(0.015)

0.29
(0.000)

0.97
(0.023)

0.07
(0.028)

0.27
(0.031)

0.09
(0.027)

0.68
(0.029)

0.30
(0.030)

0.99
(0.045)

TWX 0.11
(0.017)

0.29
(0.015)

0.07
(0.009)

0.66
(0.015)

0.37
(0.000)

0.98
(0.021)

0.06
(0.020)

0.29
(0.038)

0.07
(0.025)

0.66
(0.036)

0.37
(0.033)

0.99
(0.054)

TXN 0.10
(0.027)

0.24
(0.016)

0.11
(0.013)

0.70
(0.015)

0.21
(0.000)

0.99
(0.023)

0.07
(0.029)

0.24
(0.029)

0.11
(0.024)

0.69
(0.026)

0.22
(0.031)

0.99
(0.040)

TYC 0.12
(0.016)

0.34
(0.014)

0.09
(0.012)

0.61
(0.012)

0.39
(0.000)

0.99
(0.020)

0.08
(0.028)

0.34
(0.035)

0.09
(0.030)

0.61
(0.029)

0.39
(0.027)

0.99
(0.048)

UNH 0.14
(0.021)

0.33
(0.013)

0.06
(0.010)

0.61
(0.014)

0.41
(0.000)

0.98
(0.020)

0.13
(0.043)

0.34
(0.035)

0.06
(0.026)

0.60
(0.036)

0.41
(0.032)

0.97
(0.052)

UPS 0.08
(0.008)

0.28
(0.013)

0.12
(0.010)

0.63
(0.013)

0.40
(0.000)

0.97
(0.019)

0.09
(0.030)

0.28
(0.047)

0.12
(0.036)

0.62
(0.046)

0.41
(0.041)

0.96
(0.068)

USB 0.10
(0.005)

0.28
(0.012)

0.11
(0.011)

0.65
(0.011)

0.44
(0.000)

0.99
(0.018)

0.05
(0.009)

0.28
(0.040)

0.11
(0.036)

0.66
(0.035)

0.46
(0.035)

1.00
(0.056)

UTX 0.08
(0.015)

0.28
(0.018)

0.13
(0.014)

0.64
(0.016)

0.28
(0.000)

0.98
(0.025)

0.07
(0.019)

0.28
(0.031)

0.14
(0.025)

0.64
(0.029)

0.28
(0.026)

0.98
(0.044)

VZ 0.12
(0.015)

0.29
(0.018)

0.09
(0.013)

0.63
(0.015)

0.29
(0.000)

0.97
(0.024)

0.05
(0.019)

0.31
(0.041)

0.08
(0.031)

0.64
(0.034)

0.29
(0.035)

0.99
(0.056)

WAG 0.13
(0.018)

0.24
(0.016)

0.06
(0.011)

0.70
(0.014)

0.33
(0.000)

0.97
(0.022)

0.07
(0.025)

0.23
(0.037)

0.07
(0.027)

0.71
(0.031)

0.34
(0.031)

0.98
(0.050)

WFC 0.11
(0.011)

0.32
(0.017)

0.12
(0.014)

0.59
(0.017)

0.29
(0.000)

0.97
(0.025)

0.05
(0.012)

0.32
(0.032)

0.11
(0.027)

0.61
(0.029)

0.31
(0.026)

0.99
(0.046)

WMB 0.12
(0.019)

0.25
(0.008)

0.06
(0.008)

0.71
(0.006)

0.66
(0.000)

0.99
(0.011)

0.09
(0.058)

0.25
(0.031)

0.08
(0.030)

0.71
(0.023)

0.67
(0.034)

1.00
(0.041)

WMT 0.10
(0.016)

0.30
(0.019)

0.09
(0.013)

0.62
(0.019)

0.26
(0.000)

0.97
(0.028)

0.05
(0.014)

0.31
(0.031)

0.09
(0.023)

0.63
(0.030)

0.27
(0.029)

0.98
(0.044)

WY 0.20
(0.029)

0.33
(0.019)

0.10
(0.016)

0.58
(0.020)

0.23
(0.000)

0.96
(0.029)

0.17
(0.039)

0.34
(0.034)

0.10
(0.027)

0.57
(0.035)

0.23
(0.026)

0.96
(0.051)

XOM 0.10
(0.014)

0.30
(0.018)

0.10
(0.016)

0.62
(0.017)

0.25
(0.000)

0.97
(0.026)

0.07
(0.019)

0.29
(0.031)

0.10
(0.029)

0.63
(0.029)

0.26
(0.029)

0.97
(0.045)

XRX 0.12
(0.014)

0.23
(0.009)

0.05
(0.007)

0.73
(0.007)

0.67
(0.000)

0.99
(0.012)

0.07
(0.029)

0.23
(0.027)

0.08
(0.023)

0.73
(0.023)

0.69
(0.025)

1.00
(0.037)

Estimated parameters and standard errors (in parenthesis) for the SPvMEM (left) and the univariate MEM (right).
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