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Abstract

Multiple-membership logit models with random effects are logit models for clustered

binary data, where each statistical unit can belong to more than one group. For these

models, the likelihood function is analytically intractable. We propose two different ap-

proaches for parameter estimation: data cloning and indirect inference. Data cloning

computes maximum likelihood estimates, through the posterior distribution of an ad-

equate Bayesian model fitted on cloned data. We implement a data cloning algorithm

specific for the case of multiple-membership models. Indirect inference is a non-likelihood-

based method which uses an auxiliary model to select sensible estimates. We propose

an auxiliary model having the same dimension of parameter space as the target model,

which is particularly convenient to reach good estimates very fast. A Monte Carlo exper-

iment compares the two approaches on a set of simulated data. We report also Bayesian

posterior mean and INLA hybrid data cloning estimates for comparison. Simulations
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show a negligible loss of efficiency for the indirect inference estimator, compensated by

a relevant computational gain. The approaches are then illustrated with a real example

on matched paired data.

Keywords: Binary data, Bradley Terry models, intractable likelihood, integrated

nested Laplace approximation, non-hierarchical random effects models.

1 Introduction

Many modern statistical applications involve inference for probabilistic models in the

presence of unobserved relevant factors, acting on data with a clustered structure. This

structure is usually hierarchical, but more complex situations can sometimes arise. For

non-hieraarchical data, an interesting class of models consists of multiple membership

models, introduced by Hill and Goldstein (1998), (see also Rasbash and Browne, 2001a;

Browne et al., 2001). These models extend multilevel models for hierarchical, nested

data, allowing a statistical unit (in the lower level of the groups hierarchy) to belong

to more than one cluster (level-two unit). Examples of application can be found, for

instance, in Fielding (2002) for evaluating the performance of the cost-effectiveness of

advanced level teaching groups or in Roberts and Walwyn (2012) for a randomized trial

on adolescent depression with cognitive behavioural therapy when patients have more

than one therapist. See also Tranmer and Browne (2013).

Multiple membership clustering is formally defined as a map g from a finite set N of

units to a finite set G of clusters, with |G| = J . Each element i in N is mapped to a finite

subset of G, say Gi. Whenever each Gi is a singleton, then the map defines an ordinary

hierarchical clustering, where clusters form a partition of N . On the contrary, in case of

multiple membership clustering, the population of interest is assumed to be characterized

by not disjoint sub-populations. Multiple membership models assign random effects

for each element of the mapped grouping, supposing that, conditionally on a latent

variable, units in the population are iid. In case of a binary response variables, Multiple
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membership logit (MML) models may be express as

P (Yi = 1 | xi,ui) =
exp

{
β0 +

∑p
l=1 βlxli +

∑
j∈Gi

wijuj

}
1 + exp

{
β0 +

∑p
l=1 βlxli +

∑
j∈Gi

wijuj

} (1)

where Yi (i = 1, . . . n, n = |N |) is the binary response of interest, xi is the p-dimensional

vector of observed explanatory variables, ui is the set of unobserved random effects

affecting i, being independent and identically distributed as N(0, τ2), assumed to be

independent of the set of explanatory variables. Each unobserved random effect has a

weight wij , |wij | < ∞, specific for each unit i, chosen a priori depending on (careful)

subject matter considerations. A typical example is in medical studies, when a patient in

a hospital is assisted by more than one nurse. Each nurse has an effect on the patient’s

progress, which is taken into account by introducing several weighted random effects, the

weights taking into account the time that each nurse spent with each patient. Weights

usually sum to one, but alternatives are possible. Notice that, for each unit i, the adding

variance due to the linear combination of the unobserved components is

V

∑
j∈Gi

wjiuj

 = τ2
∑
j

w2
ji

which is less than τ2, the adding variance in an ordinary hierarchical random intercept

model. Different choices on weights can imply this variance to be greater than τ2, as

in the case of some Bradley and Terry models (Bradley and Terry, 1952) with random

effects, that will be presented in Section 5, where for each unit the variance due to the

random effects is 2 τ2.

The marginal likelihood function is

L (θ;y,x) =

∫
n∏

i=1

exp {yi(x′iβ +wiu)}
1 + exp {x′iβ +wiu}

φJ(u; τ2) du (2)

where θ = (β, τ2) ∈ Θ ⊆ Rp+2 are the parameters of the model, wi is a raw vector of

length J collecting the random effect weights for unit i, with a zero in place j whenever

j /∈ Gi. Finally, φ(·)J is the J-variate density for the random effects, typically Normal
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with zero mean and covariance matrix τ2I. A common solution for estimating θ is

maximum likelihood, where estimates are obtained via maximizing (2) (or its logarithm)

θ̂mle = arg max
θ∈Θ

L (θ;Y ,X).

The basic problem in MML models is that the likelihood function has no analytical

expression and a multi-dimensional integral has to be numerically computed. In other

words, MML models have an intractable likelihood function, which can not be easily

evaluated, as the dimension of the integral is J . Ignoring the multiple membership clus-

tering might bring to distort results, as shown by Chung and Beretvas (2011). Composite

likelihoods such as quasi-likelihood or partial-likelihood have been shown to provide seri-

ously biased and inconsistent estimators in the case of binary responses (Rodriguez and

Goldman, 1995) leading to underestimation of the random effect variance. Consequently,

a different solution has to be found. Several procedures has been proposed for estima-

tion: Rasbash and Browne (2001b) compares the IGLS algorithm and an estimation

procedure based on Monte Carlo Markov Chain (MCMC), showing MCMC procedure to

be numerically stabler, although slower. At the moment, the most preferable procedure

for MML models estimation is based on Bayesian paradigm and MCMC methods and

such procedure has been implemented in the MLwiN package Browne (2012). However,

some researchers could prefer to avoid Bayesian inference as unable of making an explicit

choice of a priori distributions or for preferring frequentist inference. Moreover, it has

been shown (Karl et al., 2012) that different priors can result in different estimates of

model parameters, at least in case of continuous response variables.

To solve this inferential issue in a non-Bayesian framework, we are here proposing

two different approaches: data cloning and indirect inference.

Data cloning (DC) (Lele et al., 2007, 2010) is a novel approach, developed in the con-

text of hierarchical mixed models, to compute maximum likelihood (ML) estimates along

with their asymptotic standard error. This approach is convenient whenever the posterior

distributions of an adequate Bayesian model parameters can be computed analytically or

by using a Monte Carlo Markov Chains (MCMC) methodology. DC procedure has been
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then extended to nonlinear state–space models (Nadeem and Lele, 2012), generalized

linear mixed models with two components of dispersions (Torabi, 2012) or spatial corre-

lation (Baghishani and Mohammadzadeh, 2011) and to time series (Torabi and Shokoohi,

2012). Ponciano et al. (2012) used data cloning to assess parameter identifiability in phy-

logenetic models. In the following, we show how to successfully implement DC for solving

the inferential problem for MML model parameters. Moreover, we show that both the

ML and the DC estimator of θ are consistent, under some regularity conditions.

The principal limit of the DC procedure is in the use of MCMC methods, so that

the reaching of an adequate accuracy of the estimates requires a very large number of

simulations, having in general a high computational cost. In alternative to data cloning,

we propose a further method, indirect inference, that can be a much faster solution,

still approximately inheriting the properties of the standard maximum likelihood esti-

mates. Indirect inference is a class of estimators, including the generalized and simulated

methods of moments as special cases. It was developed in the econometric framework

in the early nineties (e.g. Gouriéroux et al., 1993; Gallant and Tauchen, 1996), and it

has been put back in popularity because of its connection with approximate Bayesian

computation techniques (Beaumont et al., 2002). Indirect inference has been applied in

a variety of fields, such as, for example, financial models (see, among others, Gouriéroux

and Monfort, 1996; Calzolari et al., 1998; Billio and Monfort, 2003; Sentana et al., 2008),

regression models with measurement error (Kuk, 1995), hierarchical multilevel binary

models (Mealli and Rampichini, 1999), robust indirect estimators and tests (Genton and

Ronchetti, 2003; Czellar and Ronchetti, 2010) and α–stable stochastic volatility models

(Lombardi and Calzolari, 2009). Interesting surveys on indirect inference are provided

by Heggland and Frigessi (2004) and Jiang and Turnbull (2004).

In Section 2 we propose a data cloning estimator for MML models, which is proved

to converge to the maximum likelihood estimator as the number of clones increases. In

Section 3 we propose an indirect estimator for the same class of models. In particular,

we show how both estimates and standard errors can be easily and fast derived adopting
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an adequate auxiliary model. The comparison of the two classes of estimators is reported

in Section 4. As an example we present in Section 5 an application on Bradley and Terry

models with random effects. In Section 6 we present a brief summary and discussion on

the proposal.

2 Data Cloning

Data Cloning (DC) is a recently developed procedure to compute maximum likelihood

estimates and the inverse of the Fisher information matrix, by utilizing as an instru-

ment the Bayesian paradigm and MCMC procedures. The idea has been anticipated by

several approaches such as, for example, the prior feedback in Robert (1993) and State

Augmentation for Marginal Estimation (Doucet et al., 2002). Other related works are

Kuk (2003) and Jacquier et al. (2007).

DC exploits the well known result of Walker (1969) proving that, under suitable

regularity conditions, the mean of the posterior distribution of a parameter θ tends to

the maximum likelihood estimator as the sample size increases. Such convergence is

proved to be independent of the prior distribution specification. DC consists in adopting

a Bayesian model to a set of data cloned, that is replicated, several times till the posterior

distribution becomes nearly degenerate with its mean converging to the ML estimate.

Let y = (y1, . . . yn)′ be the observed vector of the binary response variable on a

sample of size n. Let L (θ;y) be the likelihood function for a given set of data, π(θ) an

arbitrary prior distribution for model parameters, and π(θ | y) the associate posterior

distribution. To obtain maximum likelihood estimates, DC uses the (joint) pseudo-

posterior distribution

π(h)(θ | y(h)) =
L(h)(θ;y(h))π(θ)

C(y(h), h)
, (3)

where L(h)(θ;y(h)) represents the likelihood function on the data replicated h times,

with y(h) = (y1, . . . yn, . . . yn+1, . . . . . . yhn)′ and C(y, h) =
∫

L(h)(θ;y)π(θ) dθ is the nor-

malizing constant of the pseudo-posterior distribution.
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Under regularity conditions (see Lele et al., 2010, Appendix A.1), the pseudo-posterior

distribution degenerates towards ML estimates when h tends to infinity, invariantly to

the choice of π(θ), as shown in Lele et al. (2010) Theorem A.2. In fact, in such a case, the

pseudo-posterior distribution with h increasing tend to distribute normally, with mean

equal to the ML estimates θ̂mle of the model parameters and variance 1/h times the

inverse of the Fisher information matrix:

E
[
π(h)(θ | y(h))

] h→∞−−−→ θ̂mle

V
[
π(h)(θ | y(h))

] h→∞−−−→ 1

h
V
[
θ̂mle

]
The DC estimator is therefore defined as

θ̂dc = E
[
π(h)(θ | y(h))

]
(4)

with h sufficiently large, with standard error

s.e.(θ̂dc) =

√
1

h
V
[
θ̂mle

]
. (5)

Notice that the DC estimator is exactly the ML estimator when h reaches infinity. In

practice, it is an approximation, which is good enough for an adequate h. Figure 1 shows

the behaviour of the pseudo-posterior distribution as h increases for a parameter of a

simple logit model with n = 1 000. Notice that the distribution tends to collapse over the

ML estimate, β̂, and not at the true value of the parameter, that in this case was settled

at 1. Factually, the use of cloned data does not improve the finite-sample properties of

ML estimators, only helping to relieve their computation. To determine an adequate level

for the number of clones h, one has to check whether the pseudo-posterior distribution

has nearly degenerated. Lele et al. (2010) suggest to check if the largest eigenvalue of

the posterior variance matrix is close to zero. Whenever a parameter is not identifiable,

it has been showed (Lele et al., 2010, Theorem A.2) that this large eigenvalue does not

converge to zero as h increases. Whenever the likelihood is flat for some parameters, for

instance because these parameters are not identifiable or there is not enough information
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in the data to identify them, then the largest eigenvalue of the posterior variance matrix

does not decrease to zero when h increases. Consequently, DC procedure can be also

utilized for checking parameters identifiability.

0.8 0.9 1.0 1.1 1.2 1.3

β
^

h = 1

h = 10

h = 50

h = 100

Figure 1: Example of pseudo-posterior distribution behaviour at increasing values of h

The DC estimators are invariant to the assumptions on the prior distribution, which

can be chosen for computation convenience. A further proof of DC properties has been

also given by Baghishani and Mohammadzadeh (2011).

Even if DC has been developed for hierarchical models, it can be adapted for the

general class of non-hierarchical MML models. Indeed, the required assumptions (Lele

et al., 2010, Appendix A.1) are fulfilled also by MML models, as they parallel logit mixed

models a part for the assumption of a hierarchical structure of random effects, which is

actually not used in Lele et al. (2010)’s Theorem A.2 proof. As a matter of fact, the

absence of a hierarchy affects the dimensionality of the integral in (2), but not the form

and the properties of the likelihood function. As shown in the proof of theorem 1 in

the Appendix, a MML model can effectively be viewed as a General Generalized Linear

Mixed Model (see, e.g. Jiang et al., 2013, for definition) with a particular multivariate

latent variable. In the case of MML models, the pseudo-posterior distribution can be
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specified as

π(h)(θ | y(h),x(h)) =

(∫ n(h)∏
i=1

exp {yi(x′iβ +wiu)}
1 + exp {x′iβ +wiu}

φJ(h)(u; τ2) du

)
π(θ)

C(y(h), h)
(6)

where n(h) = h · n , J(h) = h · J . The expression between parentheses is the likelihood

function for h clones of the original data. For h sufficiently large, π(h)(θ | y(h),x(h))

converges to a multivariate Normal distribution, with mean equal to the ML estimator

θ̂mle for the original data. Moreover, as the parameter space is continuous, the variance

covariance matrix of these variates is h times the inverse of the observed Fisher Informa-

tion matrix and can therefore be utilized to calculate asymptotic standard errors, to be

used to obtain asymptotic confidence intervals.

The MCMC algorithms, such as Metropolis Haskings or Gibb sampling, allow to

generate random variates from pseudo-posterior distribution (6), without computing the

integrals either in the likelihood and in the denominator. Alternatively, the pseudo-

posterior distribution can be approximated via integrated nested Laplace approximation.

This alternative approximation is called hybrid data cloning and has been proposed by

Baghishani et al. (2012).

The importance of ML estimator in MML models as defined in (1) and (2) and its

approximation due to DC is assessed by the following two theorems, which derive by

Jiang et al. (2013).

Theorem 1 Assume θ = (β, τ2) ∈ Θ, with Θ being a convex subspace of Rp+2 and

τ2 > 0, of a MML model as defined in (1) and (2). Let M be the largest subset of N ,

m = |M |, such that Ga ∩ Ga′ = ∅ and Ya ⊥⊥ Ya′, for all a, a′ ∈M . If m→∞ as n→∞,

then, the ML estimator of θ is consistent.

Theorem 2 Let θ be the set of parameters of a MML model as defined in (1). Assume

θ = (β, τ2) ∈ Θ, with Θ being a convex subspace of Rp+2 and τ2 > 0, of a MML model

as defined in (1) and (2). Let θ̂dc = E
[
π(h)(θ | y(h))

]
be the DC estimator of θ, with
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π(h)(θ | y(h)) given in (6). If assumptions of Teorem 1 are fulfilled as n→∞, then θ̂dc

is a consistent estimator of θ with h→∞ .

Remark. Because m ≤ J , the assumption of Theorem 1 that m→∞ as n→∞ can

be satisfied only when J →∞ as n→∞ and the n× J matrix W having the raws the

weights vector wi, i = 1, . . . n, is sparse.

3 Indirect inference

Indirect inference was introduced by Smith (1993), Gouriéroux et al. (1993), and Gallant

and Tauchen (1996). It is a simulation–based estimation procedure for a model, say

M(θ), with complex or intractable likelihood. It utilizes an auxiliary model
∼
M (η) for

estimating the parameters θ of the model of interest M(θ), granted that one is able

to draw random samples from it, given a set of proposal values, θ∗. This is the case

of the MML model as defined in (1). The auxiliary model parameters are estimated

both on the observed data and on simulated samples. The estimates for M(θ) are

derived with a calibration procedure that compares these two sets of auxiliary model’s

estimates. Alternatively, a similar calibration procedure could be applied to the score

of the likelihood (pseudo-likelihood) of the auxiliary model with simulated data. In the

following we present the algorithm for finding the indirect estimates and standard errors

for the MML model in (1).

The auxiliary model we propose for an MML model is perhaps the simplest possible:

a linear model

xi = g(xi,η, ei) = γ0 +

p∑
l=1

γlxli + εi (7)

where η = (γ, σ2) ∈ Ω ⊆ Rr is the parameter vector, εi = σei are random terms

independently distributed as Normal with zero mean and unknown variance σ2. Notice

that this proposal for
∼
M (η) has r = p + 2 parameters, exactly the same of the MML

model in (1). It is a case of exact identification, with a one–to–one correspondence

between the parameters (β, τ2) versus (γ, σ2). This choice is particularly convenient, as
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will be seen in (11). The linear model provides a very rough approximation of the model

of interest. Nevertheless, previous studies on hierarchical multilevel models revealed a

good performance of this choice when used as the auxiliary model in indirect estimation

(Calzolari et al., 2001).

The simple estimation of the auxiliary model parameters, based on the observed

variables and expressed in the matricial form Y = Xγ+ ε, leads to biased (inconsistent)

estimates η̂ = (γ̂, σ̂2), called naive estimates. Here, coefficients estimates are obtained

straightforwardly as

γ̂ =
(
X ′X

)−1
X ′Y (8)

with X is the n× (p+1) matrix formed by the columns vectors (1,X1, . . . ,Xp) and Y is

the n vector of the binary response variable. The computation of the variance parameter,

σ̂2, requires some additional effort. Call nj the number of statistical units i such that

wji 6= 0. Therefore, nj =
∑n

i=1 1j∈Gi . Then, an average residual among units in group j

is here defined as

εj =
1

nj

n∑
i=1

ε̂iWj∈Gi (9)

with Wj∈Gi = 1/wij when wij 6= 0 (that is j ∈ Gi) and 0 otherwise. Then, the naive

estimator for the variance of the latent component is defined as

σ̂2 =
1

J

J∑
j=1

ε2j . (10)

We denote η̃(θ∗), the naive estimates that can be obtained using a simulated sample

of size n∗ of the response variable, Ỹi(θ
∗), i = 1, 2, . . . , n∗, conditional on the observed

explanatory variables xi and the simulated values Ũj(θ
∗), j = 1, 2, . . . , J , at a given θ∗.

The vector of J random effects is drawn only once and afterwards held fixed throughout

the indirect estimation procedure. Consequently, a vector of random values Ũj is drawn

once from a standard Normal distribution and Ũj(θ
∗) = τ∗Ũj .

If η̂ and η̃(θ∗) are not too far in some sense, we can assume that the values θ∗ are

good estimates of the parameter of interest. To detect the indirect estimator close enough

to the true one, Gouriéroux et al. (1993) proposed
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θ̂ = argminθ∗
[
η̂ − η̃(θ∗)]′Ω−1[η̂ − η̃(θ∗)

]
(11)

where Ω is a positive definite weighting matrix. In case of exact identification, as pre-

sented here, estimates are unaffected by the choice of the matrix of weights Ω, as the

minimization of the quadratic form (11) is obtained when η̂ = η̃(θ∗). The tentative val-

ues for the true model parameters θ∗ are chosen iteratively until this equality is fulfilled.

The iterative procedure for choosing tentative values of θ∗, called calibration, is here

based on solving the implicit system of r equations η̂ = η̃(θ∗) in the r unknowns θ∗,

being in a case of exact identification. The solution of this implicit system of equations

yielding to the indirect estimator cannot be written in closed form, as an analytic solu-

tion does not exist. Consequently, the problem has to be solved numerically, for instance

using Newton Raphson. As in Calzolari et al. (1999) (page 18), we adopt the following

updating equation

θ∗(k) = θ∗(k−1) + δA−1
(k−1)

(
η̃(θ∗(k−1))− η̂

)
(12)

where θ∗(k) is the value of the calibrated parameters after k iterations, A(k−1) is a matrix

that determines the direction of the kth step, and δ is a real number between 0 and 1,

determining the step size in the given direction. In particular, we take A equal to the

Jacobian matrix of derivatives of the auxiliary parameters with respect to the parameters

of interest. Derivatives are computed numerically, by finite differences method.

For some other types of models, when the θ and η parameters are essentially the same,

even if plugged into slightly different models, one can perform iterations using the identity

matrix. This solution, called Jacobi solution method or fine tuning has been adopted

in An and Liu (2000) and Mealli and Rampichini (1999). In the alternative, similar,

approach proposed by Gallant and Tauchen (1996), calibration is aimed at minimizing a

quadratic form based on the score of the likelihood, or pseudo-likelihood, of the auxiliary

model. In this alternative approach, the score for the coefficients, for instance, is X ′ε̂/n,

with ε̂ = Y −Xγ̂.

Regarding the size of the simulated sample, one may adopt n∗ equal to the observed
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sample size n. Larger n∗, such as for instance n∗ = H ·n, with a certain integer H > 1, can

be adopted to improve estimates precision. Alternatively, as we shall do in our application

and Monte Carlo experiments, H independent samples of length n can be produced, and

η̃(θ∗) computed as average of the H estimates. In most available applications of indirect

inference, the value of H has usually been chosen between 10 and 100 (e.g. Gouriéroux

et al., 1993; Sentana et al., 2008). The main reason for choosing H greater than 1 concerns

the variance of the indirect estimator, whose formula includes a scalar factor equal to

(1 + 1/H): the larger is H, the smaller is the estimator variance. For the particular

case of the MML models, we would suggest a much larger value of H, between 500 and

1000. This choice is not due to a further reduction of the estimator variance, but rather

to obtain a smoother function η̃(θ∗), numerically closer to a continuous function. The

numerical derivatives can be then computed reliably with finite differences. In fact, the

MML models are not only nonlinear, but also with discontinuous outcome. A discussion

on the computational benefits due to a smoothing technique can be found in Calzolari

and Di Iorio (2006).

The asymptotic variance–covariance matrix of θ̂ follows straghtforwardly as for the

generalized method of moments (Hansen, 1982)

V (θ̂) =

[
∂η′

∂θ
V (η̂)−1 ∂η

∂θ′

]−1

. (13)

Dealing with a just-identified case, the Jacobian ∂η′/∂θ is a square matrix. The equation

(13) can thus be also derived directly using the δ-method (e.g. Rao, 1973, p. 388). It

is natural to adopt, as an estimate of the Jacobian matrix, the same matrix used in

the calibration procedure (12), upon convergence. The variance-covariance matrix of

the auxiliary parameters V (η̂) can be then estimated as the sample variance-covariance

matrix of the H vectors of length n, independently simulated, whose average has been

computed to obtain η̃(θ∗). This way of computing the estimate of V (η̂) has the advantage

of simplicity, with accuracy guaranteed by the large chosen value of H. In principle, a

closed form evaluation should also be possible for the γ parameters, being the estimation

of the auxiliary parameters based on OLS. However, no closed form can be easily found
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for the parameter σ2, whose estimates are computed as in equations (9) and (10).

4 A Monte Carlo simulation study

This section numerically investigates and compares the finite sample size performance

of the two proposed estimating procedures. Moreover, for a better understanding, DC

and indirect inference estimates are compared with estimates based on the mean of the

posterior MCMC distributions of a Bayesian model, hence called Bayesian, and the

hybrid data cloning estimates, INLA Data Cloning.

The comparative experiment was designed as follows: 500 samples of several dimen-

sions has been generated by a MML model

logitP (Yi = 1 | xi,ui) = β0 + β1xi +
∑
j∈Gi

wijuj

with β0 = −2, β1 = 1, |Gi| = 2 for each i = 1, . . . n, and uj ∼ N(0, 1), that is τ2 = 1. The

probability of a couple of groups to include a same unit was settled at 0.5. Each wi1 was

randomly generated by a Uniform distribution, U ∼ U(0.3, 0.7), while wi2 = 1−wi1. For

the DC, hybrid DC and Bayesian estimator, we set prior distributions βl ∼ N(0, 10), l =

0, 1, moderately vague. The prior distribution for the variance τ2 was quite informative,

U(0, 0.1). We opted for this prior selection to put in evidence the DC invariance property

with respect to prior distribution choice.

We implemented the simulation study using the dclone package Sólymos (2010) in R

(R Development Core Team, 2012) and JAGS Plummer (Plummer) for the DC estimates.

Indirect inference estimates were computed by an ad hoc program in FORTRAN77.

Bayesian estimates have been computed using JAGS Plummer (Plummer), while the

hybrid data cloning estimates have been obtained with the INLA package in R (see for

e.g., Martins et al., 2013, or the web site http://www.r-inla.org).

Table 1 reports the Monte Carlo mean of the estimates, their standard deviations and

the Monte Carlo Mean Squared Errors (MSEs) over 500 Monte Carlo samples. Results
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Table 1: Means, standard deviations (sd) and Mean Squared Errors (MSE) of parameter

estimates on 500 Monte Carlo samples.

Indirect

inference

Data cloning INLA

Data Cloning

Bayesian Mean

Mean sd MSE Mean sd MSE Mean sd MSE Mean sd MSE

J = 50 n = 651

β0 -1.984 0.255 0.065 -1.999 0.249 0.062 -1.994 0.248 0.061 -1.951 0.244 0.062

β1 0.999 0.085 0.007 1.006 0.079 0.006 1.003 0.079 0.006 0.985 0.079 0.007

τ2 0.862 0.530 0.300 0.957 0.445 0.200 0.906 0.429 0.193 0.712 0.522 0.355

J = 100 n = 2 481

β0 -2.014 0.149 0.022 -2.006 0.143 0.020 -2.003 0.145 0.021 -2.005 0.142 0.020

β1 1.001 0.045 0.002 1.001 0.044 0.002 1.001 0.044 0.002 1.002 0.044 0.002

τ2 0.964 0.243 0.060 0.993 0.241 0.058 0.971 0.232 0.055 1.028 0.251 0.064

J = 200 n = 10 038

β0 -1.998 0.090 0.008 -2.000 0.089 0.008 -2.000 0.089 0.008 -1.999 0.089 0.008

β1 1.000 0.021 0.000 1.002 0.020 0.000 1.001 0.020 0.000 1.001 0.020 0.000

τ2 0.978 0.147 0.022 0.998 0.133 0.018 0.991 0.132 0.017 1.002 0.134 0.018
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are uniformly good, with the ML estimator via DC, as expected, producing excellent

results. Some interesting observations can be made. For small samples (J = 50), the best

performance is by far due to the DC and Hybrid DC estimators. Regarding the estimates

of τ2, indirect inference estimator performs better than the Bayesian mean. However, this

could be due to the challenging prior selection. DC and hybrid DC estimators provide

roughly the same result. This result suggests that replacing INLA to MCMC algorithm

speed up the estimating procedure without introducing any relevant approximation error.

Consistency of the DC estimator is confirmed by the simulations. For J = 200, the

average estimates are very close to the true values and the mean squared error decreases

as the sample size increases. Indirect inference performance is in line with the other

procedures for the β parameters while its MSE is only lightly higher than the others.

Figure 2 illustrates the Monte Carlo sampling distributions for the two estimators of

interest. For each parameter, the two distributions are quite close. The best performance

concerns the parameter β1, which is often the main parameter of interest. Concerning

τ2, the indirect inference estimator has usually a mode in a lower point that the due

one, suggesting a frequent underestimate, even if of negligible amount. As sample size

increases, it seems that the DC estimator reaches normality faster than the indirect

inference estimator.

Table 2 summarizes the Monte Carlo experiments for the computation of estimators

standard errors, both for DC and indirect inference. For the DC estimators, standard

errors are computed as in (5), while equation (13) has ben used for the indirect inference

estimators. On average, DC standard errors are generally lower than indirect inference

ones, with the gap reducing as J and n increase. For J = 50, however, indirect inference

standard errors show high variability, particularly for τ2 standard error. This is due

to sporadic cases, such as for example outliers, in which the algorithm fails to find a

reasonable solution.
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Figure 2: Monte Carlo sample distribution of parameter estimates.
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Table 2: Means, standard deviations on standard error estimates (s.e.), and summaries on

asymptotic confidence intervals (CI) on 500 Monte Carlo samples.

Data cloning Indirect inference

β0 β1 τ2 β0 β1 τ2

J = 50 n = 651

Mean s.e. 0.2442 0.0812 0.4413 0.3062 0.1208 0.8322

s.e. standard deviation 0.0261 0.0061 0.1204 0.8568 0.5128 4.0525

Average CI length 0.9572 0.3184 1.7297 1.2003 0.4735 3.2621

CI Monte Carlo coverage 0.9420 0.9600 0.9020 0.9420 0.9580 0.9040

J = 100 n = 2 481

Mean s.e. 0.1441 0.0412 0.2317 0.1448 0.0436 0.2730

s.e. standard deviation 0.0101 0.0017 0.0395 0.0125 0.0025 0.0535

Average CI length 0.5647 0.1616 0.9081 0.5675 0.1709 1.0703

CI Monte Carlo coverage 0.9560 0.9360 0.9320 0.9500 0.9220 0.9540

J = 200 n = 10 038

Mean s.e. 0.0870 0.0202 0.1309 0.0877 0.0213 0.1494

s.e. standard deviation 0.0047 0.0005 0.0141 0.0054 0.0008 0.0186

Average CI length 0.3409 0.0791 0.5130 0.3437 0.0837 0.5856

CI Monte Carlo coverage 0.9400 0.9680 0.9420 0.9400 0.9680 0.9360
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5 A real example: a random effects Bradley &

Terry model for next top model comparison

An interesting illustration of MML models consists of Bradley & Terry models with

random effects. In this section, as an illustrative example, we apply DC and indirect

inference estimating procedure to a Bradley & Terry random effects model on a well

know data set, on Germany’s next top models, year 2007. Data are available in package

psychotree in R (R Core Team, 2014), and have been analyzed by Strobl et al. (2011)

using a Bradley-Terry Model via recursive partitioning.

In this study of the Department of Psychology of University of Tübingen, a sample

of 192 raters/judges, aged between 15 and 77 years, has been asked to judge the attrac-

tiveness of the 6 finalists of the second edition of Germany’s next top models casting

show (Barbara Meier, Anni Wendler, Hana Nitsche, Fiona Erdmann, Mandy, Graff, and

Anja Platzer, in decreasing order according to the final ranking in the show). The choice

was based on paired comparison: contestants photos were showed to each judge two-by-

two, no ties admitted. As judge-specific explanatory variables, gender, age, and three

questions about their interest/knowledge of the TV show were recorded.

The Bradley-Terry (BT) model (Bradley and Terry, 1952) is a model aiming at scoring

a set of items on the basis of paired comparisons. Even if the field of application of BT

models is quite wide, it is customary to adopt sport terminology: each element of the

comparison is called player, each comparison contest, the score of each element is called

ability. Considering each contest as the statistical unit, the BT model can be viewed as a

generalized linear model in which the response variable is binary, assuming value 1 if the

first element of the pair wins the comparison and 0 otherwise. We are going to briefly

sketch these models to show as they are a particular case of MML models, remanding

to (Firth, 2005; Turner and Firth, 2012; Cattelan et al., 2012) for a detailed description

and updated review.

Denoting with ai and aj the positive–valued parameters representing the abilities of
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players i and j respectively, the BT model assumes that the odds of i beating j are ai/aj .

Then, the probability pij that player i beats player j, can be written as

logit(pij) = λi − λj

where λl = log al, l = i, j = 1, . . . , I, with I equals to 6 for Germany’s next top models

data. Assuming independence among contests, the abilities and log–abilities can be

estimated by maximum likelihood by standard softwares, after imposing the opportune

identifiability constraints, for instance λ1 = 0. Extensions of the ordinary BT model

have been considered to include specific characteristics for the players, the contests or

the judges, or to admit the case of draw. In Germany’s next top models data, the

ability of a player can be supposed to depend on a set of contest-specific explanatory

variables, for example the characteristic of the judge of the contest. Consequently, the

corresponding BT model would assume that logit(pkij) = λki −λkj with λkl =
∑R

r=1 βlrxkr,

where k = 1, . . .K is the judge indicator, K = 192 andR = 4 is the number of explanatory

variables. Then,

logit(pkij) =
R∑

r=1

(βir − βjr)xkr.

Notice that the total number of parameters, after the identifiability constraints, is R(I−

1). Moreover, the abilities are decomposed into the sum of judge-specific abilities, and

deterministically depend on the set of covariates included.

In Germany’s next top models data as comparisons are carried out by several judges,

each match (comparison between two specific models) is repeated more than once. Judge-

ments made by the same judge are likely to be dependent. This aspect could suggest

a lack of independence between contests, that can be addressed by including a specific

random component, as

λkl =
R∑

r=1

βlrxkr + ulk

with ulk ∼ N(0, τ2), that assumes a specific, unobserved value whenever the judge k

scores player l. The resulting BT random effect model is a particular case of MML
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model

logit(pkij) =

R∑
r=1

(βir − βjr)xkr + uik − ujk

in which the random effect weights sum to 0, being always 1 for the first component

and −1 for the second. As in Germany’s next top models data we are interested more

in ranking that in explaining the effect of judge-specific covariates, we here adopt the

following model

logit(pkij) = λki − λkj = λi − λj + uik − ujk

that parsimoniously provides a top model scoring and takes into account for dependence

between contests.

Table 3: Estimates of log-ability parameters for the top models (Barbara is the reference

model) and standard errors via Data Cloning and indirect Inference

Log-ability

Barbara Anni Hana Fiona Mandy Anja τ2

Data cloning 0 -0.0208 1.1318 0.6116 -0.8610 -0.6247 6.0726

(s.e.) - (0.3110) (0.3049) (0.3047) (0.3150) (0.3096) (0.7665)

Indirect inference 0 -0.0293 1.0927 0.6381 -0.8939 -0.6292 5.924

(s.e.) - (0.2963) (0.2910) (0.2924) (0.3027) (0.2915) (0.8274)

Table 3 shows the estimates for model log-abilities, whose confidence intervals are

depicted in Figure 3 and the variance of the unobserved component, via DC and indirect

inference. In both cases Hana turned to be first, significantly better of both Barbara,

the actual winner, and the second classified, Anni. These results confirm those obtained,

using a different model and with different aim, by Strobl et al. (2011).

Estimates resulted from the two procedures are quite similar. We set h = 80 cloning

for DC, corresponding to a largest eigenvalue of the posterior variance matrix equal to
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0.0076. For Indirect Inference estimates, we set H = 1000 and starting values equal to

the ordinary BT model, without random effects. Despite such similar results, the compu-

tational time necessary to reach the estimates was incredibly different: 15.62 seconds for

Indirect Inference versus 13 210.55 seconds (over three hours and half) for Data Cloning

(running on an Intelr i3 2120 pc, with 4 GB of Ram).
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Figure 3: Asymptotic confidence intervals for models log-abilities

6 Final remarks

MML models are an interesting class of models for binary response variables, in which

statistical units are supposed to belong to more than one group, in a non-hierarchical

way. Computational difficulties make non Bayesian inference for these models particularly

cumbersome. In particular, maximum likelihood inference entails the necessity of solving

a high dimensional integral.

This paper provides two alternatives for estimating MML model parameters. The first

procedure, Data Cloning, results in approximate maximum likelihood estimates, which
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are shown to be consistent and asymptotically Normal. The second procedure, Indirect

Inference, is based on an auxiliary model. Our strategy for this choice has been driven

by accuracy, simplicity and computational speed of the algorithm.

The numerical study confirms the expected performance of the maximum likelihood

estimates and highlights the good behaviour of Indirect Inference estimator. The basic

conclusion is that the indirect estimator is slightly biased, but by far faster than both

the data cloning and MCMC estimators.

The two procedures have been successfully applied to estimate a random effect Bradley

and Terry model to analyse 2007 Germany’s next top models data. Notice that both

the estimation algorithms proposed can be easily extended to non-Gaussian and cross-

classified random effects.

A Appendix

Proof of theorem 1 The theorem can be proved by verifying that Theorem 5 in Jiang

et al. (2013) holds. MML models belong to the class of Generalized Linear Mixed Models

as defined by Jiang et al. (2013): conditionally to a vector u of random effects, Y1, . . . Yn

are conditionally independent and have distribution belonging to the exponential family.

The natural parameter is associated the conditional mean, with E[Yi | u] = g(x′iβ+z′iu).

In MML models, g is the inverse logit link and zi is w′i as defined in (2). Finally,

u ∼ N(0, τ2I). Consequently, Theorem 5 Jiang et al. (2013) applies as far as the subset

argument can be used satisfying theorem assumptions.

Consider the subset yM = (ya), a ∈M , with probability distribution, under θ,

pθ(ya) = E

[
exp

{
ya(µ+ ξ)

}
1 + exp(µ+ ξ)

]

where µ =
∑p

l=1 βlxla and ξa =
∑

j∈Ga
wajuj , (

∑
j∈Ga

w2
aj)
−1/2ξa ∼ N(0, τ2). Assuming

23



m→∞ as n→∞, the subset yM satisfies Jiang et al. (2013)’s assumption (A1) and the

so called Jiang’s subset argument can be applied. Moreover, assumption (B2) holds as

τ2 > 0, while assumption (B3) is fulfilled as m−1 log(n) → 0 paralleling the proof given

in Section 4 Jiang et al. (2013). The remaining assumptions, (C1) and (C2) are fulfilled

according to a proof paralleling that given in Section 6 in the Supplementary Material of

Jiang et al. (2013). �

Proof of theorem 2 The proof derives by the consistency of the ML estimator of θ

and by the dominated convergence theorem. See Section 8 of the Supplementary Material

of Jiang et al. (2013) for detailed proof. �
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