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ABSTRACT

The use of Monte Carlo methods to generate exam data sets is nowadays a well-established practice

among econometrics examiners all over the world. Its advantages are well known: providing each

student a different data set ensures that estimates are actually computed individually, rather than

copied from someone sitting nearby. The method however has a major fault: initial “random errors”,

such as mistakes in downloading the assigned dataset, might generate downward bias in student eval-

uation. We propose a set of calibration algorithms, typical of indirect estimation methods, that solve

the issue of initial “random errors” and reduce evaluation bias. Ensuring round initial estimates of the

parameters for each individual data set, our calibration procedures allow the students to determine

if they have started the exam correctly. When initial estimates are not round numbers, this random

error in the initial stage of the exam can be corrected for immediately, thus reducing evaluation bias.

The procedure offers the further advantage of rounding markers life by allowing them to check round

numbers answers only, rather than lists of numbers with many decimal digits.

Keywords: Indirect estimation, calibration procedure, round number estimates, econometrics exams.
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1 Introduction

The aim of this paper is to improve the quality of life of econometrics examiners through an unusual

application of indirect estimation calibration algorithms.

It is a common practice for many examiners to include some practical applications of econometric

techniques in their exam papers. This might entail OLS, 2SLS, 3SLS, NLLS, or MLE estimation as a

preliminary step followed by some hypothesis testing, goodness of fit analysis, forecasting and maybe

scenarios simulation. As a result of the strong and natural cheating attitude of students all over the

world, Monte Carlo methods are now widespread. Thanks to their ability to generate quickly a large

number of different datasets, they allow the examiners to provide each student with a different data

set, and different expected estimation results. Should a student copy another student’s estimation

results, she/he would be immediately spotted and severely punished. The weakness of this evaluation

method lies in its sensitivity to random mistakes. For example, the overemotional attitude of students

during exams implies that data import mistakes are quite common even among first class students.

Furthermore students display a natural tendency to fall into local maxima/minima instead of achieving

the global one while programming iterative numerical algorithms for M estimators. The occurrence of

such mistakes can induce a serious bias in the evaluation of students performance. Wrong estimation

results and conclusions might arise not only as a consequence of inadequate exam preparation, but

also as the outcome of some initial mistakes. This might generate either upward or downward bias in

students evaluation. Bias reduction can only be achieved via exact replication of the computational

steps which lead to the wrong result. This technique is extremely time consuming and it relies on

an examiner ability to replicate an overemotional student computational mistakes. As the students

sample size increases to infinity, the effectiveness of such bias reduction method converges to zero with

rate of convergence depending on the examiner’s good mood.

It has been suggested in the literature that providing the students with some of their expected esti-

mation results could solve this issue, however it might also generate upward bias in the evaluation of

poorly-prepared students.

This paper introduces a bias elimination method based on indirect estimation calibration algorithms.

It is prompted by the consideration that if each individual data set is generated with indirect es-

timation calibration algorithms, it can produce round numbers estimates. Thus, while retaining the

advantage of individuality of the data sets, this method enables students themselves to be aware of any

computational mistake in their exams and to get rid of it. Obtaining round numbers estimates (that

is numbers with a convenient amount of zeros, say for example 5.00000, or 10000.00000, or 0.20000),

the student knows that no computational mistake occurred, otherwise she/he is aware of a mistake

and of the necessity of computing the initial estimates again correctly. At the same time the student

cannot get any benefit from watching at other students’ estimation results, that could be numbers

like 4.00000, or 2500.00000, or 0.10000. This method offers the further advantage of speeding up the

marking process for examiners: checking scripts with round number estimates only is faster and by far

less stressful than checking long lists of decimal digits numbers.

The method can be applied to a large variety of econometric models. The following sections provide

some examples for the most commonly used models and describe in some details the calibration

algorithms for each of them. For each of the models, the simple rule is always the following one: if

parameters have been estimated as requested by the examiner, they must be round numbers (different
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for each student, drawn at random from a prefixed menu of round numbers, and of course meaningful

from the economic viewpoint in terms of sign and magnitude).

2 Static linear regression model and OLS

A dataset is given to each student, together with the equation

yi = δ1 + δ2xi + δ3di + εi εi i.i.d. (0, σ2) i = 1, 2, ..., n

that must be estimated by OLS. The dataset may have a small, medium or large number of observa-

tions. The example here is with a large number of observations, so that a similar dataset can be used

also in the following section, where a moderately large dataset is necessary.

i y x d

1 588.3566145963907 1.100 0.000

2 466.2769870928506 0.900 1.000

3 547.8717011872933 0.500 0.000

... ... ... ...

398 612.3154009309173 0.900 0.000

399 583.5503587812454 0.500 1.000

n=400 624.8176359396298 1.000 1.000

(there is an unpleasant excess of decimal digits for the dependent variable; the compromise between

excess of digits in the dataset and precision of the round estimates will be discussed in section 7.1).

For this particular case there is no need of the calibration procedures typical of the indirect estimation

methods. It is enough to generate a vector u ∼ N(0, In), then project it orthogonally to all regressors

and multiply it by a prefixed σ (for instance = 30.00000; also the correction for degrees of freedom

must be taken into account). This produces a tricky pseudo-random vector

ε = σ (IT −X(X ′X)−1X ′) u;

being orthogonal to all regressors, it can be used in the equation to simulate the vector y, and OLS

estimation will leave unchanged the coefficients. With a simple rescaling of ε that takes into account

n and k for the degrees of freedom correction, also the estimation of σ would coincide with the desired

value.

So if we fix

δ1=500.00000 δ2=100.00000 δ3=2000.00000 σ=30.00000

to simulate the data, OLS estimates of coefficients and σ will be exactly equal to the pre-fixed δ and σ.

There is no need of any iterative calibration technique; the dataset is produced in one-shot and the

student that obtains estimates like those displayed above is sure to have done all the first computations

correctly.
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3 Regression model with conditional heteroskedasticity

The model is quite similar to the previous one, also with a moderately large dataset, but data are time

series rather than cross-section data.

yt = δ1 + δ2xt + δ3dt + εt t = 1, 2, ..., T.

The error terms are affected by conditional heteroskedasticity and are supposed to be well modelled

as a Gaussian GARCH(1,1) (e.g. Bollerslev, 1986, Engle, 1982)

εt ∼ Gaussian GARCH(1,1)

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1

If the student applies correctly the Gaussian maximum likelihood estimation, regression coefficients

should be, for instance,

δ̂1=500.00000 δ̂2=100.00000 δ̂3=2000.00000

while GARCH parameters should be

α̂0=100.00000 α̂1=0.10000 β̂1=0.80000

thus with unconditional variance

α̂0

1−α̂1−β̂1
=1000.00000

The dataset can be produced with the calibration procedure typical of the indirect estimation tech-

niques applied correctly, but .... without any inferential purpose!

3.1 Calibration procedure and production of the datasets

Using the terminology typical of indirect estimation, the true model y = M(θ) and the auxiliary

model y = M(β) are exactly the same model, apart from the parameter names. It is a case of

just-identification, with a strict one-to-one correspondence between parameters. Among the various

indirect estimation procedures available in the literature, the one which is applied here is closer to

the Gourieroux et al. (1993), rather than Smith (1993), or Gallant et. al (1996). The length of the

simulated data and the sample size will always be equal (using symbols familiar to the practitioners

of indirect estimation methods, H = 1, thus length HT = T ).

The observed y do not exist, thus no estimation of the auxiliary model has to be done on the observed

variables. The usual phase of estimation of the auxiliary model on the observed variables (usually

producing the pseudo-maximum likelihood estimates β̂) is replaced by fixing β̄ at the target values

(round numbers, meaningful from the economic viewpoint).

The followings are the steps of the procedure.

1) Fix target β̄ for each student: each element of β̄ is chosen at random from a menu of meaningful

round numbers (for instance, those of the example above, where in particular the GARCH parameters

must satisfy the usual stationarity conditions).

2) Initially choose θ̃ = β̄. It is surely a good initial choice of the parameters to be used for producing
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the simulated data; thus, the Newton-Raphson solution algorithm should not encounter convergence

problems.

3) Use θ̃ to produce simulated data.

4) On the simulated data, estimate the auxiliary model’s parameters β̃ (that will be obviously β̃ = β(θ̃),

a function of the parameters used to simulate the data) and compare it with the target β̄.

5) Calibrate θ̃ and iterate the process from step 3, till β̃ = β̄. From a mathematical viewpoint, this

calibration phase is the solution of the equations system β(θ) = β̄, where θ are the unknowns, β̄ have

been fixed as desired values, β(θ) is the system of functions implicitly constructed by the estimation

of the auxiliary model. Taking advantage of the good initial choice of the unknowns θ, the iterative

Newton-Raphson algorithm is applied, providing at the k + 1th iteration θ
k+1

= θ
k
− J−1

k
[β(θ

k
) − β̄],

with numerical computation of derivatives in the Jacobian matrix J = ∂β(θ)/∂θ′.

6) Ignore all values used for θ; only save the last set of simulated variables. These will be given to the

student, who has to treat them as observed values of the y. When the student estimates parameters

of the y = M(β) model, the results will be exactly the prefixed round β̄.

3.2 Conditional heteroskedasticity and forecast

For the same model of section 3, yt = δ1 + δ2xt + δ3dt + εt

εt ∼ Gaussian GARCH(1,1)

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1

the student also receives the values of the exogenous variables predicted for tomorrow (x
T+1

, d
T+1

).

They must be used to forecast tomorrow’s y
T+1

and the volatility σ
T+1

.

These are, for example, values that might be produced

δ̂1=500.00000 δ̂2=100.00000 δ̂3=2000.00000

α̂0=100.00000 α̂1=0.10000 β̂1=0.80000 α̂0

1−α̂1−β̂1
=1000.00000

ŷ
T+1

=2600.00000 σ̂
T+1

=30.00000

Round number for ŷ
T+1

is automatically produced, with a simple choice of x
T+1

and d
T+1

.

For the volatility, the usual indirect estimation techniques are applied with a tricky modification.

The vector θ is augmented with one more parameter to be calibrated simultaneously with the previous

ones: the last random error term u
T

(or ε
T
).

The vector β is augmented with one more target: the volatility of tomorrow σ
T+1

.

Now θ has 7 elements: 3 coefficients, 3 GARCH parameters and u
T

(or ε
T
).

Also β has 7 elements, the last one being σ
T+1

.

As in section 3.1, θ will be iteratively calibrated till estimated β̃ = β̄. Precision in the pseudo-maximum

likelihood estimation of the GARCH parameters is ensured by the analytical computation of first and

second order derivatives, as in Fiorentini et al. (1996).
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All the values used for θ will be ignored, and only the last set of simulated variables will be saved.

These will be given to the student, who has to treat them as observed values of the variables.

The student receives also the values of the exogenous variables predicted for the day after tomorrow

(x
T+2

, d
T+2

) and has to use the model to forecast also y
T+2

and the conditional variance σ2
T+2

.

In addition to the estimated values displayed above, with a simple choice of x
T+2

and d
T+2

, round

values could be obtained also for

ŷ
T+2

=2600.00000 and σ̂2
T+2

= α̂0

1−α̂1−β̂1
+ (α̂1 + β̂1)(σ̂

2
T+1

− α̂0

1−α̂1−β̂1
) = 910.00000.

No further calibration is required to get these last round values.

4 Logit model

For a problem of discrete choice, the student receives the individual dataset and is requested to estimate

the logit model

prob[y
i
= 1] =

exp
(
δ1 + δ2xi

+ δ3zi
+ δ4qi

)

1 + exp
(
δ1 + δ2xi

+ δ3zi
+ δ4qi

)

as discussed in econometric textbooks (e.g. Greene, 2008, ch.23).

i y x z q

1 0. 1.0 8.0 -0.736072071285318

2 1. 2.0 5.0 0.396914342224885

3 1. 4.0 3.0 1.145589102963721

... ... ... ... ................

198 0. 0.0 4.0 0.080969978915930

199 0. 0.0 2.0 -0.705199321511834

200 0. 1.0 2.0 -1.079599537479198

These are, for example, values that might be obtained from the estimation

δ̂1=-3.00000 δ̂2=0.50000 δ̂3=0.40000 δ̂4=1.00000

To produce the dataset, there is no need of the calibration technique typical of indirect estimation

methods. Analogously to OLS (sect. 2), we take advantage of the orthogonality relationships. But since

the dependent variable yi is integer, the variable with many decimal digits will be one of explanatory

variables.
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5 Linear panel data model with random effects

y
i,t

= δ1 + δ2xi,t
+ δ3zi,t

+ δ4qi,t
+ αi + e

i,t

i t y x z q

1 1 14.6903076350614 1.00 5.00 1.00

1 2 50.7317760110699 1.00 5.00 2.00

1 3 27.9682784991741 1.00 6.00 2.00

1 4 30.5478373176867 1.00 7.00 2.00

.... ................ .... .... ....

99 1 5.0000000000000 1.00 3.00 0.00

99 2 0.3539053628556 0.00 0.00 1.00

99 3 0.0000000000000 0.00 0.00 1.00

99 4 9.6645145817598 0.00 0.00 1.00

The standard hypotheses are assumed (e.g. Baltagi, 1998, sect. 12.2.2, or Wooldridge, 2002, sect.

10.4). The individual effects αi and the idiosyncratic errors e
i,t

are assumed to be normally distributed,

mutually independent, homoskedastic and without autocorrelations of any order.

When the student applies Gaussian maximum likelihood, estimates would be like

δ̂1=1.00000 δ̂2=3.00000 δ̂3=1.00000 δ̂4=8.00000

σ̂2
α=64.00000 σ̂2

e=81.00000

To produce the dataset, indirect estimation is applied correctly, as in section 3.1. calibrating the 6

parameters.

6 Linear time series model

The student has to deal with one of the following models:

MA(1), MA(2), AR(1), AR(2), ARMA(1,1).

t y

1 -306.7935808544725

2 -311.9435496768569

3 -291.9642620525142

... .................

398 -347.2085655352504

399 -376.1035906386596

400 -375.4223070201451

The student is requested to apply, first of all, the Box-Jenkins (1979) identification rules (see, for

instance, Granger, 1989, ch. 3). For example, the student realises that autocorrelations of order 1
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and 2 are significantly different from zero, while all other autocorrelations are inside the confidence

band, while partial autocorrelations are significantly non-zero till some moderately large order. Thus

the student should select

MA(2): y
t
= δ1 + εt + δ2εt−1 + δ3εt−2

and estimate the parameters by maximum likelihood, obtaining, for instance

δ̂1=-400.00000 δ̂2=0.40000 δ̂3=0.50000 σ̂2=900.00000

To produce the dataset, indirect estimation procedures are applied correctly as in section 3.1, calibrating

the δ and σ parameters (here 4 parameters). Their computer implementation is moderatly simple and

always runs in a smooth and fast way.

Inconveniences may easily arise after completion of the procedure. A first check of coherence is per-

formed on the series produced. Autocorrelations and partial autocorrelations, till a prefixed order,

should satisfy the identification rules for that particular model. If not all the rules are respected,

model and dataset are rejected, a new random choice of a model is performed, and the construction

of its corresponding dataset starts again.

One more type of inconvenience may arise when computing the standardized residuals. It frequently

happens that they cannot be regarded as a white noise, because the autocorrelation of some order is

significantly non-zero (lags till 12 are usually checked). Also in this case, the model and its dataset

are rejected, a new random choice of a model is performed, and the procedure starts again.

The number of rejections is quite large (it obviously becomes larger when enlarging the number of

lags). Checking correlations till 12 lags, the number of accepted models and datasets is about 5% of

the models and datasets produced. Nevertheless the procedure is very fast, as the average computation

time to produce an acceptable model is about 1 second on a PC with a modern i7 processor.

7 Simultaneous equations

Klein-I model (Klein, 1950) has been used for several decades as the benchmark for experimenting

econometric techniques on systems of simultaneous equations. Among many others (very many others

indeed), one can cite in the fifties Chernoff et al. (1953); in the sixties Goldberger et al. (1961); in the

seventies Hendry (1971); in the eighties Bianchi et al. (1982); till the nineties and later Calzolari et

al. (1993), Renfro (2009).

The model is presented in Greene (2008, ch. 10) as




Ct = α1,1 + α1,2Pt + α1,3Pt−1 + α1,4(W
p
t

+ W g
t
) + u1,t

It = α2,1 + α2,2Pt + α2,3Pt−1 + α2,4Kt−1 + u2,t

W p
t

= α3,1 + α3,2Xt + α3,3Xt−1 + α3,4At + u3,t

Xt = Ct + It + Gt

Pt = Xt − Tt −W p
t

Kt = Kt−1 + It

consumption

investment (net)

private wages

equilibrium demand

profits

capital stock
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Besides the 6 endogenous variables, the model also includes some exogenous variables: W g
t

= gov-

ernment wages, Tt = business taxes, At = proxy for bargaining power of labour (or union strength;

during the sample period it is a linear time trend, measured as annual deviations from 1931, positive

or negative), Gt = government nonwage expenditure..

Each student receives a modified model. While accounting equations (or identities, i.e. the last

three equations) are always as above, each of the first three behavioural stochastic equations can be

modified, with insertion (or cancellation, or modification) of some regressors. Needless to say, each

modified equation must be meaningful from the economic viewpoint. For instance, the consumption

equation could be without lagged profits

Ct = α1,1 + α1,2Pt + α1,3(W
p
t

+ W g
t
) + u1,t

or with taxes as additional regressor

Ct = α1,1 + α1,2Pt + α1,3Pt−1 + α1,4(W
p
t

+ W g
t
) + α1,5Tt + u1,t

or include lagged value of wages and salaries

Ct = α1,1 + α1,2Pt + α1,3(W
p
t

+ W g
t
) + α1,4(W

p
t−1

+ W g
t−1

) + α1,5Tt + u1,t

or it can be modified in other ways.

The investment equation could be modified with the inclusion of taxes as additional regressor

It = α2,1 + α2,2Pt + α2,3Pt−1 + α2,4Kt−1 + α2,5Tt + u2,t

or with the inclusion of the lagged dependent variable

It = α2,1 + α2,2Pt + α2,3Pt−1 + α2,4Kt−1 + α2,5It−1 + u2,t

or in other ways.

Also the third equation can be modified in several ways; for instance, excluding the regressor At

W p
t

= α3,1 + α3,2Xt + α3,3Xt−1 + u3,t

or including lagged value of wages and salaries

W p
t

= α3,1 + α3,2Xt + α3,3Xt−1 + α3,4At + α3,5(W
p
t−1

+ W g
t−1

) + u3,t

Etcetera.

t C I Wp X

1961 95.70054522459304734 -9.67678579582512686 71.40132348840745213 88.423759450.....

1962 95.22062596580400958 -3.74407131601168135 69.92187641252546463 95.376554342.....

1963 105.12850618957142301 5.34134451905109693 79.45634139702196552 113.669851376.....

.... ..................... ................... .................... ..................

2012 126.79974091720402202 11.26544320067497741 95.63361169572591585 144.665182971.....

2013 129.89585884936650070 7.79875257518685015 98.53541764346997334 145.094610918.....

2014 137.00585393833001646 10.12679862413780732 104.69845550509313529 160.932651759.....

There is clearly an unpleasant excess of decimal digits in the dataset. In a first phase, if the dataset

is used with all decimal digits and the model includes 4 coefficients in each equation, like the original

model, 2SLS estimates would be
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α̂ =




30.000000000 0.100000000 0.100000000 0.800000000

30.000000000 0.400000000 0.300000000 − 0.200000000

30.000000000 0.300000000 0.100000000 0.100000000

Σ̂ =




2.000000000 − 1.000000000 1.000000000

−1.000000000 1.000000000 − 1.000000000

1.000000000 − 1.000000000 2.000000000




(alternatively, data could be produced in order to get round numbers from 3SLS estimation). To

produce the dataset, indirect estimation is applied correctly as in section 3.1, calibrating the α and Σ

parameters (here 12 + 6 parameters).

7.1 Compromise on the number of decimal digits

Too avoid the excess of decimal digits in the dataset, a compromise can be adopted between the

number of decimal digits and the number of zeroes after the decimal point in the estimates.

A first tentative solution could be obtained truncating or rounding all dataset numbers at 6 decimal

digits: thus, for instance, the integer part of each number would be billions of Euros or of US Dollars,

the decimal digits would be millions and thousands.

t C I Wp X

1961 95.700545|22459304734 -9.676785|79582512686 71.401323|48840745213 88.423759|450....

1962 95.220625|96580400958 -3.744071|31601168135 69.921876|41252546463 95.376554|342....

1963 105.128506|18957142301 5.341344|51905109693 79.456341|39702196552 113.669851|376....

.... ..........|........... ........|........... .........|........... ..........|.......

2012 126.799740|91720402202 11.265443|20067497741 95.633611|69572591585 144.665182|971....

2013 129.895858|84936650070 7.798752|57518685015 98.535417|64346997334 145.094610|918....

2014 137.005853|93833001646 10.126798|62413780732 104.698455|50509313529 160.932651|759....

If the resulting 2SLS estimates were like

α̂ =




30.0000003272 0.1000002814 0.1000003165 0.8000003165

30.0000001488 0.4000003143 0.3000002879 − 0.2000003000

30.0000003334 0.3000002924 0.1000003155 0.1000003064

the procedure would be succesfull.

But unfortunately it may easily happen to obtain

α̂ =




29.9999994762 0.1000002814 0.1000003165 0.8000003165

30.0000001488 0.3999995144 0.3000002879 − 0.2000003000

29.9999991256 0.3000002924 0.1000003155 0.1000003064

Believe it or not, asking the student to display results rounded at a couple of decimal digits, it will be

frequent the case of a 29.99 displayed as result for the first coefficient, rather than 30.00!

A solution to this problem can be obtained fixing the targets not at 30.000000, 0.1000000, etc. but

fixing them at 30.000001, 0.1000001, etc. Having done this, now the indirect estimation procedure
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can be applied correctly, calibrating the α and Σ parameters (here 12 + 6 parameters), and simulated

variables are reported in the dataset rounded at 6 decimal digits. The unpleasant excess of decimal

digits has been removed.

If this dataset is produced and given to the student,

t C I Wp X P K Wg T A G

1961 95.700545 -9.676785 71.401323 88.423759 13.622436 106.795056 2.2 3.4 -9.0 2.4

1962 95.220625 -3.744071 69.921876 95.376554 17.754678 103.050985 2.7 7.7 -8.0 3.9

1963 105.128506 5.341344 79.456341 113.669851 30.313510 108.392329 2.9 3.9 -7.0 3.2

.... .......... ......... ......... .......... ......... .......... ... ... ... ...

2012 126.799740 11.265443 95.633611 144.665182 40.131571 308.066428 7.8 8.9 5.0 6.6

2013 129.895858 7.798752 98.535417 145.094610 36.959192 315.865180 8.0 9.6 6.0 7.4

2014 137.005853 10.126798 104.698455 160.932651 44.634196 325.991978 8.5 11.6 7.0 13.8

2SLS estimates rounded at more than 2 decimal digits (here 5) would be

α̂ =




30.00000 0.10000 0.10000 0.80000

30.00000 0.40000 0.30000 − 0.20000

30.00000 0.30000 0.10000 0.10000

Σ̂ =




2.00000 − 1.00000 1.00000

−1.00000 1.00000 − 1.00000

1.00000 − 1.00000 2.00000




(In principle further improvements are possible, to increase the number of desired exact decimal digits

in the estimates, by introducing more decimal digits into the exogenous variables. We feel it unneces-

sary, as the results seem elegant enough).

Inconveniences may easily arise after completion of the procedure. Due to the complexity of the model,

many checks should be performed to verify that the model and the dataset are economically coherent

and surely manageable by the student. The structural form coefficients have been chosen from a menu

where all numbers are meaningful from the economic viewpoint. For instance, in the consumption

equation, the marginal propensity to consume of profits and of wages and salaries are positive and

less than one, coefficient of profits being smaller than the coefficient of wages and salaries; or, if taxes

are inserted into the equation, the coefficient must be negative; etc. However, it may happen that,

after structural form coefficients have been computed with the desired round values, impact or delay

multipliers have the wrong sign (if, for instance, the Keynesian multiplier ∂Xt/∂Gt is negative, or it is

positive but too large). Or it may happen that the value forecasted out of sample one-step-ahead for

C
T+1

is more than 20% larger or smaller than the last observed value in the sample, C
T
, which would

be unreasonable from the economic viewpoint.

If one of these checks (also other checks are performed) does not give correct results, the model and

its dataset are rejected; a new random choice of a model is performed, and the construction of its

corresponding dataset starts again.

For some exams, students are requested to estimate (in this case simply by OLS) the first equation

(consumption) where all variables are replaced by their logarithms. In this case, the simultaneous

solution of the model (and therefore also the computation of forecasts, goodness of fit indicators, mul-

tipliers) requires the implementation of some numerical solution method like Gauss-Seidel; and it may
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happen that the Gauss-Seidel numerical solution method does not converge in one of the years, when

performing the static or the dynamic solution of the model (unless specific tricks are experimented

with, like equations reordering or introduction of relaxation parameters; these are however not re-

quested to the students). If this happens, or any of the same checks performed on the linear model

does not give positive results, also in this case the model and its dataset are rejected.

The number of rejections is moderately small, and computation is fast. If only linear models have

to be produced, there are about 30% rejections, and the average computation time to produce an

acceptable model is a bit more than 1 second on a PC with a modern i7 processor. If also the

nonlinear modification of the model is requested, there are about 70% rejections, and the average

computation time to produce an acceptable model is about two and a half seconds.

8 Computation

Algorithms have been programmed in Fortran-77. The basic structure of the main program is essen-

tially still as in the stochastic simulation program that was announced many years ago in Econometrica

(Bianchi et al. 1978). Then, a set of specific subroutines deals with each of the models discussed above,

separately. For each model, the calibration procedure is programmed inside one of the specific sub-

routines, and it is essentially as it was implemented in Calzolari et al. (1998).

The version of the programs which is available on request from the author is slightly more user-friendly.

No installation procedure is requested. The executables can directly run on any 32 or 64 bits Windows

system. The source Fortran code is also supplied for each type of model (it can be modified by

expert programmers, or it can undergo the usual compile, link and go procedure under other operating

systems). Also an ASCII data file for each type of model contains some specifications that can be

modified or adapted by the user, such as initial and final year of the time series, number of the cross-

section units, etc. A simple ASCII text file must be provided by the user with the list of the student’s

names (a sample is provided).

For each model, all outputs are ASCII text files. There is one file for each student (containing the

individual dataset, as well as a brief description of the model to be estimated) and one Latex file, for

the examiner, containing all the expected results.
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