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Abstract

In longitudinal studies with subjects measured repeatedly across time, an important prob-
lem is how to select a model generating data choosing between a linear regression model and a
linear latent growth model. Approaches based both on information criteria and on asymptotic
hypothesis test on the variances of ”random” components are largely used but not completely
satisfactory. In the paper we propose a finite sample parametric test based on the trace of the
product of estimates of two variance covariance matrices, one defined when data come from a
linear regression model, the other defined when data come from a linear latent growth model.
The sampling distribution of the test statistic so defined depends on the model generating
data. It can be a ”standard” F -distribution or a linear combination of F -distributions. In the
paper a unified sampling distribution based on a generalized F -distribution is proposed. The
knowledge of this distribution allows us to make inference in a classical hypothesis testing
framework. The test statistic can be used by itself to discriminate between the two models
and/or, duly modified, it can be used to test randomness on single components of the lin-
ear latent growth model avoinding the boundary problem of the likelihood ratio test statistic.
Moreover, it can be used in conjunction with some indicators based on information criteria
giving estimates of probability of accepting or rejecting the model chosen.

keywords: Linear Mixed Models; Longitudinal data; Generalized F -distribution; Hypothesis
testing.

1 Introduction

It is common practice in many applications to collect multiple measurements on subjects across
time focusing interest on the process of change when, typically, both data dependency and differ-
ential growth for different individuals can occur. If we assume that the subjects constitute a sample
from the population of interest and we wish to draw conclusions about typical patterns in the pop-
ulation and the subject-to-subject variability of these patterns, we are fitting linear latent growth
models. In the paper these models are analyzed by using a mixed-modeling framework (Laird and
Ware, 1982). Linear mixed models can be viewed as extensions of linear regression models and
attempt to account for within-subject dependency in the multiple measurements by including one
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or more subject-specific latent variables in the regression model. Typically, an additional random
effect is included for each regression coefficient that is expected to vary among subjects. An im-
portant practical problem is how to discriminate between a linear regression model and a linear
mixed model and how to choose the random effect components. To address the issue of which
model is more suitable, one might use standard model selection measures of information criteria
such as the widely used Akaike Information Criteria (AIC; Akaike (1973)), the Bayesian In-
formation Criteria (BIC; Schwarz (1978)) the conditional Akaike Information Criterion (cAIC,
Vaida and Blanchard (2005)). These approaches are based on choosing models that minimize an
estimate of a specific criterion that usually involves a trade-off between the closeness of the fit to
the data and the complexity of the model. We refer to the paper of Muller et al. (2013) for a review
of these approaches and other methods such as shrinkage methods like the LASSO (Tibshirani,
1996), Fence methods (Jiang et al., 2008) and Bayesian methods.

The validity of all the methods proposed depends on the underlying assumptions. The review
paper of Muller et al. (2013) gives an overview of the limits and most important findings of the
above approaches extracting information from some published simulation results. As known one
of the major drawback of these approaches is that they do not give any measure on the degree of
uncertainty of the model chosen. The value they produces does not mean anything by itself.

Alternatively, because model selection is closely related to hypothesis testing, the choice be-
tween a linear regression model (LRM ) and a linear latent growth model (LLGM ) and the eval-
uation of its uncertainty could be conducted considering a formal hypothesis test on the variances
of ”random” components. Noting that models are nested, it is natural to consider the likelihood
ratio test. However, there is difficulty with this that makes the usual approach of comparing the
likelihood ratio test statistic to the chi-square distribution inappropriate. Asking whether the vari-
ance of a component is zero corresponds to whether this variance takes its value on the boundary
of the parameter space. This situation is known as ”non-standard” relative to the other uses of the
likelihood ratio test. The major consequence is that in large sample −2 times the logarithm of
the likelihood ratio cannot be treated as a chi-square distribution but instead as a mixture of chi-
square distributions. Determining the weights of this mixture distribution is difficult especially
for testing multiple variance components or a subset of them. For more details see, for example,
Self and Liang (1987), Stram and Lee (1994), Verbeke and Molenberghs (2003), Giampaoli and
Singer (2009) . Comparing the likelihood ratio statistic to the critical value from a chi-square
sampling distribution tend to not reject the null as often as it should. Other test not based on
the likelihood function can be implemented (Silvapulle and Sen, 2005) but their validity is to be
detected carefully when applied to linear mixed models. Moreover, all these tests are valid only
asymptotically. Finite sample distributions of the likelihood ratio test require simulation and are
known only for particular cases, for example Crainiceanu and Ruppert (2004) introduced an effi-
cient simulation algorithm based on the spectral representations of the likelihood ratio test and the
restricted likelihood ratio test statistics for models with a single variance component.

When we extend the analysis to multiple variance components, complexity and difficulties
increase. In these cases we have to consider variance covariance matrices and the problem of
testing the equality of two positive definite matrices. Hypothesis testing approaches based on
the equality of two positive definite matrices has a distinguished history in multivariate statistics.
In most cases it is used the likelihood ratio approach and the resulting test statistics involve the
ratio of the determinant of the sample covariance matrix under the null hypothesis and under the
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alternative hypothesis. Other researchers have studied tests based on the trace of two covariance
matrices. Roy (1953), Pillai (1955), Pillai and Jayachandran (1968) and Nagao (1973) develop
trace-based tests and compare their performance to that of determinant-based tests. The trace test
proposed by Pillai for testing the equality of two variance covariance matrices appears to be useful
to discriminate between a LRM and a LLGM defining appropriately the two matrices involved.

Let’s denote with V the variance covariance matrix of the ordinary least square estimators
when data come from a LRM and let V +Ω be the variance covariance matrix of the same estima-
tors when data come from a LLGM where Ω denotes the covariance matrix of the random effects.
The Pillai’s type test statistic proposed in the paper is based on an estimate of 1

k tr V −1(V + Ω)
with Ω that has a crucial role to discriminate between the two models. If Ω is a positive semi
definite matrix, Ω ≽ 0, 1

k tr V −1(V + Ω) > 1. In this case we can state that data come from
a LLGM . If Ω = 0, 1

k tr V −1(V + Ω) = 1 and data come from a LRM . In section 2 af-
ter introducing some notation, the test statistic is defined. In section 3 we analyze the sampling
distribution. When data come from a LRM it has a ”standard” F -distribution, when data come
from a LLGM the sampling distribution is more complex. It is a linear combination of standard
F -distributions whose exact form is studied. Following the work of Kourouklis and Moschopou-
los (1985) a unified sampling distribution involving a generalized F -distribution is proposed. This
distribution is based on a series representation and is relatively easy to implement. In section 4 we
discuss the test statistic to make inference. In section 5, we analyze a slight modification of the
test so that inference on randomness of single components of the model is possible. Finally two
applications are investigated. In section 6 we applied the test to a data set on tourism. This data set
is sufficiently ”regular” to allow a clear-cut answer on the choice of the model. The answers pro-
duced by the test are not conflicting with those given by AIC’s indicators. The advantage coming
from a hypothesis testing approach is that we can attach a measure of the degree of uncertainty
to the choice of the model. In section 7 the test is applied to a Cadralazine data set previously
analyzed by Vaida and Blanchard (2005). In this case different AIC’s indicators applied to the
data set does not give clear-cut indications about the model. There is a substantial indeterminacy
which remains also using the test proposed in the paper but still again we can give some more
information computing an estimate of the probability to accept the ”wrong” model.

2 Notation and test statistic

Suppose that t observations on the i-th of n units are described by the model yi = Xβi + ui,
i = 1, . . . , n, where X is a t × k matrix containing a column of ones and a column of constant
time values, βi is a k × 1 vector of coefficients unique to the i-th experimental unit, ui is a t × 1
vector whose component is the measurement error at a time point for individual i.

Suppose that each experimental unit and its response curve is considered to be selected from
a larger population of response curves; thus the regression coefficient vectors βi may be viewed
as random drawings from some k-variate population: βi = θ + vi, i = 1, . . . , n, where vi is an
unobserved random variable that configures individual growth.

In this paper we discuss testing under the following assumptions: (a) ui ∼ N
(
0, σ2It

)
, (b)

vi ∼ N (0,Ω), Ω is a positive semi definite matrix, (c) ui ⊥ vi, where the symbol ⊥ indicates
independence of random variables (d) βi ⊥ ui. We refer to this model as linear latent growth
model.
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If Ω = 0, then the regression coefficients are fixed. We refer to this model as linear regression
model. The normality assumptions are introduced for testing purposes.

By replacing the random component into the model we have

yi = Xθ + εi, εi ∼ N
(
0, XΩX ′ + σ2It

)
Let bi = (X ′X)−1X ′yi be the ordinary least square estimators of θ computed for each indi-

vidual unit. Note that the bi’s are independent and normally distributed with mean θ and variance-
covariance matrix σ2(X ′X)−1 +Ω. Let Sb = (n − 1)−1

∑n
i=1

(
bi − b

) (
bi − b

)′
be the sample

variance covariance matrix of bi with b = 1
n

∑n
i=1 bi. When data come from a LLGM , Sb is an

unbiased consistent estimate of σ2(X ′X)−1 +Ω (Gumpertz and Pantula, 1989) when data come
from a LRM Sb is an unbiased consistent estimate of σ2(X ′X)−1.

To discriminate between a LRM or a LLGM we propose the following test statistic

T =
1

k
tr

(X ′X)Sb

s2
(1)

where s2 = 1
n

∑n
i=1 s

2
i , with s2i =

(yi−Xbi)
′(yi−Xbi)

T−k (Swamy, 1970).
When data come from a linear regression model (Ω = 0), (1/s2)(X ′X) is ”close” to Sb and

we expect that the test statistic T is approximately equal to one. When data come from a LLGM
we expect that T > 1. The greater T the stronger is the evidence against a LRM .

The sampling distribution of T is analyzed in the next section.
Observe that the inverse of (X′X)Sb

s2
can be seen as an estimate of s2(X ′X)−1

[
s2(X ′X)−1 +Ω

]−1

the trace of which (divided by k) has been proposed by Theil (1963) to measure the shares of prior
and sample information in the posterior precision in the mixed regression estimation (Barnabani,
2014).

3 Sampling distribution of test statistic

When data come from a LRM , Ω = 0 and (n− 1)Sb/σ
2 ∼ Wk

(
(X ′X)−1, n− 1

)
(Wk is for

Wishart distribution). In this case (n− 1)(X ′X)1/2 Sb
σ2 (X

′X)1/2 ∼ Wk (I, n− 1) where (X ′X)1/2

is the square root of (X ′X). We have the following results

(i) (n−1)sii/σ
2 ∼ χ2

n−1 where sii, i = 1, . . . , k is the i−th diagonal element of (X ′X)1/2Sb(X
′X)1/2.

Replacing σ2 by s2 we have

(n− 1)sii
s2

=
(n− 1)sii/σ

2

n(t−k)s2

n(t−k)σ2

∼
χ2
n−1

χ2
n(t−k)/n(t− k)

(2)

and
sii
s2

∼ Fn−1,n(t−k) (3)

(ii) By independence
∑k

i=1(n− 1)sii/σ
2 ∼ χ2

k(n−1) and

1

k
tr

(X ′X)Sb

σ2
∼

χ2
k(n−1)

k(n− 1)
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because tr
(
(X ′X)1/2 Sb

σ2 (X
′X)1/2

)
= tr (X ′X) Sb

σ2 .
By the following equality

1

k
tr

(X ′X)Sb

s2
=

1

k
tr

(X ′X)Sb

s2
σ2

σ2

n(t− k)

n(t− k)

we have the sampling distribution of T

T ∼ Fk(n−1),n(t−k) (4)

When data come from a LLGM (n− 1)Sb/σ
2 ∼ Wk

[
(X ′X)−1 +Ω/σ2, n− 1

]
. There

exists a non singular matrix Q such that n−1
σ2 Q−1Sb (Q

′)−1 ∼ Wk

(
I + D

σ2 , n− 1
)

and
trQ−1Sb (Q

′)−1 = tr
(
(X ′X)1/2Sb(X

′X)1/2
)
= tr (X ′X)Sb where D is a diagonal matrix of

the eigenvalues ηi ≥ 0 of the matrix (X ′X)1/2Ω(X ′X)1/2. We have the following results:

(i) (n − 1) osii/σ
2 ∼

(
1 + ηi/σ

2
)
χ2
n−1 where osii denotes the i − th diagonal element of

Q−1Sb (Q
′)−1 and

osii
s2

∼
(
1 + ηi/σ

2
)
Fn−1,n(t−k) (5)

(ii) As to the distribution of T , observe that

k∑
i=1

(n− 1)osii/σ
2 =

k∑
i=1

(n− 1)sii/σ
2 ∼

k∑
i=1

(
1 +

ηi
σ2

)
χ2
n−1 (6)

When we replace σ2 by s2, we have

T =
1

k

k∑
i=1

sii
s2

∼ 1

k

k∑
i=1

(
1 +

ηi
σ2

)
F(n−1),n(t−k) (7)

We summarize the results in Table 1.

Table 1: Summary Table

Data come from: LRM LLGM

T ∼ Fk(n−1),n(t−k)
1
k

∑k
i=1

(
1 + ηi

σ2

)
F(n−1),n(t−k)

The above sampling distributions are now reproposed in terms of Generalized Fisher-distribution
(GF -distribution). This is necessary because (7) is difficult to implement in practice and it does
not allow to compute the power of the test.

5



Let us consider (2). The statistic can be seen as the ratio of two independent gamma random
variables where the numerator is distributed as G

(
α = n−1

2 , λ1 = 2n(t− k)
)

and the denomi-

nator is distributed as G
(
γ = n(t−k)

2 , λ2 = 2
)

where G(., .) is for gamma distribution, α and
γ are shape parameters, λ1 and λ2 scale parameters. The distribution of the ratio, Z, is called
GF -distribution and has pdf (Malik, 1967)

f(z) =
δγ

B(α, γ)
(z + δ)−(α+γ) zα−1 (8)

where B(α, γ) is the Beta function, δ = λ1/λ2. Expression (8) is also known as Compound
Gamma Distribution (Dubey, 1970). Therefore, we have

(n− 1)sii
s2

∼ GF (δ, α, γ) (9)

The standard F -distribution (3) can be seen as a GF -distribution with δ = n(t − k)/(n − 1),
α = (n− 1)/2, γ = n(t− k)/2.

The distribution given by (5) is a scalar multiple of a F variate which is a GF -distribution
with δ = n(t− k)

(
1 + ηi/σ

2
)
/(n− 1), α = (n− 1)/2 and γ = n(t− k)/2.

The result given by (6) is a linear combination of independent chi-square variates whose dis-
tribution does not admit a closed and simple form. However, the gamma-series representation
proposed by Kourouklis and Moschopoulos (1985) and Moschopoulos (1985) is particularly use-
ful for our purposes. Following these papers we have

k∑
i=1

(n− 1)sii
σ2

∼
∞∑
l=0

wl G (ρ+ l, 2 η)

where 0 < η < ∞ is arbitrary.
In the expression of the series, ρ =

∑k
i=1 αi = (n−1)k/2, wl = Cdl, l = 0, 1, 2, . . ., d0 = 1,

C =
∏k

i=1

(
η/(1 + ηi

σ2 )
)αi , dl = (1/l)

∑l
i=1 i gi dl−i with gi = (1/i)

∑k
j=1 αj

(
1− η/(1 +

ηj
σ2 )

)i.
When we replace σ2 by s2, we have

k∑
i=1

(n− 1)sii
s2

=

∑k
i=1(n− 1)sii/σ

2

n(t−k)s2

n(t−k)σ2

∼
∞∑
l=0

wl
G (ρ+ l, 2 η n(t− k))

G (n(t− k)/2, 2)
(10)

Finally, by (10) we have the distribution of the trace,

T ∼
∞∑
l=0

wl GF (δ, α, γ) (11)

with δ = n(t−k)
k(n−1) η. We summarize the results in Table 2.

The series representation of GF -distribution is not complex to implement in practice and in
most statistical softwares there is a function that compute the generalized F -distribution. In this
paper computations are made with R (R Core Team, 2014) where a library (GB2) (or flexsurv)
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Table 2: Summary Table

Data come from LRM LLGM

T ∼ GF (δ, α, γ)
∑∞

l=0wl GF (δ, α, γ)

δ = n(t−k)
k(n−1)

α = k(n−1)
2

γ = n(t−k)
2

δ = n(t−k)
k(n−1) η

α = ρ+ l

γ = n(t−k)
2

allows us to compute density, distribution function, quantile function and random generation for
the GF -distribution.

The weights of the series representation can be troublesome to implement. Moreover, their
computation can result too much CPU-time consuming. In these cases η may be adjusted to make
the convergence of the series faster (Kourouklis and Moschopoulos, 1985).

When the variability of the scale parameters is large and/or the shape parameters are small
the convergence of the weights is extremely slow. This fact can discourage a large-scale simula-
tion and application of the expression proposed and an approximation of the weights is needed.
For η ≤ min{ηj : j = 1, . . . , k} the weights, wl, define probabilities of an infinite discrete dis-
tribution (Vellaisamy and Upadhye, 2009) and they can be approximated by a theoretical discrete
distribution. For more than two random variables Barnabani (2015) proposed to approximate these
probabilities with the generalized negative binomial distribution of Jain and Consul (1971) result-
ing a fast and ”excellent” approximation. For two linear independent random variables simple
algebra shows that the weights are described exactly by a negative binomial distribution (Barna-
bani, 2015).

The infinite discrete distribution (l, wl)0,1,2,... must be truncated after a desired accuracy.

4 Inference on the model

By table (2) we can see that the sampling distribution of T depends on ηi, the eigenvalues of the
matrix (X ′X)1/2Ω(X ′X)1/2. ”Natural” estimators of ηi’s are η̂i’s i = 1, . . . , k, the eigenvalues
of (X ′X)1/2 Ω̂ (X ′X)1/2 where Ω̂ is an estimate of Ω. Ω̂ can be estimated in several ways.
Following Swamy (1970) we define Ω̂ = Sb − s2(X ′X)−1. Ω̂ is the difference of two matrices
and may yield negative estimates for variances of some of the coefficients and/or could not be a
positive definite matrix. In this case we could have negative eigenvalues. Although negative η̂i
could appear to be misleading this definition of Ω̂ is coherent with above sampling distributions.
Actually, observe that E(T ) = n(t−k)

n(t−k)−2η where η = (1/k)
∑k

i=1(1+ηi/σ
2). Ω̂ so defined allows

us to show that the test statistic T defined in (1) is equal to (1/k)
∑k

i=1(1 + η̂i/s
2). Therefore, T
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can be seen as an estimate of η. Moreover, η = 1 ⇔ Ω = 0 that is, if and only if data come from
a LRM . In this case the estimator T has a GF -distribution (F -distribution). η > 1 ⇔ Ω ≽ 0. In
this case data come from a LLGM and the distribution of T has an infinite series representation
of GF -distributions. η > 1 occurs when at least one eigenvalue is greater than zero. The term
ηi
σ2 can be seen as the extra factor due to the i − th random effect. It is zero when the random
effect does not occur. Therefore, the models describing T are different for the two sources of data.
Under LLGM the model contains the other as a special case. More specifically, constraining
the parameter η to one we have the model under LRM . We call alternative hypothesis the more
general model and null hypothesis the restricted model.

We tackle the hypothesis testing problem defining the null hypothesis H0 : η ≤ 1 against the
alternative H1 : η > 1 taking T as estimator of η. The comparison of the two hypotheses can be
reduced to a p− value, that is, the probability of seeing T as large as (as small as) we did, or even
larger (smaller), when, in fact, H0 is adequate. When the p − value is small (close to zero) we
”reject H0 in favor of H1”. On the other hand, when the p− value is not small we ”fail to reject
H0”, there is a non-negligible probability that T could reasonably be the result of random chance
and presumably data come from LRM .

The comparison between H0 and H1 can also be conducted following a classical decision
approach. Under H0 we can compute a critical value and then rejecting or accepting the null
Hypothesis if the observed statistic, T , is greater or less than the critical value. The knowledge
of ηi/σ2 is necessary to compute the probability of making a Type II error and/or to compute the
probability of rejecting a false null hypothesis. Unfortunately, this knowledge is not available and
only an estimate of the probability is possible replacing σ2 with s2 and ηi with η̂i. When n is large
the estimates of the probabilities are accurate.

5 Inference on single component

If T is greater than a critical value or the p − value is small likely data come from a LLGM . In
this case it can be useful to investigate which component is random. Table 1 and Table 2 show the
role of the parameter

(
1 + ηi/σ

2
)

in defining the sampling distributions when data come from a
LLGM with ηi/σ

2 that can be seen as the extra factor due to the random effect. An estimate of
this parameter replacing ηi with η̂i and σ2 with s2 can help us to pick out the number of random
components but not which of them are random. To this matter we propose to modify the extra
factor, ηi/σ2, replacing ηi with ωii and σ2 with σ2xii where ωii is the entry (i, i) of the matrix Ω
and xii the entry (i, i) of the matrix (X ′X)−1. This ”new” parameter, ϕi =

(
1 + ωii

σ2xii

)
, can be

seen as expressing the extent of ”total” variability of i− th coefficient (σ2xii + ωii) in relation to
the ”residual” variance σ2xii. The reciprocal of this parameter, ϕ−1

i = σ2xii

σ2xii+ωii
, can be seen as

the share of ”residual” variance on ”total” variability. It ranges between zero and one. If ωii > 0
then ϕ−1

i < 1 and we face a randomness on the i− th component. When ωii = 0 ϕ−1
i = 1 and the

i− th component is zero variance. Observe that ϕ−1
i can be seen as the scalar form of the matrix

product σ2(X ′X)−1
[
σ2(X ′X)−1 +Ω

]−1 the trace of which (divided by k) has been proposed
by Theil (1963) to measure the shares of prior and sample information in the posterior precision
in the mixed regression estimation.

Given a finite σ2 > 0 and varying ωii, ϕi is greater than one and it measures how far we move
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from a situation of zero variance of the i− th component. The greater the value of ϕi the stronger
is this evidence. When ωii = 0 the parameter ϕi is equal to one and the i− th component is zero
variance. Given ωii > 0 and increasing σ2, ϕi tends towards one.

A ”natural” estimator of ϕi is ϕ̂i = 1 + ω̂ii

s2xii where ω̂ii is the entry (i, i) of the matrix Ω̂.
The sampling distribution of ϕ̂i is immediate. Because (n− 1)Sb/σ

2 ∼ Wk

(
(X ′X)−1 +Ω/σ2, n− 1

)
,

(n− 1)ŝii/σ
2 ∼

(
xii + ωii

σ2

)
χ2
n−1 where ŝii is the (i, i) entry of the matrix Sb. This implies that

ŝii
σ2xii

∼
(
1 +

ωii

σ2xii

) χ2
n−1

n− 1

replacing σ2 with s2 we get

ŝii
s2xii

∼
(
1 +

ωii

σ2xii

)
F(n−1),n(t−k) (12)

The above distribution is a scalar multiple of a F variate and it can be seen as a GF -distribution
with
δ = n(t− k)

(
1 + ωii

σ2xii

)
/(n− 1), α = (n− 1)/2 and γ = n(t− k)/2.

Because of the definition of Ω̂, simple algebra allows to show that ϕ̂i = 1 + ω̂ii

s2xii =
ŝii

s2xii .
When data come from a LRM , ωii = 0 and ϕi = 1. We call H0 : ϕi = 1 the null hypothesis.

In this case the estimate ω̂ii can assume values grater or less than zero and ϕ̂i ranges around one
according to an F−distribution. Actually, ω̂ii ≤ 0 if and only if ϕ̂i ≤ 1 and the probability
P (ω̂ii ≤ 0) can be computed with the F−distribution. If data come from a LLGM , ωii > 0
and ϕi > 1. We call H1 : ϕi > 1 the alternative hypothesis. In this case the estimate ω̂ii can
still assume values grater or less than zero but the negative values are becoming less and less
frequent the stronger is the evidence against the null hypothesis, that is, the higher is ϕi. The test
statistic ϕ̂i assumes values greater than one and if it is greater than a critical value computed with
a F−distribution, we reject the null hypothesis (in favor of a LLGM ). Of course a p− value can
also be computed.

A ”confounding” situation can appear when the ”residual” variance σ2xii is large compared
with the elements of Ω. In this case ϕi is close to one and the test statistic ϕ̂i has a GF -distribution
close to an F−distribution. This situation is well known in a classical statistical hypothesis testing
and there is a large probability to fail to reject the null hypothesis in favor of the alternative.

By (12), ŝii
ϕis2xii is a pivotal quantity which allows to construct a confidence interval for ϕi.

Fixing α we can determine two percentiles of F -distribution such that

P

(
F(n−1),n(t−k),1−α/2

s2xii

ŝii
≤ ϕ−1

i ≤ Fn−1,n(t−k),α/2
s2xii

ŝii

)
= 1− α (13)

Thus, if data come from a i − th random component, we can compute a confidence interval for
the share. This result can give further information about the choice of random components. If we
compute automatically the confidence interval for each component we could face two situations:
(a) an interval contained in (0, 1). In this case presumably the component is random, (b) an
interval around one. In this case a substantial indeterminacy occurs. We could have a zero variance
component or a random component but σ2 dominates the variance of the component confounding
the choice.
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6 An application: Tourism data

A data set on Tourism in Tuscany (Italy) consist of the Index number (base year 2002) of accom-
modations (the response variable) on 260 Municipalities from 2003 to 2009. These data have been
firstly processed so that to obtain homogeneous groups of units. In the paper we work with 98
”homogeneous” Municipalities, see the left panel of Fig.: 1. Looking at the tourism data each
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Figure 1: Spaghetti plots for Tourism data and Cadralazine data

unit appears to have its own trajectory approximated by linear functions with specific intercept
and slope that determine the trend. Moreover, the trajectories are ”high” or ”low” suggesting two
hypotheses from an economic point of view. One is that the growth of the tourism of each munic-
ipality at time t could be determined solely by an overall regional political economy. Statistically
this is modeled with a vector of fixed population parameters which capture the regional political
economy plus an overall random deviation from it.

On the other hand data show different steepness across municipalities, suggesting that the
unit-specific intercepts and slopes could not be fixed but vary across units with a growth of tourism
influenced not solely by the regional political economy but also by specific characteristics of each
municipality. This suggests that data could be modeled adding a random component to the param-
eter vector so that to distinguish the various trajectories. On the basis of our data we ask whether
the specificity of the municipalities contributes to the growth of the tourism other than the regional
political economy. Statistically we ask whether it is more appropriate modeling data with a linear
regression model or a linear latent growth model.

By applying the hypothesis testing approach proposed in the paper we found:

• A value of the test statistic T = 4.76 which compared with the critical value F194,490,0.95 =
1.212 falls into the rejection region. We reject the hypothesis that data come from a LRM
with a probability of Type II error close to zero.

• We observe a p− value ≃ 0. Confirming a strong evidence against the null hypothesis.
• ϕ̂1 = 3.245 and ϕ̂2 = 3.7313 compared with F97,490,0.95 = 1.279 indicate that both com-

ponents are random.

10



• The confidence intervals of the shares: 0.21719 ≤ ϕ−1
1 ≤ 0.40331 and 0.19351 ≤ ϕ−1

2 ≤
0.3593 confirm that data come from a LLGM .

The above results are compared with some usual indicators used in model selection. These indi-
cators are computed with R (R Core Team, 2014) and the package lme4 (Bates et al., 2014). The
results are shown in table 3

AIC BIC cAIC
LRM 6122.482 6136.075
LLGM 5925.687 5952.872 5776.097

Table 3: Comparison of AIC’s for the linear regression model and linear
latent growth model for Tourism data.

where cAIC is the conditional AIC proposed by Vaida and Blanchard (2005).
All the above indicators confirm the choice of a linear latent growth model to describe data.

7 An application: Cadralazine data

In the previous section we discussed a data set which allowed to give clear and evident information
on the choice of the model. To illustrate some difficulties we could face to discriminate between
a linear regression model and a latent growth model let us consider the case study of a pharma-
cokinetics dataset, the Cadralazine data, analyzed in the paper of Vaida and Blanchard (2005) to
which we refer for further explanations of data. The dataset consists of plasma drug concentra-
tions from 10 cardiac failure patients who were given a single intravenous dose of 30 mg of an
anti-hypertensive drug, the cadralazine. Each subject has the plasma drug concentration, in mg/l,
measured at 2, 4, 6, 8, 10 and 24 hours, for a total of 6 observations per subject. The plot of
the response versus time is given in the right panel of Fig.: 1. The data for each patient are well
described by a straight line, but the slopes and intercepts of the ten regression lines differ from
subject to subject. Two models are proposed, a linear regression model with intercepts and slopes
fixed, and a mixed effects model where intercepts and slopes are considered random.

The choice between the two models is firstly conducted through AIC’s type indicators. From

AIC BIC cAIC
LRM 161.717 168.0
LLGM 157.923 170.5 143.016

Table 4: Comparison of AIC’s for the linear regression model and linear
latent growth model for Cadralazine data.

table 4 we can see that there is a substantial indeterminacy by comparing AIC and BIC indi-
cators. They produce conflicting results, AIC addresses us to choose a LLGM , the BIC value
gives a different interpretation reversing the choice. Moreover, how to evaluate the differences
of the values produced? While no rigorous theory is available, Burnham and Anderson (2002),
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suggest that a difference of at most 2 in AIC is not reliable for ranking two models, whereas a
difference of 10 is overwhelmingly in favor of the model with the smaller AIC. Of course the
values 2 and 10 don’t mean anything.

The conditional AIC defined only for linear mixed models shows a value inferior to the others
in favor of a LLGM . However it is not comparable with the other AIC’s indicators and the value
it produces does not mean anything by itself. Moreover, given this substantial indeterminacy
choosing the model, what is the degree of uncertainty to accept a LLGM instead of a LRM?

The indeterminacy emerging in this example is not removed with the test proposed in this
paper but it can give some further information useful to accompany the choice the model:

• We found a value of the test statistic T = 1.7829 that compared to F18,40,0.95 = 1.8682
falls into the acceptance region. Then, we fail to reject a LRM . The closeness of the
observed value to the critical value suggests us a certain caution about the choice of the
model. Actually, we found a p − value = 0.0639 that confirms our caution. These results
reflect the indeterminacy of AIC and BIC indicators.

• The probability of Type II error is important to quantify the uncertainty about the model
chosen. Its computation requires the knowledge of Ω. Unless some information is available,
the best we can do is to replace the ”true” variance covariance matrix with Ω̂ estimated by
the data. This allow to estimate the GF -distribution under the alternative hypothesis. The
result is the conditional probability, P

(
T ≤ F18,40,0.95|Ω = Ω̂

)
= 0.58 that could be taken

as an estimate of the probability of the Type II error. Therefore, if BIC indicator suggests
the choice of a LRM we adjoin that there is an estimated large probability to accept it on
the basis of information contained in the data set. See Fig.: 2 (a).

• The AIC and in particular the cAIC indicator addresses the choice towards a LLGM .
What can we say about the probability to accept this model when it is ”wrong”? We proceed
as follows:

1. Estimate the variance covariance matrix with the package lme4 of R taking this esti-

mate as a hypothesis on Ω, Ω̂ =

[
0.00054686 0.003727
0.003727 0.025400

]
.

2. Conditionally to Ω = Ω̂ we assume data come from a LLGM . We compute a critical
value through a GF -distribution at a significant level of 0.05. The critical value is
0.971.

3. Compute P (T > 0.971|Ω = 0) = 0.478 through the F -distribution. This estimated
probability is taken as a degree of uncertainty associated to the choice of a LLGM .
See Fig.: 2 (b).

8 Conclusions

In the paper we propose a finite sample parametric test to discriminate between a linear regression
model and a linear latent growth model. The test statistic is based on the trace of the product of
estimates of two variance covariance matrices, one defined when data come from a linear regres-
sion model, the other defined when data come from a linear latent growth model. The sampling
distribution of the test statistic depends on the model generating data and can have a ”standard”
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Figure 2: Hypothesis testing with statistic T on Cadralazine data. f(T |H0) is the density of T when H0

is true; f(T |H1) is the density of T when H1 is true; α = 0.05 is the probability of Type I error; β is the
probability of Type II error; the numbers 1.87 and 0.97 are critical values.

F -distribution or a linear combination of F -distributions. In the paper a unifying sampling distri-
bution based on GF -distribution has been proposed. This result allows us to frame the choice of
the model in a classical hypothesis testing approach. By modifying appropriately the test statistic
it is also possible to test hypotheses on randomness of single elements of the linear latent growth
model avoinding the boundary problem of the likelihood ratio statistic. The test statistic proposed
in the paper has been applied to two data set. With Tourism data it is used by itself to discrimi-
nate between the two models, with Cadralazine data it is used in conjunction with some indicators
based on information criteria giving an estimate of the probability of accepting or rejecting the
model chosen.
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