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Abstract

We study quantitative information flow, from the perspective of an analyst who
is interested in maximizing its expected gain in the process of discovering a secret,
or settling a hypothesis, represented by an unobservable X, after observing some Y
related to X. In our framework, inspired by Bayesian decision theory, discovering
the secret has an associated reward, while the investigation of the set of possibilities
prompted by the observation has a cost. We characterize the optimal strategy for
the analyst and the corresponding expected gain (payoff) in a variety of situations.
We argue about the importance of advantage, defined as the increment in expected
gain after the observation if the analyst acts optimally, and representing the value of
the information conveyed by Y. We also argue that the proposed strategy is more
effective than others, based on probability coverage. Applications to cryptographic
systems and to familial bNa searching are examined.

1 Introduction

Broadly speaking, we refer to quantitative information flow (QiF) as the measurement of
the quantity of information flowing from a unobservable random variable X to an ob-
servable Y. When expressing information as Shannon entropy [12], this quantity is just
mutual information, that is, the difference between the prior and conditional entropy of X.

Computer scientists and statisticians have considered Qir from different perspectives.
In the context of computer security, QI measures expected leaks in a probabilistic system,
revealing part of the secret X after some Y is observed. For a statistician, QIF corresponds
to the expected reduction in uncertainty as the reward for an observation. Attackers,
experimental designers and defenders are just few of the very different names assumed by
the actors playing in this scene. Here, we take a somewhat neutral perspective, and simply
refer to the analyst as someone who evaluates how much he can expect from conditioning
X on Y, in a scenario involving a cost proportional to the set of possibilities that should
be tested, and a reward associated with disclosing the secret.

In the field of quantitative security, Smith [25, 19] has recently considered the problem
of providing an adequate QIF measure for a scenario where an analyst is limited to a
single guess on the secret. An atm withdrawing a credit card after two failed attempts at



guessing the piN illustrates the case. In this context, mutual information, which considers
the global uncertainty about X before and after observing ¥ under a — log scale, was found
to be inadequate as a measure of a QIF: in fact, the analyst’s guess is now just the mode
of X, so his concern is only about V(X) = max, p(x) and V(X|Y) = Ey(max, p(x|y)),
named vulnerability and conditional vulnerability of the system, respectively. Mimicking
Shannon entropy, Smith used vulnerability on the — log scale, thus obtaining an instance
of Renyi’s entropy called min-entropy.

In the present paper, we follow a more general approach to Qir, stemming from the
tradition of Bayesian decision theory, as for example expounded in De Groot[16]. The
idea is to introduce, for the problem at hand, costs associated with possible actions and
a reward for disclosing a secret; then to derive the optimal analyst’s action, that is, the
one maximizing the overall expected gain. An action is just a set of possibilities that the
analyst should test, or somehow further, in order to (hopefully) disclose the secret, given
some observable evidence. Min-entropy corresponds to the case where the reward and the
costs are fixed in such a way that there is no advantage to go on testing beyond the first,
most likely possibility.

In the paper, we first define a general setting from which a gain function and a QIF
measure are derived (Section 2). A central role is played by advantage, denoted A(X; Y):
the difference in expected gain before and after the observation, if the analyst plays an op-
timal action. This represent the value, for the analyst, of the information that ¥ conveys
about X. We then specialize the analysis by considering a fixed reward & coming from the
secret’s disclosure and a unit cost for each undertaken attempt (Section 3). In this setting,
we derive an optimal strategy to find the secrets to be investigated and characterize the
resulting advantage. The strategy is shown to be more effective than both a k-tries strategy
with k fixed, and the strategy of investigating secrets up to reaching a fixed probability
coverage. Our results are then specialized to the important case of a non informative (uni-
form) prior on the secret, possibly in the presence of a symmetric or deterministic system
(Section 4). In particular, when the reward coming from the secret equals precisely the
cost of discovering the secret for sure, we establish that the proposed strategy essentially
corresponds to the one derived from the likelihood ratio criterion. We then examine a
few applications of the proposed framework, concerning cryptographic systems and the
analysis of forensic databases for familial pna searching (Section 5). Discussion of fur-
ther and related work concludes the paper (Section 6). Some detailed proofs have been
confined to a separate appendix.

2 Setup

We let X and Y be finite, nonempty sets of secrets and observables, respectively. A con-
ditional probability matrix pyy € [0, 1]%*Y defines the behaviour of the system under
observation, with p(y|x) denoting the probability of observing y when the secret is x. In
the terminology of Information Theory, this represents the channel through which infor-
mation flows. A prior probability px on X is assumed; we will drop the index x whenever
X is clear from the context. px and the channel matrix pyj together give rise to a joint



probability distribution on X X Y, hence to a pair (X, Y) of input-output random variables,
as expected. In many specific contexts, X and Y are not immediately related to one an-
other, but we assume it is possible for the analyst to marginalize out all the unobserved
r.v. in the system apart from X. Therefore, both the prior and the conditional probability
matrix are assumed to be known to the analyst. We will make freely use of such nota-
tional shorthand as p(y) for Pr(Y = y), p(x|y) for Pr(X = x|Y = y), and so on, whenever
no ambiguity arises as to the involved random variables.

Let W be a finite, nonempty set of actions the analyst can take, possibly after observ-
ing Y. Undertaking a certain action under a given state of the world / secret induces a (pos-
sibly negative) gain for the analyst, according to a given gain function g : X X ‘W — R.
The expected gain under py and w € ‘W and the maximal expected gain under px are
defined respectively as follows:

GX;w) £ ElgXw)] = > g(xw)p(x) (1)
G(X) = maxG(X;w). )
weWw

When notationally convenient, we shall use G(X;w) and G(X) interchangeably with
G(p;w) and G(p), respectively, thus identifying X by its distribution px. In (2),aw € W
achieving the maximum is called a Bayes action. By w*(p) we indicate a Bayes action,
arbitrarily chosen if there is more than one. If no ambiguity arises about p, we abbreviate
w*(p) as w*.

For y € Y, let p(-|y) denote the posterior probability distribution on X given Y =y,
whenever such an event has nonzero probability, and by G(X|y) = G(p(:ly)) the corre-
sponding gain.The posterior maximal expected gain, advantage (under px) and capacity
of the system are given by:

GXIY) £ EJ[GXW] = > p()G(Xly) (3)
y
AX:Y) £ GXIY) - GX) “)
C = supAX;Y) (5)
Px

where in (3) it is understood that the sum runs over y’s of positive probability. Let £
denote the set of all probability distributions over X. General result about expected gain
and advantage are the following.

Lemma 1 (convexity) G(p) is a convex function of p.

Applying the above lemma and Jensen’s inequality, we easily get the following corol-
lary. It says that for the analyst it is always advantageous, on average, to try and guess
after observing Y rather than before. This is a standard result first published by Raiffa and
Schlaifer [23] but also noted by Ramsey in the 1920s.

Corollary 1 A(X;Y) > O for each px € P. Moreover, if X and Y are independent as
random variables — that is, pxy(x,y) = px(x)py(y) for each (x,y) € XXY —then A(X;Y) =
0.



3 General results on rational analysts

We now instantiate the setup of the previous section to one where an analyst can in-
vestigate a set of candidates for the secret, with a cost proportional to the size of the set.
Moreover, the analyst assigns the secret a certain value @ > 0: this represents the maximal
amount of resources the analyst is willing to spend to discover the secret. For notational
simplicity, we stipulate that the value of the secret is expressed in cost units — that is, the
secret is worth @ times the cost of trying a single candidate. This leads to the following
definitions.

W
g(x,w)

2% (6)
a1, — W (7)

> 1>

where 2% denotes the powerset of X, 1g is the indicator function of E, which holds 1
if E is true and O otherwise, and | - | denotes the cardinality of a set. We begin with
characterizing the best strategy of the analyst given a generic prior py, that is, the Bayes
action corresponding to py in the above framework. Let us define the following set

w' = {x:p(x) = 1/a). (8)
For any w C X, we let p(w) denote } ., p(x).
Lemma 2 w* is a Bayes action. Therefore, G(p) = G(p; w*) = ap(w*) — [w|.

Proor Consider any w € X. We have the following.

G(p,w) = D p)@- Ly~ Iw)

xeX

= ) (apx-1)

Xew

= Z (ap(x)—1)+ Z (ap(x) - 1)

et Ene®
< ) (@p-1 ©)
< mern+2mm%n (10)
= D(ap®-1

= Gpw)

where: inequality (9) is justified by the fact that, for x ¢ w*, (ap(x) — 1) < 0 by definition
of w*; inequality (10) is justified by the fact that, for x € w*, (ep(x) — 1) > 0 again by
definition of w*. O



Remark 1 (Bayes action vs. alternative strategies) In plain words, the above result
says that the optimal strategy is obtained by including in w* candidates from X, con-
sidered in descending order of probability, and stopping as soon as the additional cost
of the next candidate (1, in a units) equals the expected benefit it brings (ap(x)). This is
similar to the production stopping rule from Microeconomics: stop producing as soon as
marginal revenue equals marginal cost.

In particular, both the k-try strategy, for k fixed, considered by Smith et al [1] and
the a -coverage probability strategy, for « fixed, as in Slooten and Meester [24], are in
general sub-optimal, at least when this cost structure is introduced. In both cases, if more
than |w"*| secrets are investigated, the net reward for the additional k — |w*| investigated
is negative. On the opposite, if less than |w*| secrets are considered, the missed |w*| — k
would have achieved a net positive gain.

As a final remark, we note that under the assumption that px is known, it is possible
to recover the I-try strategy by fixing any a such that 1/ny < a < 1/n,, where my and
), denote the largest and second largest probability values in px, respectively.

The above lemma specializes to the following characterization when py is uniform.
We let N = |X].

Corollary 2 Let px be uniform on X. Then the following three cases may arise depending
on a.

e Ifa > N then w* = X is the only Bayes action, and G(X) = a — N > 0.
o Ifa = N then any w C X is a Bayes action, and G(X) = 0.
e [fa < N then w* = (0 is the only Bayes action, and G(X) = 0.

For the analyst it is important to estimate the advantage gained by observing Y, over
not observing it: this quantifies the value of the information conveyed by Y to him. We
study this aspect in the rest of the section. Our first result is a simple remark, saying
that the advantage can be decomposed into two parts: one depends on how much the
probability mass in the Bayes action gets incremented after the observation; the other
on how much the Bayes action shrinks after the observation. A proof is reported in the
Appendix. In the sequel, for any y such that p(y) > 0, we let w} be the Bayes action
associated with the posterior probability distribution p(:|y). Explicitly,

Y

wy ={x t p(xly) = 1/a}. (11)
Proposition 1 A(X;Y) = aE, [p(w;‘,ly) - p(w*)] +E, [Iw*l — Iw;",l].

Note in particular, that, for a fixed a priori py, the maximum of A(X; Y) taken over all
possible channels is achieved if the posterior on the secrets degenerates into a point mass
function, for every y. Thus, the maximal achievable advantage is < a(1—p(w*))+(w*|—1).

After observing Y, an increase in gain can be obtained by observing some other output
related to X, say Z, possibly through a different channel pzx. In other words, we assume
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that some prior pyyz is given such that factorizes as pxyz(x,y, z) = p(x)p(y|x)p(z]x). The
whole advantage deriving from observing the pair (Y, Z) can in fact be computed sequen-

tially, as stated by the next proposition. In what follows, we let G(X|Z, y) = E.[G(X]|z,y)].
Clearly, it holds that G(X|Z,Y) = G(X|Y,Z) = E,G(X|Z,y). We also define A(X; Z|Y) =
G(X|Y, Z) - G(X|Y).

Proposition 2 A(X;Y,7Z) = A(X;Y) + A(X; Z|Y).
Proor By definition

AX;Y) + AX; Z)Y)

GXIY) - G(X) + G(X|Y,Z) - G(X|Y)
GX|Y,Z) - G(X)
AX:Y,Z).

O

Our last result in this section is a simple formula to estimate advantage. By this, we
mean a formula based solely on quantities depending on the system pyx, plus simple fea-
tures of the prior px. This characterization will be useful when specializing the framework
to a number of instances, as we shall see in subsequent sections. We define below a few
quantities and sets, also depending on given y € Y, with the following intuitive meaning.
my and 7, are the largest and smallest nonzero probability values of the prior. wy, wy rep-
resent certain over- and under-approximation of the Bayes action after observing y. They
are obtained by weakening (resp. strengthening) the condition p(y|x) > p(y)/(p(x)a) by
taking into account that

M M>Sﬂ_’"
=z y .

g T P(x) T

S

\%

Here, S, is the sum of the entries in the y-column of the conditional probability ma-
trix, while S y+ .S are the sums restricted to the rows which enter the over- and under-
approximation, respectively, of the Bayes action after y. Formally, we have

Sy _ s,
= max, p(x) wio2 {xipOl) 2 2o w2 (x:pOly) 2 22
T é minXES“PP(P)p(x) S; é erw; P()’|X) S; é erw; p(ylx)

A
Sy = 2xp0ln).

The following result gives upper- and lower-bounds for G(X|Y) based on the above quan-
tities, for an arbitrary prior distribution py of full support. The proof is reported in the
Appendix.

Proposition 3 Assume px has full support. Then ) (cmmS’ s — Sy wy ) < GXJY) <

y
Dy (cmMS;T - 7TmSy|Wy_|).



4 Some special cases

4.1 Uniform prior

In case the prior py is uniform, we have n,, = 7, = 1/N in Lemma 3. Note that, in this
case, the Bayes action for the adversary after observing y € Y is given by

wy =wy =w, ={x:pOlx) > S,/a}.

As a consequence, the (-)* and (-)” sets/quantities defined in the previous section coin-
cide, and we can drop the superscripts from them. The upper and lower bounds given in
Proposition 3 coincide too. As a consequence, we have the following characterization of
advantage for uniform prior. For convenience we let

S*éZSy
y

denote the sum of the entries of the channel matrix that are not less than the threshold
Sy/a. The result shows that advantage is proportional to S*.

Corollary 3 (uniform prior) Let px be uniform.
o Ifa> N then A(X;Y) = %(aS* -2 S,wiD+ N -a
o Ifa < Nthen AX:;Y) = 5 (aS* = 3, S, |w;).

Note that the same result could also be obtained from (19) by letting the prior px be
the uniform distribution.

Remark 2 (o« = N and the LR criterion) The case @« = N has a special meaning, since
it illustrates a system that is, so to speak, in equilibrium: the cost of discovering the
secret with certainty (investigating all the possibilities) equals the revenue coming from
discovering the secret. It is interesting to look at the form of the Bayes actions. Again
with px uniform and a = N, we have that

Wy = {x:p(wx)zmy): (12)

2 p(ylx)}

N .
That is, the set wy includes exactly those secrets x such that the likelihood of y under x is
at least as big as the average likelihood of y.

Another interesting remark is that, for large N, the inclusion of a secret in the set wy
coincides with a decision based solely on the classical likelihood ratio (LR) criterion. To
see this, consider any observation y of positive probability and any secret x. According
to the LR criterion, secret x receives support by y if LR(x;y) > 1, that is, if

)=t
LR(x;y) = p%{ylx) = p(yL(y)lx’gv
p(yl ?& x) Z)C’#X Zx’ p(y|x;)p(y)
pOlnt pO1x)

. - > 1. (13)
N Zx’;tx p(y|x/) N-1 Zx’;tx p(y|x/)
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By (12), x is in wy if only if

pO) pOIY)
# Zx’ P(ﬂx’) % Zx’;&x p(ylx/) + %P(ﬂx) B

We see that, for N large enough, the two criteria coincide, that is LR(x;y) > 1 iff x € w}.

(14)

4.2 Special channel matrices

An interesting special case is when the conditional probability matrix has columns that are
pairwise identical up to a permutation, like for example in the case of a communication
protocol (eg. Crowds). Then Iw;il does not depend on y, and we let Iw;l = ¢", for each y.
Also note that };, S, = N. We can therefore arrive at a simplification.

Corollary 4 (uniform prior and column-symmetric system) Let py be uniform and
assume py\x has columns that are pairwise identical up to a permutation.

° Ifa>NthenA(X;Y):%S*—C*+N—a.

o Ifa < Nthen AX;Y)=5S" - c".

Another interesting special case is when the conditional probability matrix defines a
deterministic function f : X — V: thatis, p(y|x) = 1 if and only if f(x) = y. Letcy, ..., cx
be the equivalence classes of X determined by f, that is, the nonempty inverse images

o) forye Y.

Corollary 5 (uniform prior and deterministic system) Ler pyx be uniform and assume
Dyx IS deterministic.

o Ifa>Nthen AX;Y)=N— 35, el

o Ifa <Nthen AX;Y) = 1+ ¥ <q | = Ic%

Proor Let us examine the firs part. Under the stated assumptions, it is immediate to
checkAthat, for each y of positive probability, letting ¢ = f~(y), we have: w, = ¢ and
Sy =8, = |wy| = |c|. From Corollary 3, the wanted result follows by summing over all y
and using some algebra.

The second part is similar: note however that, for a given y, the Bayes action is wy = ¢
if |c| < @, otherwise it is wy = 0. U



S Applications

5.1 The Crowds anonymity protocol

In the Crowds anonymity protocol, see [22], a set of honest users 1, ..., N want to exchange
messages among one another, but each user wants to hide his identity as a sender from an
eavesdropper (attacker). A message initiating from user i is collaboratively and randomly
routed through the nodes of a clique network, until it reaches its intended destination.
The network’s nodes comprise all honest users, plus a number of corrupted nodes who
collude with the attacker: if any corrupted node receives a message from honest user J,
user j is said to have been detected. The attacker’s task is to identify the user who is the
true initiator of the message. Of course, the attacker cannot tell for sure if a detected user
Jj is the true originator of the message or a just a forwarder. This gives rise to a system
where X = Y = {1,..., N} and p(jli) is the probability of detecting honest user j, given
that honest user i is the true initiator and that some user is detected. The resulting matrix
has a symmetric form:

B v v Y

Yy By vy
Prix = .

Yy vy -« B

where the values of 8 and y depend on various parameters of the protocol, including:
the size of the network, the proportion of corrupted nodes over honest ones, and the
forwarding probability. The latter is the probability that, upon receiving a message, a
honest user forwards it to a randomly chosen node, rather than sending it to its intended
recipient. In any case, it holds that 8 > y: the probability that the true initiator is detected
is (usually, just slightly) higher than that of any other honest user.

Assume now that the prior p on honest users is uniform, and that @ < N: according to
Corollary 3, the best course of action for the adversary, if he cannot observe anything, is
just doing nothing, which is realistic in practice. In this case, the advantage of observing
the system coincides with the maximal expected gain. We are in the situation of Corollary
4, second item. There are now two possibilities.

e B < 1/a. In this case, we have wj = ( for each j, so ¢* = 0, §* = 0, so that
A(X;Y) = 0. In practice, the value of the secret is too small compared to the effort
needed to guess the secret, even after observing the system.

* B> 1/a. We have w; = {j} for each j, since it is easy to check that, under the
given assumptions, y < 1/N < 1/a. As a consequence, ¢c* = 1, §* = N, so that
A(X;Y) = aff — 1. The final benefit for the adversary from guessing the secret after
observing the system is a fraction 3 of the secret’s value . We can make the system
less attractive for the attackers by lowering £.



5.2 Cryptosystems

This example is inspired by Shannon’s classical information-theoretic treatment of cryp-
tography, as later extended by Hellman [18]. Assume a cryptosystem consists of P possi-
ble meaningful plaintext messages, K possible keys and C possible ciphertexts. For any
fixed key, enciphering a plaintext results in a unique ciphertext: encryption is determinis-
tic and injective once a key is fixed. For any ciphertext ¢, consider the set Z(c) of all the
plaintext-key pairs (m, k) that give rise to c¢. By injectivity of encryption, any key appears
at most once in Z(c), so |Z(c)| is precisely the number of possible keys that might have
been used to generate ¢, hence a measure of the uncertainty of an attacker about the actual
key, given c. Alternatively, |Z(c)| is the cost for an attacker of discovering the secret key,
once c is observed. In practice, each candidate key can be tried on another ciphertext ¢’
relative to the same key, to see if it decrypts correctly.

We want to quantify the value for an (ideal) attacker of observing a ciphertext and find
a simple lower bound for it. Let then X be the set of possible meaningful plaintext-key
pairs and Y be the set of possible ciphertexts. Consider the deterministic channel corre-
sponding to the function f : X — Y such that f((m,k),c) = 1 if and only if enciphering
m with k results in c¢. Further assume a uniform prior is given on X: this is realistic in
certain situations, like for example when the plaintexts are long sequences of letters in a
given language, and the key is chosen uniformly at random and independently from the
plaintext (see below). Assume, realistically, a reward « such that for each ¢

IZ(c)) <a <N =KP.

Note that the above condition implies that for each ciphertext ¢, w: = Z(c). In an ideal
cryptosystem, |Z(c)| should not vary much depending on c¢: so let us first assume for

simplicity that |Z(c)| = |Z] is a constant not depending on c. Then it is easy to check that
PK
4=

consequently, after some algebra we easily obtain

PK
AX;Y) = a——. (15)
C
Let us now drop the assumption that |Z(c)| is constant. Applying the second item of

Corollary 5, we obtain
AXY) = a— — Z 1Z() . (16)

Applying Jensen’s inequality to the convex function x?

on the summation in the above expression

, we obtain a simple lower bound

(PK)?

Z|Z(c)|2 = CZ|Z<c>|2/C > aZ Z@N/CP = =3

10



which when plugged into (16) yields an upper bound for the attacker’s advantage similar
to the constant case (15)

PK
AX}Y) £ a—-—. (17)
C
Assume plaintexts and ciphertexts are blocks of n letters drawn from an alphabet of ¢
symbols, and keys of m bits are used. If the source language has entropy per letter H,
there will be (approximately) 2"# equiprobable meaningful plaintexts, #* = 2"1°¢! possible
ciphertexts and 2™ possible keys, hence (17) becomes

A(X, Y) < a-— 2n(H—lOg H+m )

To make a concrete case, assuming that the pes cipher, featuring keys of m = 56 bits,
is employed to encipher sentences in English, with + = 26 and H = 1.5, we may set:
AX;Y) ~ a—2782+56 We see that the cost decreases exponentially as the block length n
grows, and already with blocks of length around n = 18 letters, it is less than 1, meaning
that there is nearly no uncertainty as to the key, for the attacker.

In reality, a concrete attacker, with limited computational resources, may not be able
to determine Z(c) for each c, so this analysis can be considered as overly pessimistic from
a security point of view.

5.3 Familial searching through a forensic pna database

In several countries a database of familial pNaA traits is maintained to give an answer to
families looking for a missing relative. The hope is to identify a body occasionally re-
covered as one of the claimed missing persons. Each family provides the pNa traits of
some of their members, and provides the pedigree linking the donors with the missing
person. The conditional probability distribution of the claimed relative is the main ingre-
dient to evaluate the probability the body belongs to that family. This process is referred
to as familial searching by Evett and Weir [15]. In a different context, the pNa traits of
an unknown crime perpetrator, somehow recovered, is compared with the pNa traits of
several contibutors included in a data base, in an attempt to establish a relation between
the perpetrator and the contributors, or one of their relatives.

The pNa 1s typed on a number of loci, usually located on different chromosomes to
exploit independence. At each locus, a genotype, an unordered pair of alleles, can be
observed. The whole set of alleles pairs of an individual, observed at the considered loci,
will be referred to as the profile of the individual. The transmission of the alleles along
generations is ruled by a transmission mechanism: the first Mendelian law is the simplest
possible model. Alleles’ probability is almost always estimated by relative frequencies
from a sample of the population. Genotypes probabilities for a generic member of the
population are derived by population models, via alleles’ probability and other parameters
tightly related to the specific model. The simplest population model is derived by the
Hardy Weinberg conditions and follows a multinomial distribution, see [17]. We need not
examine these models in detail, for the time being.

11



We formally model the problem as follows. The secret random variable X corre-
sponds to n specific identification hypotheses related to the contributors/families, plus
the possibility that the perpetrator/corpse is related to the rest of the population: so
X = {1,2,...,n} U {Rest}. We assume the reference population has size N > n, typi-
cally with N > n. Since other identification clues are rarely available, it seems sensible
to fix the following distribution, giving the prior probability that a perpetrator/recovered
body is related to either any of the donors or to the rest of the population:

p(x) = {

ifx=1,...,n
I if x = Rest.

2|22|~

We let Y be the set of possible pna profiles for the perpetrator/recovered body: these might
be relative to one locus, or to multiple loci. Finally, we let p(y|x) denote the probability
of observing the profile y, given that the perpetrator/body is actually linked to x. We just
note that, once a kinship relation between the contributor(s) and the perpetrator/corpse is
assumed, p(y|x), for each x and y, is uniquely determined by the chosen transmission and
population models (see also Remark 4.)

Application of the set up introduced in the previous sections to the present situation
requires a small tweak. Indeed, the element Rest must be filtered out from the set of
possible actions, as it makes little sense to investigate the rest of the population as a whole.
So the set of actions is now W = 2¥\ke L etting S, denote the sum of the elements in
the column y of the channel matrix restricted to rows x # Rest, we have therefore that the
Bayes action after observing y can be expressed as

w; = {x # Rest : p(y|x) > é(S; + (N — n)p(y|Rest))}. (18)
As this expression makes clear, the inclusion of elements in w} is favoured by a high value
of the reward @. On the other hand, if p(y|Res?) is high, i.e. if the recovered pNa traits y
are fairly common in the population, the number of elements in w becomes smaller. This
effect is enhanced if the proportion of families providing elements for identification, ¥, is
pretty small, circumventing the illusion to have found interesting clues. Assuming, as it
is reasonable, that @ < N, and denoting as we did before by §* = 3| \c,.» p(y|x) the sum

of all the matrix entries that are at least as big as S/, advantage takes a simple form
1 * ’ *
AX:Y) = (@S" = (Y S Wil + (N = mp(IResn))
y

This expression can be taken to represent the value of the information contained in the
database.

Remark 3 Given the genetic trait y found on a corpse, an interesting question, already

posed by [24] for a fixed coverage strategy, is if the probability the body is related to a
contributor in w}, is greater than the probability it is not. Clearly, if this condition happens
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to be true this encourages further identification activities. We start by noting that

1
pOvly) e ) POl

XEWS
N-—-n
N .

since the probabilities above have the same normalization constant, the condition
p(w;ly) > p(Restly) happens to be true if

erw; P()’|X)
pOIRest)

As expected, if n approaches N, the condition becomes easier to be verified. On the other
hand, this suggests, once again, to be very cautious when the number of the claimed
missing person is a small fraction of the total.

p(Restly) o p(ylRest)

Remark 4 (Computational issues) Entries in the channel matrix are provided row by
row, as the conditional probability of observing each possibly different bNa characteris-
tics conditionally to each familial information. Hand calculation is possible but is time
consuming and error prone. A commercial algebraical software, DNA-VIEW, see [§],
provides single entries of the channel matrix. Alternatively, the entire distribution can
be obtained numerically by freely available numerical software dedicated to the prob-
lem, such as Open Familias, see [14]. In both cases, the choice of the population models
and transmission mechanism are limited by the specific software implementations. More
Jfreedom can be achieved programming the desired distributions by using a low level lan-
guage or, as we did, through freely available Bayesian network routines [21]. If the
transmission mechanism and the population model realistically take account mutations,
population substructure and a level of inbreeding, entries in each row of the matrix as-
sume different values and no equivalence classes arise. A notable exception happens if
there is only one familial donor posed on the direct lineage with the missing person and
the first Mendelian law is adopted (no mutations). In this case it can be shown, see [11]
that, irrespectively of the different number of genotypes in a locus, depending on the num-
ber of alleles, only six equivalence classes arise: this typically favours sparse channel
matrix and speeds computations.

6 Conclusion

We have put forward a framework for the analysis of QiF inspired by the Bayesian utility
theory. We have argued that the resulting strategies are more cost-effective than strategies,
proposed elsewhere in the literature, based on the examination of a fixed fraction of the
possibilities or a fixed probability coverage. Applications to a security protocols and to
DNA searching have been examined.

Our analysis is confined to the realm of finite spaces, since applications we are mainly
interested fall in this category. An extension to secrets and observables defined on reals
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would deal with the predictive distribution of X before and after the observation of Y,
having marginalized out all the nuisance parameters in the model linking them. Bayes
actions w* would resemble HPD intervals, but our proposal, driven by cost and reward
functions, does not rely on a fixed coverage probability. For simple models like linear
regression, based on the joint multivariate normal, the predictive distribution is available
in closed form, in others can be simulated; in any case, it would be interesting to verify
if (19) retains its interesting features, that make the advantage dependent on both the
increase in probability and the reduced interval length of the predicted secret.

In computer security, there is a growing body of literature on qir, see e.g. [10, 2, 25,
3,4, 19, 5, 1, 7] and references therein. In this paper, we have not considered sequential
search, in which the analyst can choose his next action based on the results, and updated
knowledge, arising from previous observations. This topic has been considered in [6]
from a qQiF perspective. In this work, however, no cost structure is considered. It would be
interesting to cast this aspect too into a Bayesian utility framework.

The value of information has been studied in Economics: Marschak noted already
in the 1950’s that one must clearly distinguish between the amount of information of
a source, that can be measured via Shannon entropy, and its value. Cases illustrating
this distinction quite sharply can be found in [20]. Marschak’s concern was ultimately
centered on comparing different information sources (probability distributions, in our ter-
minology), according to the value of information they provide when observed through
different channels.
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A Proofs

Proposition A1 (Proposition 3) Assume px  has  full  support. Then
¥, (e85 = muS,wtl) < GXIY) < 3, (amuST = S Wy ).

Proor We examine the upper bound only, as the lower bound is symmetric. Fix any y such
that p(y) > 0. Consider wi, the Bayes action for p(:[y). It is easy to see that wy Cwy C w; .
From this, using p(x|y) = p(y|x)p(x)/p(y), it easily follows that

o pWily) < pily) = Siews POIPX)/ p() < S 70/ PY);
° IW;I > Iw;l.
From the above two inequalities, and by Lemma 2 applied to p(-|y), we have:
G(Xly) = G(p(-ly)) = apWjly) — W}l < amyS/py) — w;.

By averaging the above inequalities on all y of positive probability, and exploiting the
following lower bound on p(y)

pO) = Y pOIX)P(Y) = Sy,

we have
G(XIY) = E[G(p()] = ) po)epOwily) = wi) < " amuS; = 1,8, wy |
y y
which the thesis for the considered case. O
Proposition A2 (Proposition 1) A(X;Y) = aE, | p(wily) — pw")| + E, [w*| - w}|
Proor For any y such that p(y) > 0, by plugging (11) into (3), we have

GXIY) = ) pmpowly) = Y pe)w]l
y y

from which, by definition and a suitable rearrangements of the summands

AX;Y)

GXIY) = G(X) = a() | po)IPOwy) = pw)) + (W'l = D po)iw})
y y

D PON@(POy) = pw) + w'| = wj))
y

aEy | pow;ly) — pow)| + Ey [ = wil]
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