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Abstract

Principal stratification and mediation analysis are two ways to conceptualize the

mediating role of an intermediate variable in the causal pathways by which a treat-

ment affects an outcome. They are often viewed as competing frameworks, and their

role in dealing with issues concerning causal mechanisms has often fired up glowing

discussions. However a thoughtful comparative analysis, highlighting the substantive

differences between the two frameworks is still lacking. We aim at filling this gap

conducting both principal stratification and mediation analysis using, as a motivat-

ing example, a prospective, randomized, double-blind study to investigate to which

extent the positive overall effect of treatment on postoperative pain control is medi-

ated by postoperative self administration of intra-venous analgesia by patients. Using

the Bayesian approach for inference, we estimate both associative and dissociative

principal strata effects arising in principal stratification analysis, as well as natural

effects and controlled direct effects from mediation analysis. We highlight that prin-

cipal stratification and mediation analysis focus on different causal estimands, answer

different causal questions and involve different sets of identifying assumptions. We

discuss these aspects along the results arising from our analyses.

Keywords: Bayesian inference; Causal inference; Mediation analysis; Principal stratifica-

tion; Oral morphine; Premedication, Postoperative pain, Potential outcomes; Randomized

Experiments.

1 Introduction

Principal stratification and casual mediation analysis are two ways to conceptualize the

mediating role of an intermediate variable in the causal pathways between treatment and

outcome that have received increasing attention in the last years. However, they are often

viewed as competing frameworks. One exception is VanderWeele (2008), who compares
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the concepts of associative and dissociative principal strata effects arising in a principal

stratification framework (Frangakis and Rubin, 2002) and the notions of direct and indi-

rect effects from mediation analysis (Robins and Greenland, 1992; Pearl, 2001), showing

the relationships between them from a theoretical point of view. However, VanderWeele

(2008) provides little insight on the substantive differences between principal stratification

analysis and mediation analysis.

In this paper, we aim at filling this gap, using a prospective, randomized, double-blind

study concerning the effect of preoperative oral administration of morphine sulphate on

postoperative pain relief as a motivating example. The study, to which we refer as “the

morphine study” throughout the article, involved adult patients who were undergoing an

elective open colorectal abdominal surgery. Patients were randomized to received before

surgery the experimental treatment or an active placebo and the outcomes of primary in-

terest was postoperative pain intensity, measured using a visual analogue scale. According

to the medical guidelines for pain control, after surgery, patients received an IntraVenous

Patient Controlled Analgesia (IVPCA) system programmed to give off fixed doses of mor-

phine sulphate upon patient demand. The number of self-administered doses of morphine

sulphate is a post-treatment intermediate variable lying on the causal pathway between the

treatment (preoperative medication) and pain intensity. Then, the question is how to ex-

tricate the channeled (indirect) effect mediated through postoperative self-administration

of morphine sulphate, and the unchanneled (direct) effect (that is, the effect not medi-

ated through postoperative self-administration of morphine sulphate) from one another.

Borracci et al. (2013), who first analyzed data from the morphine study, face the problem

by conditioning on the observed number of self-administered doses of morphine sulphate,

including that post-treatment intermediate variable as a covariate in regression models.

The comparison of pain intensity between treated and control patients adjusted for the

observed value of the post-treatment variable may provide some insight into the treatment

mechanism, but lacks a causal interpretation, unless the treatment has no effect on the

post-treatment variable (Rosenbaum, 1984). This does not seem to be the case in the

morphine study, where preoperative administration of oral morphine sulphate is effective

in reducing postoperative self-administration of morphine sulphate (Borracci et al., 2013).

In this article we use principal stratification and mediation analysis to get some informa-

tion on the extent to which the effect of the treatment on the outcome is channeled by

the intermediate variable.

The role of principal stratification and mediation analysis in dealing with issues con-

cerning causal mechanisms has often fired up glowing discussions in the causal community.

In this article, we aim at smoothing these controversies over, using the morphine study to

highlight that mediation analysis and principal stratification analysis generally focus on

different causal estimands, answer different questions and involve different sets of identify-

ing assumptions, which lead to use the information provided by the data in a substantially

different way.

Principal stratification focuses on local causal effects, that is, causal effects for specific
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sub-populations named principal strata. Despite the local nature of principal strata effects,

we view the concept of principal stratification as a useful principle for addressing the topic

of direct and indirect causal effects. Mediation analysis focuses on disentangling direct

and indirect effects, which are generally defined at the individual level and averaged over

the whole population, like natural direct and indirect effects and controlled direct effects

we consider in our study.

We adopt a Bayesian approach for inference. From a Bayesian perspective, inference

is based on the posterior distribution of the causal estimands of interest. The Bayesian

analysis yields valid estimates of quantities of interest and also properly accounts for

uncertainty about these quantities (Rubin, 1978).

The remainder of the paper is organized as follows. In Section 2 we describe the mor-

phine study and introduce the notation. In Section 3 we define the causal estimands of

interest, clarifying the information they provide in the context of the morphine study.

We present the structural assumptions in Section 4. In Section 5 we propose a Bayesian

approach for principal stratification analyses and mediation analysis, specifying our mod-

eling assumptions. We present and discuss the results of the analyses in Section 5 and

conclude the article in Section 6.

2 The Morphine Study

The morphine study, a double-blind randomized controlled trial conducted between Oc-

tober 2009 and June 2010 at the University Hospital of Florence in Italy, was designed

to investigate the effects of preoperative oral administration of morphine sulphate on pa-

tients’ postoperative pain control. A random sample of n = 60 patients aged 18 − 80

who were undergoing an elective open colorectal abdominal surgery was enrolled in the

study: 32 patients were randomly assigned to the treatment group, and 28 patients were

randomly assigned to the control group. Before surgery, patients in the treatment group

were administered oral morphine sulphate (Oramorphr, Molteni Farmaceutici, Italy), and

patients in the control group received oral midazolam (Hypnovelr, Roche, Switzerland),

a short-acting drug inducing sedation, which is here considered as an active placebo.

After surgery all patients received a device for Intra-Venous Patient-Controlled Analge-

sia (IV-PCA). The device was programmed to deliver fixed doses of intravenous morphine

sulphate upon patient demand, with a lock-out time of 5 minutes to avoid excess of seda-

tion or overdose.

The outcome of primary interest was pain intensity measured using Visual Analogue

Scale (VAS) scores at rest and for movement (that is, upon coughing). We also refer to

these outcome variables as static VAS and dynamic VAS, respectively. VAS scores were

measured using a line of 100 mm where the left extremity is no pain and the right one

is extreme pain. Physicians consider a pain score not greater than 30 mm at rest, and

not greater than 45 mm on movement as a satisfactory pain relief. For each patient, pain

intensity at rest and for movement was measured at 4, 24, and 48 hours from the end of

3



surgery. Here we focus on pain intensity at rest and for movement 4 hours after the end

of surgery (see Borracci et al., 2013, for further details on the study).

Our objective is to measure the causal effect of preoperative medication on pain relief,

accounting for postoperative self-administration of morphine sulphate. Postoperative self-

administration of morphine sulphate is a post-treatment intermediate variable, therefore it

may be affected by the treatment, and, in turn, it may mediate the effect of the treatment

on the primary outcome, in some way channeling a part of the treatment effect. Indeed,

the number of morphine doses administered upon patient demand may cause variation in

pain intensity, but at the same time it could vary depending on the preoperative treatment.

Therefore, a key issue is about how to extricate the channeled and unchanneled effects

from one another.

2.1 Notation and Descriptive Analyses

In order to answer the research question of interest we first introduce some notation.

We will frame our discussion in the context of the potential outcome approach to causal

inference, also known as the Rubin Causal Model (Rubin, 1974, 1978).

Each patient who participates in the study can either be assigned to the oral morphine

group, z = 1, or the active placebo group, z = 0. Let Z denote the treatment variable.

Under the standard Stable Unit Treatment Value Assumption (SUTVA, Rubin, 1980), for

each patient there are two associated potential outcomes for each post-treatment variable.

Formally, for each patient, indexed by i, i = 1, . . . , n = 60, let Si(1) be the number

of self-administered post-operative doses of morphine sulphate if the patient is exposed

to preoperative oral morphine, and let Si(0) be the number of self-administered post-

operative doses of morphine sulphate if the patient is exposed to the active placebo.

Analogously, let Yi1(z) and Yi2(z) define the potential outcomes for pain intensity at rest

and for movement, respectively, if patient i is assigned treatment z.

For each patient i, we observe the treatment actually assigned, Zi, and only one po-

tential outcome for each post-treatment variable depending on the treatment actually

assigned. Let Sobsi = Si(Zi) be the observed number of self-administered post-operative

doses of morphine sulphate, and let Y obs
i1 = Yi1(Zi) and Y obs

i2 = Yi2(Zi) be the actual out-

comes. Potential outcomes under the treatment status not assigned, 1 − Zi, are missing:

Smisi = Si(1− Zi), Y mis
i1 = Yi1(1− Zi) and Y mis

i2 = Yi2(1− Zi). In the sequel, to simplify

the notation, we will use Yi(z) and Y obs
i to denote the potential outcomes and the actual

outcomes for pain intensity at rest or for movement, dropping the second subscript, unless

necessary to avoid misunderstandings. For each patient we also observe two covariates,

Xi1, gender, and Xi2, age in years. The vectors Z,Sobs,Yobs are n−dimensional vectors

with ith elements equal to Zi, S
obs
i , Y obs

i , respectively. The n × 2 matrix X has ith row

equal to X′i ≡ (Xi1, Xi2).

If the intermediate variable, S, could be, at least in principle, regarded as an additional

treatment and could be at least potentially controlled by external interventions, under an

appropriate version of SUTVA (see, e.g., Mattei and Mealli, 2011), we could also define
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Table 1: Morphine study: Summary statistics

Mean Mean

Outcome variable All Zi = 0 Zi = 1 difference

IV-PCA (Si) 13.43 15.64 11.50 −4.14

Static VAS (Yi1) 36.08 45.36 27.97 −17.39

Dynamic VAS (Yi2) 55.08 66.61 45.00 −21.61

potential outcomes of the form Yi(z, s) and Yi(z, Si(z
′)): Yi(z, s) would be the value of

the outcome Y if, possibly contrary to fact, the treatment were set to the level z and the

mediator S were set to a specific prefixed value, s; and Yi(z, Si(z
′)) would be the value of

the outcome Y if, possibly contrary to fact, the treatment were set to the level z and the

mediator S were set to the value it would have taken if the treatment had been set to an

alternative level, z′. For instance in the morphine study, potential outcomes of this type

include the values of pain intensity under oral morphine, if the number of self-administered

doses of morphine sulphate somehow were simultaneously forced to attain a specific value

s, or the value it would have taken under the active placebo.

Even if we are willing to regard the treatment variable, Z, and the intermediate vari-

able, S, as a multivariate treatment variable, (Z, S), and to hypothesize the existence

of potential outcomes of the form Yi(z, s) and Yi(z, Si(z
′)), the intermediate variable is

indeed a post-treatment variable, which can be potentially affected by treatment assign-

ment. Therefore some potential outcomes of the form Yi(z, s) and Yi(z, Si(z
′)) are a priori

counterfactuals in the experiment, because Yi(z, s) and Yi(z, Si(z
′)) can be never observed

for units for whom Si(z) 6= s and Si(z) 6= Si(z
′) for z 6= z′, respectively. In this specific

experiment, the potential outcomes Yi(z, s) and Yi(z, Si(z
′)) can be never observed for

such type of patients. For such type of patients, a priori counterfactuals are not in the

data, and in this specific experiment, they cannot be observed, not even on patients of the

same type assigned to the opposite treatment.

Table 1 presents some summary statistics for the sample, classified by treatment as-

signment, Zi. As can be seen in Table 1, there is some evidence that preoperative adminis-

tration of oral morphine sulphate reduces the number of postoperative self-administrated

doses of morphine sulphate and reduces pain intensity, both at rest and for movement.

3 Causal Estimands

In the potential outcome approach to causal inference a causal effect of the treatment

Z on an outcome Y is defined as a comparison of the potential outcomes on a common

set of units. Here we focus on the average causal effect of the preoperative treatment on

pain intensity, defined as the expected difference between potential outcomes for the study

population:

ACE = E [Yi(1)− Yi(0)] . (1)
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However, this causal estimand does not account for postoperative self-administration of

analgesia, S. In order to get some insight on the causal pathways by which preoperative

administration of oral morphine sulphate affects pain intensity, we use both principal

stratification and mediation analysis.

Principal stratification analysis may provide useful information by looking at the joint

value of the mediating variable under treatment and under control, (Si(0), Si(1)). The joint

potential value of Si(0) and Si(1) is essentially a characteristic of a subject, describing how

an individual reacts to the treatment. The framework of principal stratification focuses

on local causal effects, that is, causal effects for specific subpopulations (principal strata),

therefore it does not always answer the causal question of primary interest, but often

provides useful insights, and has the advantage to avoid a priori counterfactuals. In the

principal stratification framework causal effects are defined using only potential outcomes

of the form Yi(z) and Si(z).

Causal mediation analysis focuses on disentangling direct and indirect effects, which

are generally defined at the individual level and averaged over the whole population. To

formalize the concepts of direct and indirect effects mediation analysis usually involves

potential outcomes of the form Yi(z, s) and Yi(z, Si(z
′)).

3.1 Principal Stratification and Principal Strata Effects

Principal stratification uses the joint value of the potential intermediate values to define

a stratification of the population into principal strata. Formally, the basic principal strat-

ification with respect to a post-treatment variable S is the partition of subjects into sets

such that all subjects in the same set have the same vector (Si(0);Si(1)). A principal

stratification with respect to the post-treatment variable S is a partition of units whose

sets are unions of sets in the basic principal stratification (Frangakis and Rubin, 2002).

In the morphine study principal strata are defined by the joint potential values of the

number of self-administrated doses of morphine under the oral morphine treatment and

under the active placebo treatment. The intermediate variable takes on several values,

thus the basic principal stratification leads to classify units into several principal strata.

Given the reduced sample size, here we prefer to focus on a simplified setting with a

binary intermediate variable. Therefore we apply the principal stratification approach by

dichotomizing the intermediate variable, considering a binary variable equal to 1 if patients

use a number of morphine doses greater than a pre-fixed cut-off point s∗, and 0 otherwise.

Formally, let S∗i ≡ I{Si > s∗}, where I{·} is a function taking the value one if its argument

is true and the value zero otherwise. It should be noticed that all the conceptual issues

surrounding the comparison between principal stratification analysis and causal mediation

analysis are captured also using a binary version of the intermediate variable within the

principal stratification framework.

The basic principal stratification with respect to the binary intermediate variable

S∗ partitions patients into four latent groups: (1) patients who would self-administer

morphine sulphate at a low level irrespective of their treatment assignment 00 = {i :
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S∗i (0) = 0, S∗i (1) = 0}, whom we label as “pain-tolerant patients”; (2) patients who

would self-administer morphine sulphate at a high level under the active placebo, but

would self-administer morphine sulphate at a low level under oral morphine 10 = {i :

S∗i (0) = 1, S∗i (1) = 0}, whom we label as “normal patients”; (3) patients who would

self-administer morphine sulphate at high level irrespective of their treatment assign-

ment 11 = {i : S∗i (0) = 1, S∗i (1) = 1}, whom we label as “pain-intolerant patients”;

and (4) patients who would self-administer morphine sulphate at a low level under the

active placebo, but would self-administer morphine at a high level under oral morphine

01 = {i : S∗i (0) = 0, S∗i (1) = 1}, whom we label as “special patients.”

A principal causal effect is a comparison between the potential outcomes for the pri-

mary outcome, Y , within a particular principal stratum (or union of principal strata).

Here we focus on average principal causal effects:

PCE(s0, s1) = E [Yi(1)− Yi(0) | S∗i (0) = s0, S
∗
i (1) = s1] . (2)

Due to the fact that principal strata are not affected by treatment assignment by definition,

principal effects are always well-defined causal effects.

If one is seeking information on causal mechanisms it is sensible to start looking at

the effects of treatment on outcome that are associative and dissociative with the effects

of treatment on the mediating variable. Associative principal causal effects are causal

effects within principal strata where the mediating variable is affected by treatment in

this study: PCE(s0, s1) with s0 6= s1. Dissociative principal causal effects are causal

effects within principal strata where the mediating variable is unaffected by treatment

in this study: PCE(s, s), s = 0, 1. In the morphine study, associative principal causal

effects, PCE(1, 0) and PCE(0, 1), are causal effects for normal and special patients, and

dissociative principal causal effects, PCE(0, 0) and PCE(1, 1), are causal effects for pain-

tolerant and pain-intolerant patients.

The average total effect is the weighted average of principal causal effects across units

belonging to different principal strata:

ACE =
∑
s0,s1

PCE(s0, s1)πs0,s1 =
∑

s0=s1=s

PCE(s, s)πs,s +
∑
s0 6=s1

PCE(s0, s1)πs0,s1 ,

where πs0,s1 is the proportion of units belonging to {i : S∗i (0) = s0, S
∗
i (1) = s1}. However,

it should be stressed that associative and dissociative principal causal effects do not in

general allow one to decompose the total effect into overall direct and indirect effects,

unless additional assumptions are made.

Principal stratification makes it clear that only in strata where the intermediate vari-

able is unaffected by the treatment can we hope to learn something about the direct effect

of the treatment. Dissociative principal causal effects naturally provide information on

the existence of a direct causal effect of the treatment on the primary outcome for the

sub-population of patients for whom treatment does not affect the intermediate variable

in this study (Mealli and Rubin, 2003). If dissociative principal causal effects are all zero,
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then there is no evidence on the unchanneled (direct) effect of the treatment after con-

trolling for the mediator (Rubin, 2004; Mattei and Mealli, 2011). This does not mean

that there is no direct effect of the treatment because associative effects generally combine

unchanneled (direct) and channeled effects (e.g., VanderWeele, 2008).

3.2 Natural Direct and Indirect Effects and Controlled Direct Effects

We conduct mediation analysis focusing on the concepts of controlled direct effects and

natural direct and indirect effects (Robins and Greenland, 1992; Pearl, 2001). Formally,

the average controlled direct effect of the treatment Z on the outcome Y , setting S to s,

is defined as follows:

CDE(s) = E [Yi(1, s)− Yi(0, s)] . (3)

CDE(s) measures the effect of Z on Y after intervening to fix the mediator, S, to a

prefixed value s. In other word, the controlled direct effect measures the effect of preoper-

ative oral morphine sulphate on pain intensity that is not mediated through the number

of self-administrated doses of morphine sulphate, which is assumed to be fixed to a spe-

cific value. Controlled direct effects are prescriptive in the sense that the intermediate

outcome is fixed at a prescriptive value: CDE(s) measures the causal effect of preoper-

ative oral administration of morphine sulphate on pain intensity if a prescribed number

of postoperative doses of morphine sulphate, s, were administered to all patients in the

population.

The average natural direct and indirect effects are defined as follows:

NDE(z) = E [Yi(1, Si(z))− Yi(0, Si(z))] (4)

NIE(z) = E [Yi(z, Si(1))− Yi(z, Si(0))] , (5)

for z = 0, 1. NDE(z) measures the effect on the outcome Y of intervening to fix the

mediator to the value it would have taken if Z had been set to z, that is, it measures the

effect of the administration of preoperative oral morphine sulphate on pain intensity not

mediated through self-administration of morphine sulphate. NIE(z) measures the effect

on the outcome Y of intervening to set the mediator to what it would have been if Z were

z = 1 in contrast to what it would have been if Z were z = 0, that is, it measures the

extent to which the administration of preoperative oral morphine sulphate affects pain

intensity, through the number of postoperative self-administrated doses of morphine sul-

phate. Natural direct effects are the part of the effect of the administration of preoperative

oral morphine sulphate on pain intensity that is not due to a change in the number of

self-administrated doses of morphine sulphate, while natural indirect effects measure the

effect on pain intensity of a change in the number of postoperative self-administrated doses

of morphine sulphate, which is due to the administration of preoperative oral morphine

sulphate. Pearl (2001) originally defines natural effects as descriptive tools, in the sense

that they describe the part of the effect attributable to the treatment itself and the part

of the effect attributable to an intervention on the intermediate variable which reproduces
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natural conditions; this interpretation has received some criticisms though (see Imai et al.,

2013, and discussion).

Natural effects provide a decomposition of the average total causal effect into the sum

of a natural direct effect and a natural indirect effect and thus, should, at least in principle,

discover causal mechanisms: ACE = NDE(0)+NIE(1) and ACE = NDE(1)+NIE(0).

Conversely, controlled direct effects do not in general allow one to decompose the total

effect into overall direct and indirect effects.

4 Structural Assumptions

In the morphine study patients are assigned to either the oral morphine group or the active

placebo group according to a completely randomized experiment. Randomization implies

that oral morphine is assigned independently of all potential outcomes and pretreatment

covariates. Formally,

Assumption 1 Ignorability of treatment assignment. For each i = 1, . . . , n,

Pr (Zi | Si(0), Si(1), Yi(0), Yi(1),Xi) = Pr (Zi) .

Under Assumption 1 we can easily identify the total average causal effect, ACE, but

here interest focuses on principal strata effects and direct and indirect effects. The as-

sumptions that allow us to identify principal strata effects and direct and indirect effects

are of a different nature and a careful evaluation of their plausibility is crucial.

4.1 Structural Assumptions in Principal Stratification Analysis

Randomization guarantees that principal strata have the same distribution in both treat-

ment arms, and implies that the treatment is independent of potential outcomes given

the principal strata: Pr (Zi | Si(0), Si(1), Yi(0), Yi(1),Xi) = Pr (Zi | Si(0), Si(1)), so that

treated and control units can be compared conditional on a principal stratum. This is also

true if principal strata are defined dichotomizing the intermediate variable, S.

Unfortunately we cannot, in general, observe the principal stratum which a subject

belongs to, because we cannot directly observe both Si(0) and Si(1) for any subject.

Observed groups are typically mixtures of principal strata. In the morphine study, each

observed group, defined by the treatment actually received and the observed level of

postoperative morphine consumption, is a mixture of two principal strata (see Table 2).

The latent nature of principal strata makes the identification of principal strata ef-

fects in principal stratification analysis a challenging task. In principle, we can avoid the

introduction of structural assumptions using a fully Bayesian approach for inference. In

fact, the fully Bayesian approach does not need full identification (e.g., Imbens and Rubin,

1997). Under randomization, without additional structural assumptions, models, and thus

principal causal effects, are weakly identified in the sense that their posterior distributions
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Table 2: Principal stratification and observed data

Principal Stratification Observed Data

Stratum I{Si(0) > s∗} I{Si(1) > s∗} Zi I{Sobsi > s∗} Stratum

00 0 0 0 0 00 ∪ 01

01 0 1 0 1 10 ∪ 11

10 1 0 1 0 10 ∪ 00

11 1 1 1 1 01 ∪ 11

are proper (and this is is always true with proper priors) but have substantial regions of

flatness.

In our study Bayesian inference is conducted under an additional assumption:

Assumption 2 Monotonicity of Morphine Consumption. For each i = 1, . . . , n, S∗i (1) ≤
S∗i (0).

Assumption 2 rules out the presence of special patients who would self-administer a low

number of morphine doses under the active placebo treatment but would self-administer

a high number of morphine doses under the oral morphine treatment (01 principal stra-

tum). Although this assumption is not necessary for Bayesian inference, it helps sharpen

inference, because under Assumption 2 we can identify the principal stratum proportions.

Assumption 2 is not directly verifiable, and it is a strong assumption, which may not be

satisfied. We thoroughly discussed it with physicians and experts, who found it substan-

tially plausible due to the pharmacological characteristics of the active placebo. Indeed,

underlying Assumption 2 is the clue that although patients may use morphine sulphate at

high level after surgery upon receipt of the oral morphine sulphate treatment, because, e.g.,

they are highly sensitive to pain, they are unlikely to use morphine sulphate at high level

after surgery upon receipt of oral morphine sulphate if they would have used morphine

sulphate at low level under the active placebo treatment.

4.2 Structural Assumptions in Mediation Analysis

The definition of natural direct and indirect effects as well as the definition of controlled

direct effects involve potential outcomes of the form Yi(z, s) and Yi(z, Si(z
′)). If we admit

the existence of these potential outcomes, we need to incorporate them in the assumption

about ignorability of treatment assignment. Formally:

Assumption 3 Ignorability of treatment assignment in the presence of potential outcomes

of the form Yi(z, s). For each i = 1, . . . , n,

Pr (Zi | Si(0), Si(1), Yi(0, s), Yi(1, s),Xi) = Pr (Zi) for each s ∈ S

Note that potential outcomes of the form Yi(z, Si(z
′)) and Yi(z) can be viewed as specific

values of Yi(z, s), where the intermediate variable is forced to attained the value s = Si(z
′)

and s = Si(z), respectively.
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Moreover, due to the fact that potential outcomes of the form Yi(z, s) and Yi(z, Si(z
′))

are never observed in this specific experiment for some patients, in order to identify natural

direct and indirect effects and controlled direct effects we need to introduce additional

structural assumptions that allow us to extrapolate information on Yi(z, s) and Yi(z, Si(z
′))

from the observed data. To face this issue, mediation analysis usually invokes assumptions

that posit an assignment mechanism for the mediating variable, thereby implying that the

mediating variable could be, at least in principle, regarded as an additional treatment.

Alternative sets of assumptions have been proposed in the literature (see, e.g., Pearl,

2001; Robins and Greenland, 1992; Robins, 2003; Petersen et al., 2006; VanderWeele and

Vansteelandt, 2009). Here, we focus on the assumptions proposed by VanderWeele and

Vansteelandt (2009).

Specifically, in order to identify controlled direct effects, we assume that the number of

self-administered doses of morphine sulphate is assigned independently of potential out-

comes for pain intensity, Yi(z, s), given the observed treatment and pretreatment variables:

Assumption 4 Sequential Ignorability 1. For each i = 1, . . . , n,

Pr
(
Sobsi | Yi(z, s), Zi,Xi

)
= Pr

(
Sobsi | Zi,Xi

)
for each s ∈ S and z ∈ {0, 1}

In order to identify natural direct and indirect effects we also need to impose an

additional ignorability assumption, which implies that potential outcomes for the number

of self-administrated doses of morphine sulphate are independent of potential outcomes

for pain intensity given pretreatment variables:

Assumption 5 Sequential Ignorability 2. For each i = 1, . . . , n,

Pr
(
Si(z

′) | Yi(z, s),Xi

)
= Pr

(
Si(z

′) | Xi

)
for each s ∈ S, and z′, z ∈ {0, 1}

Assumptions 4 and 5 are not verifiable and are strong assumptions, which may be not

satisfied in many cases, even if the intermediate variable can be reasonably regarded as an

additional treatment. The plausibility of these assumptions rests heavily on the amount

of information contained in the covariates, X: the higher the dimension of X, the more

plausible we might consider Assumptions 4 and 5 to be. In the morphine study, we only

have information on two covariates, gender and age, so Assumptions 4 and 5 might be

arguable, and results from mediation analysis might not be defensible.

5 Bayesian Inference

Bayesian inference is conducted conditional on pretreatment covariates. Covariates do

not enter the treatment assignment mechanism (by design), but they enter the sequen-

tial ignorability assumptions (Assumptions 4 and 5) in mediation analysis. In principal

stratification analysis, conditioning on covariates is not required by randomization, how-

ever they can be used to improve efficiency of estimation and address confounding due to

residual unbalance between treatment groups in finite samples.
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Bayesian Inference for Principal Causal Effects

Bayesian inference for principal causal effects requires to specify two sets of models: a

model for the conditional distribution of the principal stratum membership given pre-

treatment variables, and a model for the conditional distribution of potential outcomes

given pretreatment variables and principal stratum membership (Imbens and Rubin, 1997).

Let Gi ≡ (S∗i (0), S∗i (1)) denote the principal stratum membership for unit i, and let

S∗i = S∗i (Zi) be the observed value of the binary intermediate outcome S∗. Under As-

sumption 2 (monotonicity of morphine consumption), Gi ∈ {00, 10, 11}, for i = 1, . . . , n.

Let S∗ and G be n-dimensional vectors with ith elements equal to S∗i and Gi, respectively.

Under exchangeability, we can assume that conditional on a general parameter, denoted

by θ, with prior distribution p(θ), the model has an independent and identical distribution

(i.i.d.) structure. Formally, denote πi,g = Pr(Gi = g | Xi;θ) and fi,g,z = p(Yi(z) | Gi =

g,Xi;θ). Then, the posterior distribution of θ is

p(θ | Z,Yobs,S∗,X) ∝ p(θ)×
∏

i:Zi=0,S∗i =0

πi,00 · fi,00,0 ×
∏

i:Zi=1,S∗i =1

πi,11 · fi,11,1×

∏
i:Zi=0,S∗i =1

[πi,10 · fi,10,0 + πi,11 · fi,11,0]×
∏

i:Zi=1,S∗i =0

[πi,00 · fi,00,1 + πi,10 · fi,10,1] ,

where the sum in the likelihood is because patients with (Zi = 0, S∗i = 1) are mixture

of normal patients and pain-intolerant patients, and patients with (Zi = 1, S∗i = 0) are

mixture of normal patients and pain-tolerant patients.

We assume a normal outcome model for pain intensity: Yi(z) | Gi = g,Xi;θ ∼
N(µi,g,z, σ

2
g,z), where µi,g,z = β

(g,z)
1 + β

(g,z)′

X Xi, for g ∈ {00, 10, 11} and z = 0, 1. We

assume that conditional on Xi and θ, the two outcomes Yi(0) and Yi(1) are independent1.

For the distribution of principal stratum membership we use two conditional probit models,

defined using indicator variables I{Gi = 00} and I{Gi = 11} for whether patient i is a pain-

tolerant patient or a pain-intolerant patient. Formally, define G∗i,00 = α
(00)
1 +α

(00)′

X Xi+εi,00

and G∗i,11 = α
(11)
1 +α

(11)′

X Xi+εi,11, where εi,00 ∼ N(0, 1) and εi,11 ∼ N(0, 1) independently.

Then, I{Gi = 00} = I{G∗i,00 ≤ 0} and I{Gi = 11} = I{G∗i,00 > 0} · I{G∗i,11 ≤ 0}. It is

worth noting that although the order of listing the principal strata, and so the choice

of the baseline principal stratum, is irrelevant from a theoretical perspective, the perfor-

mances of the algorithm we use to derive the posterior distribution of the parameters of

the principal stratum sub-model improve in terms of convergence rate using the group of

normal patients (the 01 group) as reference group. This result is intuitive because nor-

mal patients are always observed in a mixture with another group (either pain-tolerant

or pain-intolerant patients), whereas under the monotonicity assumption, the observed

1In this article, we regard the n subjects in the study as a random sample from a hypothetical super-

population, and we focus on super-population causal estimands, that is, average principal causal effects

in this hypothetical population. Super-population average principal causal effects do not depend on the

association between Yi(0) and Yi(1), therefore the independence assumption has little inferential effect

(Imbens and Rubin, 1997).
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groups (Zi = 0, S∗i = 0) and (Zi = 1, S∗i = 1) only include pain-tolerant patients and

pain-intolerant patients, respectively.

Let α(g) = (α
(g)
1 ,α

(g)
X ), g = 00, 11 and β(g,z) = (β

(g,z)
1 ,β

(g,z)
X ), g = 00, 10, 11, z = 0, 1.

The full parameter vector is θ = (α(00),α(11),β(00,0), σ200,0,β
(00,1), σ200,1,β

(10,0), σ210,0,β
(10,1),

σ210,1,β
(11,0), σ211,0,β

(11,1), σ211,1), which consists of 30 elements. Given the relatively small

sample size in the morphine study, we impose prior equality of the slope coefficients

and variances in the outcome regressions across principal strata: β
(00,0)
X = β

(10,0)
X =

β
(11,0)
X ≡ β

(0)
X , σ200,0 = σ210,0 = σ211,0 ≡ σ20, and β

(00,1)
X = β

(10,1)
X = β

(11,1)
X ≡ β

(1)
X , and

σ200,1 = σ210,1 = σ211,1 ≡ σ21, reducing the number of parameters to 18.

We assume that parameters are a priori independent and use proper but uninformative

prior distributions. The prior distributions for the principal stratum model are α(00) ∼
N
(
µ
α(00) ,Σα(00)

)
and α(11) ∼ N

(
µ
α(11) ,Σα(11)

)
where µ

α(00) and µ
α(11) are null vectors

and Σα(00) and Σα(11) are set at 106I3, where Ik is the identity matrix of order k. The

prior distributions for the outcome models are β
(g,z)
1 ∼ N

(
µ
β
(g,z)
1

= 0, σ2
β
(g,z)
1

= 106
)

,

g ∈ {00, 10, 11}, z = 0, 1; β
(z)
X ∼ N

(
µ
β
(z)
X

= 0,Σ
β
(z)
X

= 106I2
)

, z = 0, 1; and σ2z ∼ Inv −
χ2
νz

(s2z), with νz = 0.002 and s2z = 1, z = 0, 1.

Bayesian Inference for Direct and Indirect Effects

Under Assumptions 3, 4 and 5 we can use regression models for estimate natural direct

and indirect effects and average controlled direct effects. Following VanderWeele and

Vansteelandt (2009), in the morphine study we use linear regression models including

a product term between the mediator and the treatment indicator in the model for the

outcomes, allowing the exposure to interact in its effect on the outcomes with the mediator:

Sobsi = α1 + α2Zi + α′XXi + εS,i (6)

Y obs
i = β1 + β2Zi + β3S

obs
i + β4ZiS

obs
i + β′XXi + εY,i, (7)

where εS,i ∼ N(0, σ2S) and εY,i ∼ N(0, σ2Y ) independently.

We conduct Bayesian inference under exchangeability, Assumptions 3, 4 and 5 and

the linear models specified in Equations (6) and (7). The full parameter vector is θ =

(α, σ2S ,β, σ
2
Y ), where α = (α1, α2,αX) and β = (β1, β2, β3, β4,βX), for a total of 12

parameters. We assume that parameters are a priori independent with prior distributions

α ∼ N
(
µ
α
,Σα

)
, σ2S ∼ Inv−χ2

νS
(s2S), β ∼ N

(
µ
β
,Σβ

)
, σ2Y ∼ Inv−χ2

νY
(s2Y ). In order to

specify flat priors, we set µ
α

and µ
β

to be null vectors, Σα and Σβ to be 106I4 and 106I6,
respectively, νS = 0.002, s2S = 1, νY = 0.002 and s2Y = 1. The posterior distribution for

the parameter vector θ is

p(θ | Z,Sobs,Yobs,X) ∝ p(α)p(σ2S)p(β)p(σ2Y )×
∏n
i=1

 1√
σ2S

φ

Sobsi − (α1 + α2Zi + α′XXi)√
σ2S


× 1√

σ2Y

φ

Y obs
i − (β1 + β2Zi + β3S

obs
i + β4ZiS

obs
i + β′XXi)√

σ2Y

,
13



where φ(·) is the probability density function of a standard normal distribution.

Results

In this section, we show results for the causal estimands of interest in principal strati-

fication analysis and mediation analysis. The posterior distributions of the parameters

are obtained from Markov chain Monte Carlo (MCMC) methods. Note that the causal

estimands are not parameters of the models, but rather are functions of parameters and

data. Details on the MCMC algorithms we adopt and the functions defining the causal

estimands of interest are given in Appendix.

5.1 Results from Principal Stratification Analysis

We conduct principal stratification analysis using three cut-off points to dichotomize the

intermediate variable S: s∗ = 8, s∗ = 12 (the overall study sample median), and s∗ = 14.

About 60% of patients self-administered a number of morphine doses greater than 8, and

35% of patients self-administered a number of morphine doses greater than 14. For each

cut-off, Table 3 presents posterior mean, standard deviation and 95% posterior credible

interval for the average total causal effect, and for the principal causal effects and the

proportions of patients belonging to each stratum.

The qualitative conclusions are similar, regardless the cut-off. Approximately, the

average total effects indicate a 19 points reduction in static VAS and 22 points reduction

in dynamic VAS due to the administration of oral morphine before surgery.

More than 70% of patients are pain-tolerant or pain-intolerant, that is, patients whose

postoperative consumption of morphine sulphate is unaffected by preoperative adminis-

tration of oral morphine sulphate. The remaining 30% are normal patients, who would

lower postoperative morphine consumption as a consequence of receiving oral morphine

sulphate before surgery.

Dissociative effects, which provide information on the presence of an unchanneled

(direct) effect, appear to be heterogeneous: The effect of preoperative oral morphine sul-

phate for pain-tolerant patients, PCE(0, 0), is stronger than for pain-intolerant patients,

PCE(1, 1). For instance, if we consider the principal causal effects for dynamic VAS, a

reduction greater than 24.8 points in pain intensity on movement is estimated for pain-

tolerant patients under all cut-off points, with the associated 95% posterior intervals being

large, but located far from zero. Conversely, for pain-intolerant patients, the estimated

reduction in pain intensity on movement varies from 5.7 (when the cut-off is set to 12) to

14.4 points (when the cut-off is set to 8). In this case, the 95% posterior intervals always

cover zero. Heterogeneity of the causal effect between pain-tolerant and pain-intolerant

patients arises also for static VAS, although the differences between the posterior means

of PCE(0, 0) and PCE(1, 1) are smaller, and the 95% posterior intervals for PCE(0, 0)

are close to zero or cover 0.
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Table 3: Principal stratification analysis: Posterior means, standard deviations and 95%

posterior credible intervals of principal strata proportions, principal causal effects and the

average total causal effect

Static VAS Dynamic VAS

Estimand Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

S∗i = I{Si > 8}
π10 0.29 0.09 0.13 0.46 0.26 0.09 0.10 0.44

π00 0.25 0.07 0.12 0.39 0.26 0.07 0.14 0.41

π11 0.46 0.07 0.33 0.60 0.47 0.07 0.34 0.62

PCE(1, 0) -20.59 14.09 -47.02 7.36 -15.69 19.33 -49.76 24.38

PCE(0, 0) -23.78 11.88 -46.78 -1.12 -36.82 12.45 -61.72 -12.57

PCE(1, 1) -13.41 8.09 -29.66 2.35 -14.41 9.64 -32.70 4.71

ACE -18.13 5.06 -27.89 -8.08 -21.17 5.73 -32.41 -10.03

S∗i = I{Si > 12}
π10 0.29 0.08 0.15 0.46 0.28 0.08 0.14 0.44

π00 0.38 0.07 0.24 0.52 0.40 0.07 0.26 0.54

π11 0.32 0.06 0.21 0.45 0.32 0.06 0.21 0.44

PCE(1, 0) -27.55 12.70 -53.34 -3.62 -34.09 13.18 -60.04 -8.66

PCE(0, 0) -17.49 10.10 -37.08 1.44 -26.01 10.37 -46.44 -5.43

PCE(1, 1) -11.79 8.89 -28.79 6.18 -5.69 9.97 -25.04 14.25

ACE -18.60 4.83 -27.97 -9.24 -21.72 5.77 -33.12 -10.69

S∗i = I{Si > 14}
π10 0.28 0.08 0.14 0.44 0.25 0.08 0.11 0.42

π00 0.47 0.07 0.33 0.61 0.50 0.08 0.35 0.65

PCE(1, 0) -26.59 14.08 -53.51 -0.01 -31.05 16.10 -61.37 0.32

PCE(0, 0) -17.74 9.84 -37.14 -0.09 -24.81 9.72 -44.33 -6.18

PCE(1, 1) -15.99 11.51 -39.70 6.90 -8.41 12.88 -33.27 17.31

ACE -19.78 5.10 -29.90 -9.66 -22.34 5.97 -34.39 -10.52

The associative effect PCE(1, 0) estimates the causal effect of preoperative oral mor-

phine in normal patients. If the cut-off is set to 12 or 14 self-administered doses of

morphine sulphate, a larger reduction in pain intensity is estimated for normal patient

than for pain-tolerant and pain-intolerant patients. If the cut-off is set to 8, the value of

PCE(1, 0) is intermediate between the two dissociative effects.

5.2 Results from Mediation Analysis

Table 4 presents summary statistics of the posterior distributions for the average total

causal effect, and for natural direct and indirect effects, and Figure 1 shows the posterior

means and the 95% posterior credible intervals for controlled direct effects calculated

fixing the number of self-administered doses of morphine sulphate at different values s,
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Table 4: Mediation analysis: Posterior means, standard deviations and 95% posterior

credible intervals of natural direct and indirect effects and the average total causal effect

Static VAS Dynamic VAS

Estimand Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

NDE(0) -17.02 4.66 -26.14 -7.91 -20.55 5.56 -31.33 -9.63

NIE(1) -0.69 1.72 -4.59 2.49 -0.84 2.04 -5.46 2.92

NDE(1) -17.36 4.66 -26.51 -8.12 -22.15 5.55 -33.00 -11.32

NIE(0) -0.35 1.59 -3.93 2.82 0.76 1.93 -2.81 5.12

ACE -17.71 4.45 -26.39 -8.95 -21.39 5.27 -31.69 -10.95

s = 2, 4, 6, . . . , 32, 34, 36.

The estimated natural direct and indirect effects show that preoperative administration

of oral morphine has a strong direct effect in reducing pain intensity both at rest and on

movement. The size of the estimated natural direct effects is similar to the size of the total

effects (−17.7 and−21.4 for static and dynamic VAS, respectively). Conversely the natural

indirect effects are small and their 95% posterior credible intervals cover zero, indicating

that the part of the treatment effect channeled by the number of self-administered doses

of morphine sulphate is negligible.

Results on controlled direct effects suggest that the direct effect of preoperative ad-

ministration of oral morphine sulphate does not vary very much with the number of

self-administered doses of morphine sulphate for static VAS. On the contrary, for dynamic

VAS, pain reduction attributable to the administration of oral morphine is lower the

higher the self-administration of morphine sulphate after surgery is. For both outcomes,

controlled direct effects are clearly different from zero if the number of self-administered

doses of morphine sulphate is lower than 24 (credible intervals do not include zero).

6 Conclusions

Even if principal stratification analysis and mediation analysis focus on different causal

estimands and answer different causal questions, in this specific application they both

suggest that there exist a strong unchanneled effect of preoperative administration of oral

morphine on pain intensity after surgery, which is through other pathways other than the

postoperative number of self-administered doses of morphine sulphate.

While in the case of mediation analysis, this conclusion directly derives from the fact

that natural indirect effects are negligible, in the case of principal stratification analysis,

evidence on the existence of a unchanneled effect is only for the subsets of pain-intolerant

and pain-tolerant patients, according to the size of the dissociative effects. Regarding nor-

mal patients, we are not able to draw the same conclusions unless additional assumptions

are made, because associative effects are a mixture of unchanneled and channeled effects.

In this sense, principal stratification could not answer to the causal question of primary
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Figure 1: Mediation analysis: Posterior means (solid lines) and 95% posterior credible

intervals (dotted lines) of controlled direct effects

interest, even if usually provides useful insights.

Principal stratification and mediation analysis rely on assumptions of a different nature

and a careful evaluation of their plausibility is crucial. We conduct Bayesian principal

stratification analysis under the randomization assumption (Assumption 1), which holds

by design in the morphine study, and a monotonicity assumption (Assumption 2). The

monotonicity assumption, which is arguable in general, appears very plausible in the

morphine study, due to the characteristics of the active placebo.

Mediation analysis requires additional assumptions on the intermediate variable (such

as Assumptions 4 and 5), which can be very critical in situations where the intermediate

variable can not be seen as a treatment or the information on the pretreatment variables

is too poor to make those assumptions plausible in the study. In the morphine study, only

two pretreatment variables are observed, so Assumptions 4 and 5 might be questionable,

and a principal stratification analysis, which only requires the randomization assumption

(Assumption 1), might be preferable, although it only provides information on local effects.

Principal stratification may also provide useful insight on the plausibility of Assumptions 4

and 5. Specifically, mediation analysis extrapolates information on potential outcomes of

the form Yi(z, s) and Yi(z, Si(z
′)) from the observed data, by mixing information across

principal strata, which may be inappropriate if effects are heterogeneous across principal

strata (Mealli and Mattei, 2012). This is the case of the morphine study, especially when

dynamic VAS is considered.

In the principal stratification analysis, relevant information could also be obtained

looking at the distribution of baseline characteristics within each principal stratum. While

beyond the scope of the current paper, further analyses aimed at investigating the role of

covariates to explain the heterogeneity of the effects across principal strata, are at the top
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of our research agenda.
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Appendix

Details of Calculation

The posterior distributions of the parameters are obtained from Markov chain Monte Carlo

(MCMC) methods (see details below). For each model, we ran three independent chains

from different starting values for 12 500 iterations with the first 2 500 used as burn-in,

saving every 5th iteration. The chains for the various models appear to converge very well

with Gelman-Rubin diagnostic statistics approximately equal to 1.

MCMC for Principal Stratification Analysis

The MCMC algorithm that we adopt uses Gibbs sampler with data augmentation to

impute at each step the missing principal strata indicators S∗i (1 − Zi). Specifically, we

first obtain the joint posterior distribution of (θ, S∗i (1 − Zi)) from a Gibbs sampler by

iteratively sampling from p(θ | Z,Yobs,G,X) and p(S∗(1 − Zi) | Z,Yobs,X,θ), which

in turn provides the marginal posterior distribution p(θ | Z,Yobs,S∗,X). The key to

the posterior computation is the evaluation of the complete intermediate-data posterior

distribution p(θ | Z,Yobs,G,X), which has the following simple form:

p(θ | Z,Yobs,G,X) ∝ p(θ)×∏
i:Zi=0,Gi=00

πi,00 · fi,00,0 ×
∏

i:Zi=0,Gi=10

πi,10 · fi,10,0 ×
∏

i:Zi=0,Gi=11

πi,11 · fi,11,0 ×∏
i:Zi=1,Gi=00

πi,00 · fi,00,1 ×
∏

i:Zi=1,Gi=10

πi,10 · fi,10,1 ×
∏

i:Zi=1,Gi=11

πi,11 · fi,11,1.

The MCMC algorithm can be described as follows. Let X̃ = [1,X] be the n×3 matrix

with ith row equal to X̃′i = (1, Xi1, Xi2). Let (Gt, θ(t)) denote the state of the chain at

time t. The state of the chain at time t+ 1 follows from applying the following steps.

1. Sample G(t+1) according to Pr(G | X,Z,S∗,Yobs;θ). Conditional on θ and Xi, Zi,

S∗i , and Y obs
i , Gi is independent of Gj , Zj , Y

obs
j , S∗j , Xj , for all j 6= i. Then, by the

monotonicity assumption

Pr(Gi = 00 | Xi, Zi = 0, S∗i = 0, Y obs
i ) = 1

Pr(Gi = 11 | Xi, Zi = 1, S∗i = 1, Y obs
i ) = 1,

and for subjects with Zi = 0, S∗i = 1 and Zi = 1, S∗i = 0,

Pr(Gi = 11 | Xi, Zi = 0, S∗i = 1, Y obs
i ) ∝ πi,11 · fi,11,0

πi,10 · fi,10,0 + πi,11 · fi,11,0

Pr(Gi = 00 | Xi, Zi = 1, S∗i = 0, Y obs
i ) ∝ πi,00 · fi,00,1

πi,10 · fi,10,1 + πi,00 · fi,00,1

2. Sample the latent variables G∗i,00 and G∗i,11:
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(a) Sample the latent variableG∗i,00 fromN(α
(00)
1 +α

(00)′

X Xi, 1) truncated to (−∞, 0)

if Gi = 00 and to (0,∞) if Gi 6= 00.

(b) Sample the latent variableG∗i,11 fromN(α
(11)
1 +α

(11)′

X Xi, 1) truncated to (−∞, 0)

if Gi = 11 and to (0,∞) if Gi 6= 11.

3. Sample the coefficients α(00) and α(11) given the following prior distributions:

α(00) ∼ N
(
µ
α(00) ,Σα(00)

)
and α(11) ∼ N

(
µ
α(11) ,Σα(11)

)
(a) Sample α(00) from N(µα(00)

,Σα(00)
) where

µα00 = Σα(00)

(
Σ−1
α(00)µα00 + X̃′G∗00

)
and Σα(00) =

(
Σ−1
α(00) + X̃′X̃

)−1
(b) Let X̃−00 denote the sub-matrix of X̃ for units with G

(t+1)
i = 01 or G

(t+1)
i = 11

and let G∗,−0011 be the sub-vector of G∗11 for units with G
(t+1)
i = 01 or G

(t+1)
i =

11. Sample α(11) from N(µα(11) ,Σα(11)) where

µα(11) = Σα(11)

(
Σ−1
α(11)µα(11) + X̃−00

′
G∗,−0011

)
and Σα(11) =

(
Σ−1
α(11) + X̃−00

′
X̃−00

)−1
4. Define 1 = (1, . . . , 1)′ and let Yobs

g,z denote the sub-vector of Yobs for units with

Gi = g and Zi = z. Also let X̃g,z denote the sub-matrix of X̃ for units with Gi = g

and Zi = z.

5. For g = 00, 01, 11 and z = 0, 1, sample the coefficients β
(g,z)
1 given their Normal prior

distributions,

β
(g,z)
1 ∼ N

(
µ
β
(g,z)
1

= 0, σ2
β
(g,z)
1

= 106
)
,

from the normal distributions N(µ
β
(g,z)
1

, σ2
β
(g,z)
1

), where

µ
β
(z)
1

= σ2
β
(g,z)
1

 1

σ2
β
(g,z)
1

µ
β
(g,z)
1

+
1

σ2z

∑
i:Gi=g,Zi=z

(
Y obs
i,g,z − β

(z)′

X Xi,g,z

)
and

σ2
β
(g,z)
1

=

 1

σ2
β
(g,z)
1

+
Ng,z

σ2z

−1 ,
where Ng,z is the number of subjects of type g assigned to treatment z at time t+ 1.

6. For z = 0, 1, sample the coefficients β
(z)
X given their joint Normal prior distributions,

β
(z)
X ∼ N

(
µ
β
(z)
X

= 0,Σ
β
(z)
X

= 106I2
)
,

from the multivariate normal distributions N(µ
β
(z)
X

,Σ
β
(z)
X

), where

µ
β
(z)
X

= Σ
β
(z)
X

Σ−1
β
(z)
X

µ
β
(z)
X

+
1

σ2z

∑
g=00,11,01

X′g,z

(
Yobs
g,z − 1β

(g,z)
1

)
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and

Σ
β
(z)
X

=

Σ−1
β
(z)
X

+
1

σ2z

∑
g=00,11,01

X′g,zXg,z

−1 .
7. Sample the outcome variances σ2z for z = 0, 1 given their inverse-χ2 prior distribu-

tions,

σ2z ∼ Inv − χ2
νz

(
s2z
)
, with νz = 0.002 and s2z = 1,

from the inverse-χ2 distributions Inv − χ2
νz

(
s2z
)
, where

νz = νz +Nz and s2z =
νzs

2
z +

∑
i:Gi=00,11,01

(
Y obs
i,g,z − β

(g,z)
1 − β

(z)′

X Xi,g,z

)2
νz

,

where Nz is the number of subjects assigned to treatment z.

Causal Estimands in Principal Stratification Analysis

π00 =
1

N

N∑
i=1

πi,00 =
1

N

N∑
i=1

[
1− Φ

(
α00
1 + α

(00)′

X Xi

)]
π11 =

1

N

N∑
i=1

πi,11 =
1

N

N∑
i=1

Φ
(
α00
1 + α

(00)′

X Xi

)
·
[
1− Φ

(
α11
1 + α

(11)′

X Xi

)]
π10 =

1

N

N∑
i=1

πi,10 =
1

N

N∑
i=1

[1− πi,00 − πi,11]

For z = 0, 1 and g = 00, 10, 11

µz,g ≡ E[Yi(z)|G = g] =
1∑N

i=1 πi,g

N∑
i=1

πi,gµi,z,g =
1∑N

i=1 πi,g

N∑
i=1

πi,g

(
β
(g,z)
1 + β

(z)′

X Xi

)
Therefore, for (s0, s1) ∈ {(0, 0), (1, 0), (1, 1)}, g ≡ s0s1, we have

PCE(s0, s1) =
1∑N

i=1 πi,g

N∑
i=1

πi,g [µi,1,g − µi,0,g]

=
1∑N

i=1 πi,g

N∑
i=1

πi,g

[(
β
(g,1)
1 + β

(1)′

X Xi

)
−
(
β
(g,0)
1 + β

(0)′

X Xi

)]

ATE =
1

N

N∑
i=1

(πi,00 [µi,1,00 − µi,0,00] + πi,10 [µi,1,10 − µi,0,10] + πi,11 [µi,1,11 − µi,0,11])

MCMC for Mediation Analysis

We conduct Bayesian inference under exchangeability, Assumptions 3, 4 and 5 and the

linear models specified in Equations (6) and (7) in the main text. Let V and W be matrices

with ith row equal to V′i = (1, Zi,X
′
i) and W′

i = (1, Zi, S
obs
i , Zi · Sobsi ,X′i), respectively.

The posterior distribution of the parameters of the linear models in Equations (6) and (7)

is obtained from MCMC methods using the following algorithm:
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1. Sample the coefficients α = (α1, α2,αX) given their joint Normal prior distribution,

α ∼ N
(
µ
α
,Σα

)
, from the multivariate Normal distribution N(µα,Σα) where

µα = Σα

(
Σ−1α µ

α
+

1

σ2S
V′S

)
and Σα =

(
Σ−1α +

1

σ2S
V′V

)−1
2. Sample the variance parameter σ2S given its inverse-χ2 prior distributions,

σ2S ∼ Inv − χ2
νS

(
s2S
)
, with νS = 0.002 and s2S = 1,

from the inverse-χ2 distribution Inv − χ2
νS

(
s2S
)
, where

νS = νS + n and s2S =
νSs

2
S +

∑n
i=1

[
Sobsi − (α1 + α2Zi + α′XXi)

]2
νS

.

3. Sample the coefficients β = (β1, β2, β3, β4,βX) given their joint Normal prior dis-

tribution, β ∼ N
(
µ
β
,Σβ

)
, from the multivariate Normal distribution N(µβ,Σβ)

where

µβ = Σβ

(
Σ−1β µ

β
+

1

σ2Y
W′Yobs

)
and Σβ =

(
Σ−1β +

1

σ2Y
W′W

)−1
4. Sample the variance parameter σ2Y given its inverse-χ2 prior distributions,

σ2Y ∼ Inv − χ2
νY

(
s2Y
)
, with νY = 0.002 and s2Y = 1,

from the inverse-χ2 distribution Inv − χ2
νY

(
s2Y
)
, where

νY = νY + n

and

s2Y =
νY s

2
Y +

∑n
i=1

[
Y obs
i −

(
β1 + β2Zi + β3S

obs
i + β4ZiS

obs
i + β′XXi

)]2
νY

.

Causal Estimands in Mediation Analysis

If Assumptions 3, 4 and 5 hold and models in Equation (6) and (7) in the main text

are correctly specified, total and direct and indirect effects can be estimated from the

regression parameters of these models as follows:

ACE =
1

n

n∑
i=1

[
β2 + β3α2 + β4

(
α1 + α2 + α′XXi

)]
and

CDE = β2 + β4s

NDE(0) =
1

n

n∑
i=1

[β2 + β4 (α1 + α′XXi)] NIE(1) = β3α2 + β4α2

NDE(1) =
1

n

n∑
i=1

[β2 + β4 (α1 + α2 + α′XXi)] NIE(0) = β3α2.

23



 


