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Abstract

We propose a procedure for analyzing financial interdependencies within an area of
interest, interpreting a negative daily return in an Originator market as a VaR (i.e. the
product of a volatility level and the corresponding α–quantile of a time independent
probability distribution), and measuring the Median Response in the Destination market
through its volatility associated with the one in the Originator and the reconstruction
of the correlation structure between the two (through copula functions). We apply our
methodology to nine Asian markets, varying the choice of the Originator and deriving a
number of indicators which represent the importance of each market as a provider or a
receiver of turbulence. Over a 1996-2015 period we confirm the role of traditionally impor-
tant markets (e.g. Hong Kong or Singapore), while over a rolling three–year estimation
period, we can detect rises and declines, the explosion of turbulence in the occasion of the
Great Recession and the magnified role of China in the recent years.

1 Introduction

Recent crises have highlighted the vulnerability of the global financial system to interdepen-
dence: this is reflected in the complex network of interconnectedness across various segments of
each market ((Billio et al., 2012) identify hedge funds, banks, brokers and insurance companies
as separate actors with strong links across). The buzzword in public debates be they academic
or policy–oriented is resilience, a characteristic to be analyzed (and possibly regulated or built)
in the various components of a system to withstand shocks that may propagate very quickly to
other segments.

Regulatory authorities in particular have had a growing concern for deriving measures of
systemic risk, meant to represent the accumulation of adverse events affecting the financial
system as a whole, with a possible cascade and amplification of the negative outcomes, including
losses, credit freeze, lack of trust and decrease in liquidity. There is a vast literature on the
subject: Rogantini Picco (2015) develops a survey of the indicators followed by major regulatory
institutions, including the ECB and the IMF, pointing out the need for the regulatory relevance
and the timeliness of systemic risk indicators.

∗DiSIA, Università di Firenze, Italy. e-mail: cipollini@disia.unifi.it
†Corresponding author: Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti” (DiSIA), Univer-
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A class of indicators focuses on the transmission of extreme events from one system compo-
nent to another: to be clear, in this context either component can be a single institution or a
market. Thus, some studies have analyzed how to measure a spillover from a single institution
to the market or an indicator of distress for the single institution from a market movement. In
the distinction suggested by Zhou (2010), the former would be called systemic impact index,
while the latter is called a vulnerability index. As pointed out by Girardi and Ergün (2013),
the first type of methodology falls within the CoVaR approach suggested initially by Adrian
and Brunnermeier (2011) where the attention is on the VaR measurable in one component
conditional upon the other component being at its own VaR. Girardi and Ergün (2013) them-
selves change the definition of CoVaR by enlarging the set for the conditioning component to
mean that it is at or below its own VaR. Within the second type of methodology, vulnerabil-
ity is measured by the reaction by a single institution by a large negative market movement.
Brownlees and Engle (2011) develop a way to measure the Marginal Expected Shortfall, that
is the expected value in the tail of returns which will occur when the market is in its right
tail; this is an estimate of the actual exposure of a single institution to the market turbulence
and, correspondingly, a regulatory indicator of capital requirements. In a number of papers,
Diebold and Yilmaz (e.g. Diebold and Yilmaz (2009), Diebold and Yilmaz (2015)) suggest a
methodology to measure volatility spillovers within a Vector Autoregression framework based
on forecast error variance decomposition, isolating relative importance of markets. Engle et al.
(2012) devised a Vector Multiplicative Error Model (vMEM – cf. (Cipollini et al., 2013)) to
measure dynamic market interconnectedness and the impact of the East Asian Crisis of 1997-98
(cf. the references thereof).

In this paper, we design a measure of interconnectedness between two system components
in the line of the quantile dependence approach (Bouyé and Salmon (2009) and Jing et al.
(2008) adopt quantile regressions, not used here). We consider the effect of a large negative
price movement in one component (the Originator being at or below the VaR) on the other
(the Destination). Even if this is reminiscent of the definition of a CoVaR, according to Girardi
and Ergün (2013), we part from that approach since we are not interested in estimating distri-
butions at a given time t conditional on the information available one period before. Since daily
returns1 are the product of a scale factor (the volatility, usually a conditional measure, but it
may be an end–of–day measure) and of an i.i.d. random variable (a standardized innovation),
one can compute the quantiles of interest from the latter. A sizeable shock to daily returns (e.g.
−3%) can be assumed to be a VaR at a given level α (e.g 0.05): dividing it by the α quantile
of the distribution of standardized innovations we derive the corresponding level of volatility
which we call VaR(α)-derived volatility (as such, not related to a specific t). The intercon-
nectedness follows two separate channels: the first is the bivariate distribution of standardized
innovations (which we model with a copula function approach); the second is the estimation of
a relationship between volatilities, with the aim of reconstructing the average level of volatil-
ity in the Destination associated to the VaR(α)-derived volatility in the Originator (which we
model as a log–log IV regression).

We introduce a measure of Median Response in the Destination to a left tail shock in the
Originator: this is a level – generally negative – which is higher than 50% of the returns in the
Destination associated with the Originator having experienced a drop in returns interpretable
as a V aR(α). It is the product of the 50–th percentile in the marginal distribution of the
Destination standardized innovations corresponding to the α quantile in the Originator times
the average level of volatility in the Destination associated to the VaR(α)-derived volatility in
the Originator. By so doing, we consider events (the VaR and the Median Response) with a
high enough joint probability: for example if α = 0.05, the joint probability under the bivariate
distribution would be 0.025, lending itself to standard validation techniques (in– and out–of

1We are assuming a mean return of zero for simplicity.
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sample; e.g. Christoffersen (1998)).
In the empirical application, we have chosen nine markets from East Asia which will be

alternated in the role of Originator and Destination of the shock. By repeating the approach
across the nine markets, and alternating the role of Originator and Destination, we are able to
associate each bilateral link with a measure of an integrated Median Response over a meaningful
range of negative returns (each interpretable as VaR’s at a given α) and adjusting the VaR–
derived volatilities accordingly. We can focus on several indicators: the first, called Bilateral
Median Responses, are Destination– and Originator–specific; if we aggregate across Originators
we obtain a Destination–specific Market Median Response; aggregating the latter across Desti-
nations, we obtain an overall Area Median Response. As a by–product, we can represent each
Bilateral Median Response as a share of the Area Median Response: mimicking (admittedly
with some abuse) indicators of international trade, we can treat bilateral shares as if the Area
Median Response were equivalent to total trade within the area, and each share represented
the relative importance of bilateral trade in one direction. By aggregating across markets con-
sidered as Originators, respectively, Destinations, we gather measures similar to a country’s
export and import shares, deriving in turn a measure of balance on the net transmission of
shocks, and a ranking of markets as of their relative importance in the area.

The paper is organized as follows: in Section 2 we lay out our definitions and methodology,
detailing the estimation procedures and the measures that can be derived from our approach. In
Section 3 we introduce the nine markets and we discuss the various issues arising with empirical
estimation, the derivation of the results and the interpretation of the measures suggested.
Concluding remarks follow in Section 4.

2 A Median Response to VaR between Markets

In this section, we suggest an innovative approach to measure the impact of a shock originating
in a market (the Originator) on several other markets (the Destination). Such a shock is
expressed in terms of market movement in one day, r∗, and is interpreted as a Value at Risk
at a given coverage level α. As noted elsewhere (Christoffersen, 2003), the calculation of the
Value at Risk amounts to the derivation of a quantile of the distribution of returns. Typically,
one considers a conditional distribution where it is recognized that

rt = µt + σtηt (1)

where µt = E(rt|It−1), σt =
√
V (rt|It−1) and ηt is an i.i.d. innovation with mean zero and unit

variance. Therefore, the VaR at level α, denoted rt(α), is such that

Pr(rt ≤ rt(α)|It−1) = α. (2)

From the definition (1), rt(α) = µt + σtη(α), so that the influence of the information set It−1
lies in the calculation of the scale factor σt, whereas the relevant quantile η(α) (irrespective
of t) pertains to the distribution of the η’s. Following the GARCH literature, the customary
procedure is one where µt is negligible and can be assumed equal to zero, σt is the square root
of the GARCH conditional variance and ηt is derived as a byproduct of the estimation and can
be used as diagnostics for the correct specification of the dynamics of σt. The way that σt is
calculated can differ: for example, in a risk management framework, Brownlees and Gallo (2010)
use a Multiplicative Error Model (MEM) to forecast volatility σt based on realized volatility
measures (Andersen et al., 2006) and the daily range (Parkinson, 1980), showing that there
is an improvement over the standard GARCH and that the daily range is a good alternative
to ultra-high frequency based estimators of volatility, especially when intradaily data are not
easily available. When forecasting is not of direct interest, the previous discussion holds with
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the idea that the distribution providing the quantiles is the results of a standardization of
the returns by some suitable measure of volatility. From an end-of-day perspective, we can
safely assume that the use of an estimator of volatility (either realized volatility or daily range)
will provide a more accurate definition of the distribution of the η’s, leading therefore to an
improved estimate of the quantile η(α). To summarize, we have three main options for σt:

1. In a forecasting perspective σt|t−1:

(a) GARCH for the conditional variance of returns;

(b) MEM for a realized measure of volatility or for the daily range (cf. Chou (2005));

2. In an end-of-day perspective σt: a realized measure or the daily range.

As per the distribution of ηt, even if option 1a implies, for estimation purposes, a parametric
choice (usually the standard Normal or the Student’s t, symmetric or asymmetric), for the
calculation of the quantile it is customary to make reference either to the empirical distribution
of the standardized returns or to a parametric distribution fitted to them, both of which are
independent of t.

In general, we can notice that for a given generic value of a return r∗ < 0 (interpreted as a
VaR), the quantile η(α) < 0 maps it into a corresponding VaR(α)-derived level of volatility

σ(r∗, α) =
r∗

η(α)
. (3)

The same r∗, therefore, can be associated with different VaR-derived volatilities, noting that
η(α2) < η(α1) < 0 leads to σ(r∗, α1) < σ(r∗, α2).

In evaluating the reaction of the Destination (d) to a market drop in the Originator (o), we
have to consider two components:

1. the link between the volatility in the Originator, σo, and the volatility in the Destination,
σd;

2. the dependence between the two markets, so that we can analyze what quantile in the
marginal distribution of the Destination should be associated with η(α) in the Originator.

For the first component, we adopt a simple (static) log-log relation

lnσd = β∗0 + β1 lnσo + ε (4)

with β1 conveniently representing the average elasticity of response in the volatility of the
Destination to a one percent impulse in the volatility of the Originator. On the basis of the time
series (σo,t, σd,t) over a suitable sample period, the parameters β∗0 and β1 are better estimated
by Instrumental Variables (IV) in order to account for the possible correlation between ε and
lnσo; inference can then be carried out with robust standard errors (Bollerslev and Wooldridge,
1992). Such a relationship is used to map a given level of VaR-derived volatility, σo(r

∗, α) for
the originating market, into the corresponding level of volatility in the destination market
according to

σd(r
∗, α) = β0σo(r

∗, α)β1 (5)

where β0 = exp(β∗0).
For the second component, we model the joint distribution of the standardized returns, ηo

and ηd, resorting to copula functions (Cherubini et al., 2004). Using this approach, the joint
c.d.f. of (ηo, ηd) can be represented as

F (ηo, ηd) = C(Fo(ηo), Fd(ηd)),
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where Fo(·) and Fd(·) denote the c.d.f.’s of the standardized Originator and Destination returns,
respectively, and C(·, ·) is a suitable copula. Fo(·) and Fd(·) can be fitted either empirically
or parametrically; C(·, ·) can be estimated separately on the given dataset by the Probability
Integral Transformations (PIT’s) (uo,t = Fo(ηo,t), ud,t = Fd(ηd,t)). A flexible choice adopted in
the application is the Student’s t Copula, whose density is given by

ctνρ(u, v) = ρ
1
2

Γ

(
ν + 2

2

)
Γ
(ν

2

)
Γ

(
ν + 1

2

)2

(
1 +

ζ21ζ
2
2 − 2ρζ1ζ2
ν (1− ρ2)

)−(ν+2)/2

∏2
j=1

(
1 +

ζ2j
ν

)−(ν+2)/2
(6)

where ζ1 = t−1ν (u), ζ2 = t−1ν (v), t−1ν is the inverse of the c.d.f. of the univariate Student’s t with
ν degrees of freedom, and ρ is a correlation parameter.

The related measure of association between the two markets is chosen to be the median of
the conditional distribution of ηd given ηo ≤ ηo(α), denoted as ηd|o(50|α) and defined by

Pr
(
ηd ≤ ηd|o(50|α)

∣∣ ηo ≤ ηo(α)) = 0.5. (7)

An estimate of such a measure can be computed easily from the estimated Fo(·), Fd(·) and
C(·, ·). Correspondingly, we define the Median Response to r∗, as

MeResd|o(r
∗, α) = ηd|o(50|α) σd(r

∗, α), (8)

which highlights the presence of two components: one tied to the copula function and the other
to the association between volatilities. As we will see later, it may be instructive to isolate the
joint behavior of two important sources in the Response, one related to the correlation between
standardized returns and the other which pertains to the relationship between volatilities.

Using Equations (3) and (5), the Median Response can be expressed as

MeResd|o(r
∗, α) =

ηd(50|α)β0
|ηo(α)|β1

|r∗|β1 ≡ kd|o(α) |r∗|β1 (9)

which is a negative valued function of r∗ because of the sign of kd|o(α). For a given α, the
calculation of MeRes over a reasonable range for r∗, say l∗ ≤ r∗ ≤ u∗ ≤ 0, gives a Median
Response Function, an outcome similar to what is depicted in Figure 1 where l∗ = −5% and
u∗ = −1% (the profile – in solid line – is borrowed from actual values estimated in the empirical
application). We can superimpose a benchmark profile (dashed line) where one could assume
a theoretical one–to–one response in the Destination for each r∗ in the Originator.

We can calculate the area below the Median Response Function, defined as the Bilateral
Median Response, as

BMeResd|o(α) =

∫ u∗

l∗
MeResd|o(r

∗, α)dr∗ =
kd|o(α)

β1 + 1

(
|l∗|β1+1 − |u∗|β1+1

)
. (10)

Correspondingly, the theoretical benchmark (area of the trapeze in 1) is (u2 − l2)/2; in our
example (1− 25)/2 = −12.

As noted in the Introduction, the Bilateral Median Response is Destination– and Originator–
specific. A Market Median Response aggregates the Bilateral Median Responses across origi-
nating markets and indicates the response of a single market to shocks originating elsewhere

MMeResd(α) =
∑
o

BMeResd|o(α). (11)
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Figure 1: Example of an estimated Median Response Function (solid line based on the response
of PH to MY, cf. the empirical application) for r∗ between −5% and −1%, depicted together
a theoretical one-to-one response (dashed line).
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By extension, having reconstructed the effects of r∗ spanning the range between l∗ and u∗,
we can aggregate these values across originating markets, coming up with a measure of the
relative importance of that market as source of spillovers, a Market Spillover Effect,

MSEffo(α) =
∑
d

BMeResd|o(α). (12)

As these are not derived as net effects, there is some sort of double counting which, however,
is mitigated by the use of the IV estimator. Moreover, if we aggregate the Market Median
Responses (Market Spillover Effects) across destination (originating) markets, we obtain an
index called Area Median Response

AMeRes(α) =
∑
d

MMeResd(α) =
∑
o

MSEffo(α). (13)

The interest of these measures lies in the possibility of expressing the BMeRes’s as a share of
AMeRes, giving an idea of the relative importance of bilateral links, and, as we will see in the
empirical application, in the comparability of both the relative BMeRes’s, the MMeRes’s, the
MSEff and the AMeRes estimated over subsamples in order to check the evolution of market
interdependencies.

3 Market Interdependence in East Asia

We apply our methodology to an area of nine East Asian markets: we cover Malaysia (Kuala
Lumpur Composite Index, MY), Singapore (Straits Times Index, SG), Hong Kong (Hang Seng
Index, HK), Indonesia (Jakarta Stock Exchange Composite Index, ID), South Korea (Ko-
rea Stock Exchange Index, KR), The Philippines (Philippines Stock Exchange, PH), Thai-
land (Stock Exchange of Thailand, TH), China (Shanghai Stock Exchange Composite Index,
CN) and Taiwan (Taiwan Stock Exchange Weighted Index, TW). All data were taken from
Bloomberg, with the exception of Singapore which was taken from Finance Yahoo. The period
covered spans from February 2, 1996 to December 18, 2015, a total of 5386 observations.2 For
the purposes of this paper, we deem as negligible any market opening time differences and the
two hour time zone difference between Thailand and South Korea: we thus consider data as
synchronous.

During this interval, the financial markets considered have gone through some periods of
severe turbulence/crisis. In the graphs representing the indices (in semi–log scale, Figure 2) we
have superimposed some shaded areas corresponding to July 2, 1997 to Dec. 31, 1998 (Asian
crisis triggered by the Baht devaluation), and the dates of the US Great Recession (Dec. 1,
2007 to June 30, 2009), superimposing a darker shade of gray in correspondence to the turmoil
following the bankruptcy of Lehman Brothers (Sep. 15, 2008 to October 10, 2008).

In Figure 3, for the same markets we have reported the graphs of the daily Garman–Klass
volatility (Garman and Klass, 1980)

σt =
√

0.511(ht − lt)2 − 0.019(ct(ht + lt)− 2htlt)− 0.383c2t (14)

2These markets feature even long periods of closure for holidays: for example, during the Chinese New Year,
China and Taiwan are closed for five days, South Korea and Hong Kong for three, and so on. As closures are not
necessarily always synchronous, we have a problem of missing observations. For days in which at least one market
is open, we take returns and volatility by single market, we calculate the standardized returns η, and we block–
bootstrap the missing observations for η, completing the available calendar. Correspondingly, the volatility
is linearly interpolated. Finally, pseudo returns are inserted when missing, by multiplying the interpolated
volatility by the block–bootstrapped η’s. Other schemes were attempted which resulted in undesirable outcomes:
deleting all days with at least one market closed makes us lose too many observations; linear interpolation of
returns or repetition of the last available value leads to artificial serial correlation.
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where ht = ln (Ht/Ot), lt = ln (Lt/Ot), ct = ln (Ct/Ot) and Ot, Ht, Lt, Ct denote the opening,
highest, lowest and closing prices of day t. Note that (14) has been rescaled to have the same
unconditional quadratic mean as the daily returns to adjust for overnight effects.

The volatility estimator is used to standardize the daily returns assuming µt = 0: as men-
tioned before, if we take an end–of–day stance we use the daily Garman–Klass volatility as an
easily available volatility estimator. Not to burden the presentation with an excess of descriptive
results, we can succintly say that the resulting distributions are by and large platikurtic, mainly
because large returns in market scale are usually associated with very high daily Garman–Klass
volatilities (the same is true for daily ranges). The autocorrelation properties of the standard-
ized returns are generally satisfactory.

3.1 The Estimation of the Copula Functions

We used the standardized returns with pairs of markets to estimate the parameters of a bivariate
Student’s t copula function, namely the correlation ρ and the degrees of freedom ν. For the
large sample period between 1996 and 2015, the results are reported in Table 1 and show as
significant all correlation coefficients, with a group of four markets exhibiting values greater
than 0.4 (SG, HK, KR and TW), three less connected markets (ID, MY and TH) with The
Philippines, but mostly China being the least connected markets. Most degrees of freedom
are between 10 and 30, showing some tail dependence features of the joint distribution. Other
copula functions were tried but the evaluation based on standard information criteria suggests
this as the best choice.

Table 1: Estimated parameters of a Student’s t Bivariate Copula function calculated on stan-
dardized returns. Sample period: Feb. 1996 – Dec. 2015. Standard errors for ρ̂ (all smaller
than 0.02) not reported. Based on Garman-Klass volatility.

HK ID KR MY PH SG TH TW

CN
ρ 0.242 0.114 0.134 0.111 0.091 0.140 0.116 0.156
ν 13.052 37.653 23.502 28.858 25.276 25.326 20.667 16.729

HK
ρ 0.377 0.466 0.363 0.290 0.521 0.374 0.413
ν 23.570 9.834 18.451 51.306 9.976 18.866 9.450

ID
ρ 0.306 0.345 0.292 0.370 0.321 0.298
ν 17.732 29.009 36.444 10.353 31.988 20.897

KR
ρ 0.300 0.251 0.381 0.313 0.444
ν 22.752 65.991 14.234 24.372 7.913

MY
ρ 0.278 0.369 0.302 0.296
ν 87.491 20.006 29.044 56.970

PH
ρ 0.264 0.243 0.261
ν 59.890 95.839 58.338

SG
ρ 0.377 0.359
ν 12.156 22.098

TH
ρ 0.279
ν 14.325

Once the results of the estimated copula functions are remapped in terms of the standardized
returns, we can visually check the estimated correlations with a scatterplot of the bivariate
data by pairs of market with superimposed level curves of the corresponding bivariate density
function.

The main ingredient for subsequent analysis that comes out of this bivariate copula function
estimation is ηd|o(50|α), the median of the conditional distribution of ηd for the Destination given
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Figure 4: Example of ηo(5) and the corresponding ηd|o(50|5) calculated for Hong Kong as
Originator and Singapore as a Destination (cf. Equation (7)). Contour lines from the Student’s
t bivariate density fitted on the data. Sample period: Feb. 2, 1996 – Dec. 18, 2015. Based on
Garman-Klass volatility.
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ηo ≤ ηo(α) for the Originator, i.e. the chosen measure of association between the two markets.
Tables 2 report the results for α = 0.05 (values of ηo(α) on the main diagonal).

Table 2: ηd|o(50|α) for α = 5%: Median of the conditional distribution of ηd for the Destination
(by column) given ηo ≤ ηo(α) for the Originator, estimated from the bivariate copula. The
main diagonal reports in boldface the value of ηo(α). Sample period: Feb. 2, 1996 – Dec. 18,
2015. Based on Garman-Klass volatility.

Destination
CN HK ID KR MY PH SG TH TW

O
ri

gi
n
at

or

CN -1.348 -0.379 -0.130 -0.173 -0.133 -0.137 -0.226 -0.194 -0.234
HK -0.390 -1.417 -0.531 -0.824 -0.483 -0.474 -0.924 -0.615 -0.745
ID -0.138 -0.610 -1.051 -0.497 -0.448 -0.478 -0.656 -0.513 -0.500
KR -0.175 -0.813 -0.443 -1.510 -0.396 -0.399 -0.660 -0.509 -0.810
MY -0.131 -0.595 -0.487 -0.479 -1.087 -0.448 -0.630 -0.486 -0.478
PH -0.099 -0.438 -0.412 -0.383 -0.351 -1.241 -0.428 -0.394 -0.412
SG -0.183 -0.895 -0.547 -0.648 -0.490 -0.422 -1.375 -0.637 -0.618
TH -0.148 -0.612 -0.453 -0.503 -0.395 -0.387 -0.660 -1.253 -0.475
TW -0.210 -0.712 -0.428 -0.803 -0.381 -0.415 -0.611 -0.467 -1.416

3.2 Volatility Elasticity Responses

We used the Garman Klass volatility measures in Equation 14 to estimate the bivariate rela-
tionship between the Destination and the Originator volatilities (cf. Equation (4)). We use an
IV estimator, choosing current VIX and lagged volatilities, both in the Destination and in the
Originator, as instruments. Table 3 reports the estimates of β0 = exp(β∗0) while Table 4 shows
the corresponding elasticities. The links between volatilities show a variety of features. We
detect a generalized asymmetric response across markets: for example, Hong Kong has values
around 1 as a destination while around 0.7 as Originator, while the opposite is true for South
Korea. China has very low (and a few non significant) β̂1.

Table 3: Estimates of β0 = exp (β∗0) in the bivariate market volatility relationship. Sample
period: Feb. 1996 – Dec. 2015. Coefficients in italics are not significant, those in boldface are
not significantly different from 1 (both at 5% with robust standard errors) Based on Garman-
Klass volatility.

Destination
CN HK ID KR MY PH SG TH TW

O
ri

gi
n
at

or

CN 0.019 0.010 0.009 0.011 0.035 0.018 0.013 0.011
HK 0.016 0.267 0.188 0.182 1.099 0.442 0.285 0.392
ID 0.009 0.662 0.219 0.194 1.991 0.514 0.334 0.344
KR 0.008 1.180 0.497 0.365 1.859 0.767 0.728 1.626
MY 0.007 1.414 0.495 0.399 6.537 0.632 1.034 0.710
PH 0.014 0.115 0.081 0.046 0.067 0.088 0.120 0.061
SG 0.015 1.114 0.445 0.262 0.197 2.132 0.317 0.742
TH 0.011 0.356 0.182 0.165 0.185 1.514 0.202 0.166
TW 0.008 0.277 0.113 0.174 0.089 0.286 0.223 0.102

We calculate the generalized R2 between σd and σ̂d (Table 5), which shows the strength of
these links on this sample period even more poignantly: the strongest link is between HK and
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Table 4: Estimated elasticity β1 in the bivariate market volatility relationship. Sample period:
Feb. 1996 – Dec. 2015. Coefficients in italics are not significant, those in boldface are not
significantly different from 1 (both at 5% with robust standard errors). Based on Garman-
Klass volatility.

Destination
CN HK ID KR MY PH SG TH TW

O
ri

gi
n
at

or

CN 0.142 0.013 -0.016 0.027 0.257 0.123 0.059 0.025
HK 0.153 0.727 0.672 0.599 0.973 0.794 0.745 0.788
ID 0.018 0.916 0.705 0.612 1.091 0.825 0.779 0.763
KR -0.026 1.009 0.830 0.709 1.052 0.879 0.915 1.050
MY 0.058 1.153 0.936 0.915 1.402 0.942 1.095 0.987
PH 0.168 0.601 0.528 0.423 0.454 0.522 0.614 0.459
SG 0.181 1.069 0.879 0.790 0.658 1.148 0.814 0.962
TH 0.068 0.781 0.641 0.637 0.597 1.030 0.634 0.609
TW 0.025 0.759 0.574 0.680 0.484 0.731 0.682 0.555

SG (above 0.4), higher values (between 0.2 and 0.3) generally involve HK, KR, MY and SG
while there appears a second group (values between 0.1 and 0.2) with ID, PH, TH, TW. CN is
somewhat disconnected.

Table 5: Generalized R2 in the bivariate market volatility relationship. Sample period: Feb.
1996 – Dec. 2015. Based on Garman-Klass volatility.

Destination
CN HK ID KR MY PH SG TH TW

O
ri

gi
n
at

or

CN 0.038 0.001 0.000 0.002 0.009 0.011 0.004 0.004
HK 0.030 0.225 0.268 0.268 0.167 0.427 0.191 0.147
ID 0.001 0.220 0.174 0.223 0.171 0.281 0.163 0.072
KR 0.000 0.270 0.180 0.216 0.101 0.275 0.178 0.211
MY 0.000 0.224 0.191 0.173 0.163 0.227 0.177 0.067
PH 0.006 0.160 0.169 0.099 0.189 0.190 0.144 0.048
SG 0.013 0.428 0.278 0.267 0.258 0.202 0.185 0.145
TH 0.004 0.187 0.160 0.177 0.224 0.133 0.181 0.056
TW 0.001 0.155 0.086 0.232 0.108 0.050 0.165 0.070

3.3 VaR(α)-derived Volatilities

The next step is to calculate the VaR(α)-derived levels of volatility in correspondence to a
given VaR(α) = r∗. From the estimated value of ηo(α), we can find the derived volatility in
the originating market as (cf. Equation (3))

σo(r
∗, α) =

r∗

ηo(α)

and then, as an effect of the estimated log–log relationship, the related volatility for the desti-
nation market as

σd(r
∗, α) = β̂0σo(r

∗, α)β̂1

according to Equation (5). As an illustrative example, the results are reported in Table 6 for
a choice of r∗ = −0.03 as a daily movement and the ηo(α)’s taken from the main diagonal
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of Table 2. On its main diagonal, we report the VaR(α)-derived volatility in the originating
market.3 The numbers on the diagonal represent reasonable medium–high levels of volatility
spanning from about 31% (KR) to 45% (ID). Off–diagonal, the corresponding volatility values
of the Destination parallel the results on the estimated β0 and β1 confirming the presence of
asymmetric effects: take the example of PH where its volatility as an originator (38.4%) carries
effects which are lower than 20% in other markets, whereas the volatilities to PH induced by
other markets are much higher, well above 40%, and in two cases (from ID and MY) above
60%.

Table 6: VaR(α)-derived level of volatility in annualized terms. For a given VaR(α) = r∗

(expressed as a daily movement), we report the VaR(α)-derived volatility in the originating

market σo(r
∗, α) = r∗/ηo(α) (main diagonal), and the related σd(r

∗, α) = β̂0σo(r
∗, α)β̂1 (off–

diagonal) where the originator market is by row and the destination market is by column. Here
r∗ = −0.03 and α = 5%. Sample period: Feb. 1996 – Dec. 2015. Based on Garman-Klass
volatility.

Destination
CN HK ID KR MY PH SG TH TW

O
ri

gi
n
at

or

CN 0.353 0.175 0.153 0.149 0.157 0.209 0.176 0.160 0.155
HK 0.142 0.336 0.257 0.224 0.286 0.410 0.328 0.256 0.299
ID 0.127 0.405 0.453 0.283 0.349 0.653 0.434 0.332 0.363
KR 0.139 0.359 0.305 0.315 0.360 0.478 0.389 0.321 0.421
MY 0.090 0.358 0.274 0.238 0.438 0.677 0.340 0.322 0.326
PH 0.116 0.195 0.180 0.151 0.197 0.384 0.200 0.194 0.175
SG 0.116 0.296 0.245 0.203 0.253 0.419 0.346 0.223 0.297
TH 0.137 0.307 0.263 0.242 0.317 0.514 0.301 0.380 0.272
TW 0.114 0.236 0.197 0.201 0.218 0.272 0.255 0.190 0.336

Before venturing into the analysis of the Median Responses, it is interesting to suggest
a graph where we have plotted each pair of markets highlighting the role played by the two
components as discussed after Equation (8). This is done in Figure 5 where we have plotted
the estimated β1’s on the horizontal axis, and the correlation parameter ρ, as estimated in
the copula function, on the vertical axis (thus, for each pair of markets, we have one value of
ρ and two values of β1). In the figure we have superimposed two axes corresponding to the
means: thus we have isolated four quadrants where we can group pairs of markets according to
whether they have values higher (lower) than the mean along one axis, correspondingly, higher
(lower) than the mean along the other. It is striking to notice that CN is consistently below
the mean by both coordinates (with very similar β1’s close to zero); correlations for ID and PH
are around the mean and show average β1’s (for PH slightly higher than that as a Destination);
MY and TH have β1’s around the mean and higher than average ρ’s. HK and SG have high
ρ’s accompanied by several high β1’s as well, while KR and TW have higher ρ’s and closer to
average β1’s.

3Volatilities in Table 6 are expressed in annualized terms for ease of interpretation. This means that the
diagonal entries are σo(r

∗, α) ·
√

252, while off–diagonal entries are obtained modifying the β̂0’s in Table 3 as

β̂0 · 252(1−β̂1)/2.
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Figure 5: Relationship between correlations (ρ) and volatility elasticities (β1) (the superimposed
axes correspond to the means of the two parameters). The color identifies the Originator market,
the symbol indicates the Destination market. Sample period: Feb. 1996 - Dec. 2015. Based
on Garman-Klass volatility.

3.4 The Median Response to VaR’s

We are now in a position to put all the pieces together and derive some empirical implications
of our approach for the response to market movements associated with a V aR(α)–drop in one
market. We first report the Median Response to a specific choice of r∗ = −0.03, again for
α = 0.05, in Table 7.

Here we can notice some asymmetries between the lower and upper triangular portions of
the matrices of results. For certain markets, for example Singapore, the effects of a 3% dip in
other markets are quite substantial and are larger than the effects of when the dip originates
in Singapore.

If one makes r∗ vary, the result is the Median Response function in Equation (8), where, we
recall, the factor ηd|o(50, α) depends on the given choice of α in the VaR and the correlation
structure from the bivariate distribution, and the remaining terms contain the binding link
between originating and destination markets through the estimated coefficients of the log–log
relationship (4).

The best way to synthetically represent the results is by way of graphs grouped by originating
market showing the profile of the Median Responses by destination market (Figure 6); as usual
we choose the α level to be 0.05. We keep the same scale on the y–axis to compare the results
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Table 7: Median Response (MeRes ; α = 5%) in the destination market to a dip by a daily
3% in the originating market (main diagonal, in bold) interpreted as a VaR(α). Originating
market is by row and destination market is by column. Sample period: Feb. 1996 – Dec. 2015.
Based on Garman-Klass volatility. Percentage values throughout.

Destination
CN HK ID KR MY PH SG TH TW

O
ri

gi
n
at

or

CN -3.00 -0.42 -0.13 -0.16 -0.13 -0.18 -0.25 -0.20 -0.23
HK -0.35 -3.00 -0.86 -1.16 -0.87 -1.22 -1.91 -0.99 -1.40
ID -0.11 -1.55 -3.00 -0.89 -0.98 -1.97 -1.79 -1.07 -1.14
KR -0.15 -1.84 -0.85 -3.00 -0.90 -1.20 -1.62 -1.03 -2.15
MY -0.07 -1.34 -0.84 -0.72 -3.00 -1.91 -1.35 -0.99 -0.98
PH -0.07 -0.54 -0.47 -0.37 -0.44 -3.00 -0.54 -0.48 -0.45
SG -0.13 -1.67 -0.85 -0.83 -0.78 -1.12 -3.00 -0.90 -1.16
TH -0.13 -1.18 -0.75 -0.77 -0.79 -1.25 -1.25 -3.00 -0.81
TW -0.15 -1.06 -0.53 -1.02 -0.52 -0.71 -0.98 -0.56 -3.00

across panels. There is a group of 5 originating markets (HK, ID, KR, MY and SG) for which
the array of responses is quite varied (the lowest, across the board, are on CN which also does
not propagate): among these destination markets we see more frequently among the largest
responses HK, PH, SG, TW. The lowest responses come from PH, TH and TW.

3.5 Assessing Market Importance: Bilateral Median Response

The graphs in the previous section can be synthesized, evaluating the flows between markets
in the form of a Bilateral Median Response (BMeRes, Equation (10)), from the originating to
the destination market, as the integral under the curves seen in the Figures 6. For a pair of
markets and a level of α, the value of BMeRes provides a benchmark for the bivariate impact
of the shock on the Destination, and allows for a comparison across Destinations for the same
Originator and for a given Destination across Originators. We report these values in Table
8: the results highlight the interconnectedness between Hong Kong and Singapore (with high
BMeRes in both directions). For other markets, this symmetry is absent: the highest BMeRes
(above 7) are had from ID to PH and to SG, from KR to HK and to TW, and from MY to PH;
only two of the remainder are above 6, namely, from ID to HK and to KR to SG.

We can aggregate BMeRes into the MMeRes, the Market Median Response of a Destination
to drops in other originating markets, adding the values within the Table 8 by column. Apart
from CN which has the lowest figure, we see HK, PH, SG and TW clustering toward the high
30’s, while ID, KR, MY and TH are grouped in the low 20’s. The Area Median Response
AMeRes is about 243.

The BMeRes’s can also be seen from the point of view of the Originator, invoking the
MSEff in Equation (12), shown as the rightmost column in Table 8. Apart from the isolated
CN, this time higher values are had by ID and KR (in the upper 30’s), followed by MY and
HK (mid–30’s), SG and TH (upper 20’s) and then TW (low 20’s) and PH.

We may treat these values as if they were total exports and total imports in international
trade. The Area Median Response for our nine markets would be the equivalent of world
trade, and, correspondingly, we could calculate the shares by row (”Originator” as if they were
exports, MSEff divided by AMeRes) and by column (”Destination” as if they were imports,
MMeRes divided by AMeRes). Taking 1/9 = 11.11% as a benchmark, we note that both
HK and SG have values above that in both relative indices. ID, KR, MY have values higher
than the benchmark for the relative MSEff (and lower for the relative MMeRes), while PH
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Table 8: Bilateral Median Response calculated analytically for α = 5%. We report the bilateral
impact (”Originator”, ”Destination”), the sum by row from the originating market (MSEff), the
sum by column to the destination market (MMeRes) and the grand total (AMeRes). Sample
period: Feb. 1996 – Dec. 2015. All signs are negative. Based on Garman-Klass volatility.

Destination

CN HK ID KR MY PH SG TH TW MSEff

O
ri

gi
n
at

or

CN 1.65 0.50 0.65 0.53 0.71 1.00 0.78 0.91 6.73
HK 1.38 3.39 4.57 3.42 4.89 7.55 3.91 5.53 34.63
ID 0.44 6.18 3.49 3.86 7.93 7.10 4.23 4.51 37.73
KR 0.61 7.37 3.37 3.54 4.83 6.41 4.09 8.63 38.85
MY 0.30 5.44 3.34 2.85 7.96 5.37 3.98 3.92 33.16
PH 0.29 2.10 1.83 1.43 1.71 2.12 1.89 1.78 13.15
SG 0.53 6.72 3.35 3.27 3.06 4.52 3.54 4.61 29.60
TH 0.51 4.66 2.95 3.01 3.09 5.02 4.91 3.19 27.34
TW 0.60 4.17 2.08 4.00 2.05 2.80 3.86 2.19 21.76

MMeRes 4.65 38.30 20.82 23.26 21.25 38.66 38.31 24.61 33.09 242.95

Table 9: Relative MSEff and MMeRes by market as a share of the grand total (AMeRes). The
Balance indicates the difference between the two: a positive value is to be interpreted as the
market being a net provider of impulses. Results from α = 5%. Sample period: Feb. 1996 –
Dec. 2015. Based on Garman-Klass volatility.

Relative Relative
Market MSEff MMeRes Balance

CN 2.77 1.91 0.85
HK 14.25 15.77 -1.51
ID 15.53 8.57 6.96
KR 15.99 9.58 6.41
MY 13.65 8.75 4.90
PH 5.41 15.91 -10.50
SG 12.19 15.77 -3.58
TH 11.25 10.13 1.13
TW 8.96 13.62 -4.66

and TW have the opposite. TH is in a neutral position, while the unconnectedness of CN is
confirmed also here. The evaluation of whether each market is a net provider or receiver of
impulses (looking at the difference as a sort of trade balance in percentage) is a complementary
indication to what we just discussed. The last column of Table 9 shows the extent by which PH
is particularly vulnerable (SG and TW somewhat less so), and ID, KR and, to a lesser extent,
MY net providers of impulses.

3.6 Dynamic Analysis

The turmoil affecting the financial markets in different occasions makes the previous analysis
open to the issue of the stability of the estimated relationships across subperiods. In this Sec-
tion, we address some of these concerns in reference to the evolution of the interconnectedness
between markets. We take a three–year rolling estimation window, in which we add one month
at the time and re–estimate all indices involved: the results are assigned to the last month
of the window. For the sake of space we defer the details to the supplemental web material,
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limiting ourselves to some major comments here.
Let us start from the AMeRes seen as a measure of areawide response, i.e. a synthesis of the

total interconnectedness, although its unit of measurement does not have an interpretation per
se. If we reformulate it as an index which takes the value 100 in the first month, corresponding
to the three-year period straddling the East Asian crisis which followed the devaluation of the
Thai Baht in 1997, the outcome is useful in a comparative sense. Figure 7 conveys the idea
that subsequent periods had a lower or higher interconnectedness than the one that was had
during a major crisis in the area. Unsurprisingly, until 2007 the index hovers around 100: a
local peak is had as a consequence of the burst of the dot com bubble, with the later years of
low volatility and low interest rates providing lower values. Starting toward the end of 2007, we
have a sudden and generalized increase of the index until the beginning of 2009, after which it
starts to decline back toward the value estimated on the whole period (as seen before, cf. Table
8). A sudden burst is had at the end of the time span, as a consequence of the events occurred
in August 2015, surrounding the uncertainty about the Chinese economy and the devaluation
of the Renminbi. Acknowledging that with a monthly rolling window, dating these events
may be tricky, for the ease of reference we will refer to vertical lines drawn in correspondence
to a selection of local peaks: Sep. 2000, labeled the “Dot Com Bubble” with the aftermath
of a major stock market reversal; May 2005, labeled the “Global Savings Glut” according to
Bernanke’s definition of a major period of low interest rates; Apr. 2009, labeled the “Great
Recession” in reference to the effects of the global financial crisis (the trough in the S&P500 was
had in Feb. 2009); and, finally, Aug. 2015 labeled the “Renminbi devaluation”, with the major
reverberation on neighboring countries and the overall uncertainty about the perspectives of
economic growth in the area.

Having established the time–varying pattern of the responses and having isolated some
meaningful dates, it is interesting to examine how the various components analyzed before
behave in the face of a restricted sample estimation. We start from the link between the stan-
dardized returns, summarized by the copula correlation ρ, and the elasticity between volatilities,
expressed by β1. Figure 8, which parallels Figure 5, illustrates the relationship between such
two estimated parameters in correspondence to the four local peaks marked in Figure 7 (to en-
sure comparability, the superimposed axes correspond to the same means of the two parameters
on the whole sample as before).

Without going into too much detail, we notice that the scatterplot moves around substan-
tially, highlighting the dynamics of interdependence in the area: generally speaking, the points
tend to move from bottom left to top right, with the highest level of interdependence in Apr.
2009. In particular, the panel (a) (Sep. 2000 – the “Dot Com Bubble”) is characterized by
values generally below the overall means (the sample specific means are SW of the overall
ones) and negative correlations just for CN; in the panel (b) (May 2005 – the “Global Savings
Glut”) the values are more spread out (with some negative β1’s, just involving CN); in the
panel (c) (Apr. 2009 – the “Great Recession”) most points are above the overall means with
many elasticities that go above 1 (for CN the increase in volatility interdependence seems to
be stronger than the increase in correlation; PH shows a large dependence in volatility); finally
the panel (d) (Aug. 2015 – the “Renminbi Devaluation”) highlights a generalized reduction in
interdependence but a stronger role of China as an Originator limited to the volatility channel
(correlations stay low). It is interesting to note that Hong Kong has experienced a generalized
reduction of its position as an Originator in the last years and that South Korea (and to a
lesser extent Singapore) shows a lot of dependence in volatility as a Destination.

We can tie these comments to the detection of specific changes in the bilateral relationships
as reflected by the synthetic BMeRes. This is done in Figure 9 where we have selected the
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Figure 7: AMeRes(α = 5%) estimated by a 3-year rolling window on the sample period Feb.
1996 – Dec. 2015 as a percentage to the value of Jan. 1999. The horizontal line is drawn at the
value corresponding to the whole period. The vertical lines correspond to a selection of local
peaks (cf. dates in the text). Based on Garman-Klass volatility.
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(a) Dot Com Bubble (Sep. 2000) (b) Global Savings Glut (May 2005)

(c) Great Recession (Apr. 2009) (d) Renminbi Devaluation (Aug. 2015)

Figure 8: Relationship between correlations (ρ) and volatility elasticities (β1) estimated by a
3-years windows ending on the specific data (the superimposed axes correspond to the whole
sample means of the two parameters). The color identifies the Originator market, the symbol
indicates the Destination market. Based on Garman-Klass volatility.

four major markets (HK, KR, SG and TW) and have inserted CN next to them, in view of its
increased importance in the area: as an Originator, CN confirms to gain importance only in
the very last part of the sample; as shown in panel (d) of Figure 8, we can attribute that to
volatility spillovers more than an increase in correlation. By the same token, as a Destination,
CN has become temporarily more vulnerable to other markets in the years following the 2008
global crisis: this is also reflected in panel (c) of Figure 8, where we notice that the points
corresponding to CN as a Destination are present on the right side of the scatter, once again as
a reflection of its increased volatility response to other markets. By contrast, HK experiences
a decline in response from KR and SG in the last period, after having experienced a steady
increase especially post 2008 (a similar declining pattern is shown for HK as an Originator, this
time toward SG and TW, while a moderate increase is had toward KR). TW as a Destination
appears to have had an increased Bilateral Median Response to KR and SG until 2013 and a
sharp decrease thereafter. All the others seem fairly stable across time.

To complement the analysis, we can calculate the Relative MSEff and Relative MMeRes as
a share of the AMeRes (α = 5%) estimated on the same three-year rolling window. Figure 10
gives us a feeling about the importance of each market as an Originator of responses (dashed

21



C
N

H
K

K
R

S
G

T
W

C
N

H
K

K
R

S
G

T
W

F
ig

u
re

9:
S
el

ec
te

d
M

ar
ke

ts
.

B
M

eR
es

(α
=

5%
)

es
ti

m
at

ed
b
y

a
3-

ye
ar

ro
ll
in

g
w

in
d
ow

on
th

e
sa

m
p
le

p
er

io
d

F
eb

.
19

96
–

D
ec

.
20

15
.

T
h
e

h
or

iz
on

ta
l

li
n
es

ar
e

d
ra

w
n

at
th

e
va

lu
es

es
ti

m
at

ed
on

th
e

w
h
ol

e
p

er
io

d
.

B
as

ed
on

G
ar

m
an

-K
la

ss
vo

la
ti

li
ty

.

22



line) and as a Destination (solid line). These measures are important because they sterilize
the evolving behavior of AMeRes, allowing to concentrate on the relative importance of each
market, and on whether the shares are stable with respect to the whole sample estimates
(horizontal lines). We confirm the previous comment that CN has affirmed its presence in
the area past 2007 with a sharp increase toward the end of the sample as an Originator and
a steady increase and then a sharp decrease of the responses as a Destination. HK has more
stable shares as Originator with a fairly erratic behavior as a Destination market even if the last
couple of months are very close to the whole period estimates; the opposite is true for ID. KR
has stable estimates until 2014, after which there is an abrupt reversal of importance, showing
a large share as a Destination market, while a sharp decline as an Originator. For MY we
notice a generalized loss of role as an Originator and a temporary surge between 2008 and 2013
as a Destination. The PH gained some importance in the recent past as Originator (but seem
to have had a decline since), while having a more pronounced hump as a Destination between
2007 and 2013. SG is relatively stable, though with mirrorlike movements in its importance
as Originator and Destination. Apart from a temporary surge as an Originator, TH has had a
fairly stable share, and the same can be said for TW, at least for the period post 2007.

The results about the dynamic evolution of the interconnectedness find a good synthesis in
Figure 11 where we reconstruct a graphical network (for a general approach and references cf.
Barigozzi and Brownlees (2014)), in which each node is a market, and it is made proportional
to the sum of MSEff (Originator, in red – darker) and of MMeRes (Destination, in green –
lighter). The thickness of the arcs connecting the nodes is drawn on the basis the values of
BMeRes relative to the benchmark (depicted in Figure 1, in our case equal to 12), grouped in
four classes. Arcs with relative importance below a certain threshold were not reported. The
visual impression is that both the importance of markets and the strength of the links first
increased (peak after the global financial crisis, panel (c)) and then they declined (panel (d)),
showing how important CN has grown (first as Originator), how HK has lost its leading role and
how KR has maintained its size (but it has reverted the roles from Originator to Destination).

4 Conclusions

In this paper we have suggested a novel methodology to reconstruct the network of financial
interdependencies within an area of interest. We focus on a negative daily movement in an
Originator market return r∗, and interpret it as a VaR associated with a certain probability α;
as customary, such a return can be seen as the product of a derived volatility level and the cor-
responding α–quantile of a time independent probability distribution (of standardized returns).
The effect on the Destination market is accordingly defined as the product of the volatility level
associated with the one in the Originator (through a volatility link) times (through a copula
function) the median of the distribution of the Destination standardized returns, conditional
on the α–quantile. Such an effect is defined as the Median Response of the Destination market
to r∗ in the Originator.

By making r∗ vary within a meaningful interval, an array of responses is derived, which
can be synthesized into a Bilateral Median Response, and, by successive aggregation, an Area
Median Response. These can be interpreted as indicators of the bilateral, respectively, over-
all turbulence associated (not at any given moment) with potential extreme returns. To be
clear, although the concept is reminiscent of CoVaR, we are eschewing time conditionality: by
definition, the standardized return distributions are independent of time; the volatility link
is a static one (log–log relationship between volatility measures estimated by IV), and aims
at reconstructing possibly asymmetric associations between volatilities. By adopting bivariate
relationships we are not seeking partial effects (identifiable in a Granger–causal sense) but a
mere association between volatilities, as in the question “on a 27% volatility day in Hong Kong,
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what is the associated average volatility in Singapore?”; by avoiding a causal interpretation,
such a choice is independent of which other markets are included.

We have applied the methodology to nine East Asian markets over a sample spanning 1996 to
2015. Over the whole period, the result which emerges is one which sees Hong Kong, Singapore,
South Korea and Taiwan as the main markets (both as Originators and as Destinations).
Further investigation, though, reveals that the responses are sample specific, and that the role
played by individual markets changes through time. By reestimating our relationships on a
three year rolling period (adding and eliminating a month at a time), we show that the Area
Median Response follows an expected pattern of stable and low level until 2007, a sharp increase
on or around the global financial crisis of 2008, a subsequent decline past 2009, and a sudden
peak in August 2015 as a consequence of the Renminbi devaluation. Moreover, there is a
decrease in the importance of the role played by traditional, so–to–speak, players (especially by
Hong Kong and Singapore) in favor of a strong emergence of China first responding to other
markets, and then propagating shocks to the area in the occasion of its currency devaluation.
By contrast, there is less evidence of a strongly time-varying behavior of the correlations.

The approach can be seen as a modular one. In the current application, we have taken a
readily available measure of range–based volatility (Garman and Klass, 1980); other choices are
possible, of course: as an end–of–day measure, any of the variants of realized volatility; as a
one-step ahead measure we could take a GARCH– or a MEM–based time series of conditional
volatilities to be inserted in the static log–log equation. Both approaches could be extended in
the direction of Engle et al. (2012) where the past information set is enlarged to include lagged
returns and/or past observed measures of volatility. To reconstruct the conditional Median,
alternatives to using a copula function are available: for one, a dynamic copula function, but
also any variant of a parametric bivariate distribution with an appropriate specification for the
(dynamic, e.g. DCC) correlation.

The application presented here is built on an area represented by stock markets. The
methodology can easily be applied to a larger number of variables representing individual
stocks within a sector, for example, a network of financial institutions to be analyzed in their
systemic importance.
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(a) Dot Com Bubble (Sep. 2000)
AMeRes = -170.74

(b) Global Saving Glut (May 2005)
AMeRes = -181.75

(c) Great Recession (Apr. 2009)
AMeRes = -478.54

(d) Renminbi Devaluation (Aug. 2015)
AMeRes = -303.25

Figure 11: Network relationship derived from estimates at 5% on a 3-years windows ending on
the specific data. Based on Garman-Klass volatility.
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