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1 Introduction

Dynamics in financial markets can be characterized by many indicators of trading activity
such as absolute returns, high-low range, number of trades in a certain interval (possibly
labeled as buys or sells), volume, high–low range, ultra-high frequency based measures
of volatility, financial durations and so on.

Engle (2002) reckons that one striking regularity of financial time series is that persistence
and clustering characterizes the evolution of such processes. As a result, the dynamics of
such variables can be specified as the product of a conditionally deterministic scale fac-
tor which evolves according to a GARCH–type equation and an innovation term which
is iid with unit mean. Such models are labeled Multiplicative Error Models (MEM) and
can be seen as a generalization of the GARCH (Bollerslev (1986)) and ACD (Engle and
Russell (1998)) approaches. One of the advantages of such a model is to avoid the need to
resort to logs (not possible when zeros are present in the data) and to provide conditional
expectations of the variables of interest directly (rather than expectations of the logs). Em-
pirical results show a good performance of these types of models in capturing the stylized
facts of the observed series (e.g. for daily range, Chou (2005); for duration, volume and
volatility Manganelli (2005); for volatility, volume and trading intensity Hautsch (2008)).

The model can be specified in a multivariate context (vector MEM or vMEM) allowing
just the lagged values of each variable of interest to affect the conditional expectation of
the other variables beside its own. Such a specification lends itself to producing multi–step
ahead forecasts: for example, Engle and Gallo (2006) specify a multivariate MEM where
the dynamics of three different measures of volatility, namely absolute returns, daily range
and realized volatility, influence each other temporally, and evaluate the contribution of
MEM-based forecasts to the prediction of VIX. Although equation–by–equation estima-
tion ensures consistency of the estimators in a quasi-maximum likelihood context, given
the stationarity conditions discussed by Engle (2002), correlation among the innovation
terms is not taken into account and leads to a loss in efficiency.

The specification of a multivariate distribution of the innovations is far from trivial: joint
probability distributions for nonnegative–valued random variables are not available ex-
cept in very special cases. In this paper, we suggest a maximum likelihood estimation
strategy adopting copula functions to link together marginal probability density func-
tions for individual innovations specified as Gamma as in Engle and Gallo (2006) or as
zero–augmented distributions as in Hautsch et al. (2014) distinguishing between the zero
occurrences and the strictly positive realizations. Copula functions are used in a Multi-
plicative Error framework but in a Dynamic Conditional Correlation context by Bodnar
and Hautsch (2016). As an alternative for the vector MEM, Cipollini et al. (2013) suggest
a semiparametric approach resulting in a GMM estimator.

The range of potential applications is quite wide: dynamic interactions among different
values of volatility, volatility spillovers across markets (allowing multivariate-multi-step
ahead forecasts and impulse response functions, order execution dynamics (Noss (2007)
specifies a MEM for execution depths). As an illustration we will concentrate on the in-
teraction of various measures of market activity (volatility, volume and number of trades)
in which the conditional expectations depend just on the past values (not also on some
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contemporary information as in Manganelli (2005) and Hautsch (2008)).

What the reader should expect is the following: in Section 2 we lay out the specification
of a vector Multiplicative Error Model, discussing the issues arising from the adoption
of several types of copula functions linking univariate Gamma marginal distributions. In
Section 3 we describe the Maximum Likelihood procedure leading to the inference on
the parameters. Section 4 presents the application of our model to three series of trading
activity, namely realized kernel volatility, traded volumes and the number of trades. The
illustration is performed on the JNJ stock over a period between 2007 and 2013. What
we find is that specifying the joint distribution of the innovations allowing for contem-
poraneous correlation dramatically improves the log–likelihood over an independent (i.e.
equation–by–equation) approach. Richer specifications (where simultaneous estimation
is unavoidable) deliver a better fit, improved serial correlation diagnostics, and a better
performance in out–of–sample forecasting. The Student–T copula possesses better fea-
tures than the Normal copula. Overall, the indication is that we will have significantly
superior realized volatility forecasts when other trading activity indicators and contempo-
raneous correlations are considered. Concluding remarks follow.

2 Multiplicative Error Models

Let xt be a K–dimensional process with non–negative components. A vector Multiplica-
tive Error Model (vMEM) for xt is defined as

xt = µt � εt = diag(µt)εt, (1)

where � indicates the Hadamard (element–by–element) product and diag is a diagonal
matrix with its vector argument on the main diagonal. Conditionally upon the information
set Ft−1, a fairly general specification for µt is

µt = ω +αxt−1 + γx
(−)
t−1 + βµt−1, (2)

where ω is (K, 1) and α, γ and β are (K,K). The vector x(−)
t has a generic element

xt,i multiplied by a function related to a signed variable, be it a positive or negative return
(0, 1 values) or a signed trade (buy or sell 1,−1 values), as to capture asymmetric effects.
Let the parameters relevant for µt be collected in a vector θ.

Conditions for stationarity of µt are a simple generalization of those of the univariate case
(e.g. Bollerslev (1986); Hamilton (1994)): a vMEM(1,1) with µt defined as in equation
(2) is stationary in mean if all characteristic roots of A = α + β + γ/2 are smaller than
1 in modulus. We can think ofA as the impact matrix in the expression

E(xt+1|Ft−1) = µt+1|t−1 = ω +Aµt|t−1.

If more lags are considered, the model is

µt = ω +
L∑
l=1

[
αlxt−l + γlx

(−)
t−l + βlµt−l

]
, (3)
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where L is the maximum lag occurring in the dynamics. It is often convenient to represent
the system (3) in its equivalent companion form

µ∗t+L|t−1 = A∗µ∗t+L−1|t−1, (4)

where µ∗t+L|t−1 = (µt+L|t−1;µt+L−1|t−1; . . . ;µt+1|t−1) is a KL × 1 vector obtained by
stacking its elements columnwise and

A∗ =

(
A1 A2 · · · AL

IK(L−1) 0K(L−1),K

)
with Al = αl + βl + γl/2, l = 1, . . . , L, IK(L−1) is a K(L − 1) × K(L − 1) identity
matrix and 0K(L−1),K is a K(L−1)×K matrix of zeros. The same stationarity condition
holds in terms of eigenvalues ofA∗.

The innovation vector εt is a K–dimensional iid process with density function defined
over a [0,+∞)K support, the unit vector 1 as expectation and a general variance–covariance
matrix Σ,

εt|Ft−1 ∼ D+(1,Σ). (5)

The previous conditions guarantee that

E(xt|Ft−1) = µt (6)
V (xt|Ft−1) = µtµ

′
t �Σ = diag(µt)Σ diag(µt), (7)

where the latter is a positive definite matrix by construction.

Some alternatives can be considered about the specification of the distribution of the error
term εt|Ft−1.

2.1 Multivariate Gamma Formulations

The generalization of the univariate gamma adopted by Engle and Gallo (2006) to a mul-
tivariate counterpart is frustrated by the limitations of the multivariate Gamma distribu-
tions available in the literature (all references below come from Johnson et al. (2000,
chapter 48)): many of them are bivariate formulations, not sufficiently general for our
purposes; others are defined via the joint characteristic function, so that they require te-
dious numerical inversion formulas to find their probability density functions (pdf). The
formulation that is closest to our needs (it provides all univariate marginal probability
functions for εi,t as Gamma(φi, φi)), is a particular version of the multivariate Gamma’s
by Cheriyan and Ramabhadran (henceforthGammaCR, which is equivalent to other ver-
sions by Kowalckzyk and Trycha and by Mathai and Moschopoulos):

εt|Ft−1 ∼ GammaCR(φ0,φ,φ),

where φ = (φ1; . . . ;φK) and 0 < φ0 < min(φ1, . . . , φK) (Johnson et al. (2000, 454–
470)). The multivariate pdf is expressed in terms of a cumbersome integral and the con-
ditional correlations matrix of εt has generic element

ρ(εt,i, εt,j|Ft−1) =
φ0√
φiφj

,

which is restricted to be positive and is strictly related to the variances 1/φi and 1/φj .
Given these drawbacks, Multivariate Gamma’s will not be adopted here.
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2.2 Copula Based Formulations

A different approach to specify the distribution of εt|Ft−1 is to use copula functions (cf.,
among others, Joe (1997) and Nelsen (1999), Embrechts et al. (2002), Cherubini et al.
(2004), McNeil et al. (2005) and the review of Patton (2007) for financial applications).
In this case, the conditional pdf of the error component of the vMEM is given by

fε(εt|Ft−1) = c(ut; ξ)
K∏
i=1

fi(εt,i;φi), (8)

where c(ut; ξ) is the pdf of the copula, fi(εt,i;φi) and ut,i = Fi(εt,i;φi) are the pdf and
the cdf, respectively, of the marginals, ξ and φi are parameters.

A copula approach, hence, requires the specification of two elements: the distribution of
the marginals and the copula function. In view of the flexible properties shown elsewhere
(Engle and Gallo, 2006), for the first we adopt Gamma pdf’s (but other choices are possi-
ble, such as Inverse-Gamma, Weibull, Lognormal, and mixtures of them). For the second,
we discuss some possible specifications within the class of Elliptical copulas.

2.2.1 Normal Copula

The Normal copula is a frequent choice in applications (McNeil et al. (2005), Cherubini
et al. (2004), Bouyé et al. (2000)). Its pdf is given by

cN(u;R) = |R|−1/2 exp

[
−1

2

(
q′R−1q − q′q

)]
, (9)

where q = (q1; . . . ; qK), qi = Φ−1(ui) and Φ(x) denotes the cdf of the standard Normal
distribution computed at x.

The Normal copula has many interesting properties: the ability to reproduce a broad
range of dependencies (the bivariate version, according to the value of the correlation
parameter, is capable of attaining the lower Fréchet bound, the product copula and the
upper Fréchet bound.), the analytical tractability, the ease of simulation. When combined
with Gamma(φi, φi) marginals, the resulting multivariate distribution is a special case
of dispersion distribution generated from a Gaussian copula (Song, 2000). We note that
the conditional correlation matrix of εt has generic element approximately equal to Rij ,
which, differently from the Multivariate Gamma in Section 2.1, can assume negative val-
ues too.

2.2.2 Student-T Copula

One of the limitations of the Normal copula is the asymptotic independence of its tails.
Empirically, tail dependence is a behavior observed frequently in financial time series
(see McNeil et al. (2005), among others). Elements of x (be they different indicators
of the same asset or different assets) tend to be affected by the same extreme events.
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For this reason, as an alternative, we consider the Student-T copula which allows for
asymptotically dependent tails. The pdf of the Student-T copula is given by

cT (u;R, ν) =
Γ((ν +K)/2)Γ(ν/2)K−1

Γ((ν + 1)/2)
|R|−1/2 (1 + q′R−1q/ν)−(ν+K)/2∏K

i=1(1 + q2
i /ν)−(ν+1)/2

, (10)

where q = (q1; . . . ; qK), qi = T−1(ui; ν) and T (x; ν) denotes the cdf of the Student-T
distribution with ν degrees of freedom computed at x. Differently from the Normal cop-
ula, when R = I we get uncorrelated but not independent marginals (details in McNeil
et al. (2005)). Further specifications of the Student-T copula are in Demarta and McNeil
(2005).

2.2.3 Elliptical Copulas

The Elliptical copulas family provides an unified framework encompassing the Normal,
the Student-T and any other member of this family endowed of an explicit pdf. Ellipti-
cal copulas (for details see McNeil et al. (2005), Frahm et al. (2003), Schmidt (2002))
are copulas generated by Elliptical distributions, exactly in the same way as the Nor-
mal copula and the Student-T copula stem from the multivariate Normal and Student-T
distributions, respectively. Elliptical copulas have interesting features and widespread ap-
plicability, even if their elliptical symmetry may constitute a limit in some applications.1

We consider a copula generated by an Elliptical distribution whose univariate ’standard-
ized’ marginals (intended here with location parameter 0 and dispersion parameter 1) have
an absolutely continuous symmetric distribution, centered at zero, with pdf g(.;ν) and cdf
G(.;ν) (ν represents a vector of shape parameters). The density of the copula can then
be written as

cE(u;R,ν) = K∗(ν, K)|R|−1/2 g1(q′R−1q;ν, K)∏K
i=1 g2(q2

i ;ν)
(11)

for suitable choices of K∗(., .), g1(.; ., .) and g2(.; .), where q = (q1; . . . ; qK), qi =
G−1(ui;ν). For instance:

• in the Normal copula, with no explicit shape parameter ν, we have K∗(K) ≡ 1,
g1(x;K) = g2(x) ≡ exp(−x/2);

• in the Student-T copula, with a scalar ν shape parameter, we have K∗(ν;K) =
Γ((ν +K)/2)Γ(ν/2)K−1

Γ((ν + 1)/2)
, g1(x; ν,K) = (1 + x/ν)−(ν+K)/2, g2(x; ν) = (1 +

x/ν)−(ν+1)/2.

3 Maximum Likelihood Inference

In this section we discuss how to get full Maximum Likelihood (ML) inferences from the
vMEM with the parametric specification (3) for µt (dependent on a parameter vector θ)

1Copulas in the Archimedean family offer a way to bypass such a limitation but suffer from other
drawbacks and will not be pursued here.

6



and a generic formulation fε(εt|Ft−1) of the conditional distribution of the vector error
term (characterized by the parameter vector λ). Inference on θ and λ can be discussed in
turn, given that from the model assumptions the log-likelihood function is

l =
T∑
t=1

ln fx(xt|Ft−1) =
T∑
t=1

ln

(
fε(εt|Ft−1)

K∏
i=1

µ−1
t,i

)

=
T∑
t=1

[
ln f(εt|Ft−1)−

K∑
i=1

lnµt,i

]
. (12)

Considering a generic time t, it is useful to recall the sequence of calculations:

µt,i(θi)→ xt,i/µt,i = εt,i → Fi(εt,i;φi) = ut,i → c(ut; ξ) i = 1, . . . , K

where θi is the parameter involved in the i-th element of the µt vector.

3.1 Parameters in the Conditional Mean

Irrespective of the specification chosen for fε(εt|Ft−1), the structure of the vMEM allows
to express the portion of the score function corresponding to θ as

∇θ l =
T∑
t=1

Atwt (13)

where
At = −∇θµ′t diag(µt)

−1.

wt = εt � bt + 1, (14)

bt = ∇εt ln f(εt|Ft−1),

In order to have a zero expected score, we need E(wt|Ft−1) = 0 or, equivalently, E(εt�
bt|Ft−1) = −1. As a consequence, the information matrix and the expected Hessian are
given by

E
[
AtI(ε)A′t

]
(15)

and
E
[
AtH

(ε)A′t
]
, (16)

respectively, where the matrices

I(ε) = E [(εt � bt)(εt � bt)′|Ft−1]− 11′

and
H(ε) = E [∇εtb′t(εtε′t)|Ft−1]− I

depend only on λ but not on θ. Of course, under a correct specificationH(ε) = −I(ε).
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For a particular parametric choice of the conditional distribution of εt, we need to plug the
specific expression of ln fε(εt|Ft−1) into bt. For instance, considering the generic copula
formulation (8), then

ln fε(εt|Ft−1) = ln c(ut) +
K∑
i=1

ln fi(εt,i) (17)

so that bt has elements

bt,i = fi(εt,i)∇ut,i ln c(ut) +∇εt,i ln fi(εt,i). (18)

In what follows we provide specific formulas for the elliptical copula formulation (11)
and its main sub-cases.

3.2 Parameters in the pdf of the Error Term

Under a copula approach, the portion of the score function corresponding to the term∑T
t=1 ln f(εt|Ft−1) (cf. Equation (12)) depends on a vector λ = (ξ;φ) (ξ and φ are the

parameters of the copula function and of the marginals, respectively – cf. Section 2.2),

∇λ l =
T∑
t=1

∇λ ln f(εt|Ft−1) =
T∑
t=1

∇λ ln

(
c(ut; ξ)

K∏
i=1

fi(εt,i;φi)

)
.

Therefore,

∇ξ l =
T∑
t=1

∇ξ ln c(ut).

and

∇φi
l =

T∑
t=1

[
∇φi

Fi(εt,i)∇ut,i
ln c(ut) +∇φi

ln fi(εt,i)
]
.

As detailed in Section 2.2.3, beside a possible shape parameter ν, elliptical copulas are
characterized by a correlation matrix R which, in view of its full ML estimation, can be
expressed (cf. McNeil et al. (2005, p. 235)) as

R = Dc′cD, (19)

where c is an upper-triangular matrix with ones on the main diagonal andD is a diagonal

matrix with diagonal entries D1 = 1 and Dj =
(

1 +
∑j−1

i=1 c
2
ij

)−1/2

for j = 2, . . . , K.
So doing, the estimation of R is transformed in an unconstrained problem, since the
K(K − 1)/2 free elements of c can vary into R. We can then write ξ = (c;ν).

Let us introduce a compact notation as follows: C = cD, qt = (qt,1; . . . ; qt,K), qt,i =

G−1(ut,i;ν), q̃t = C ′−1qt, q∗t = R−1qt, ˜̃qt = q′tR
−1qt = q̃′tq̃t. We can then write

ln c(ut) = lnK∗ −
K∑
i=2

lnDi + ln g1(˜̃qt)− K∑
i=1

ln g2(q2
t,i) (20)

where use was made of the fact that 1
2

ln(|R|) =
∑K

i=2 lnDi.

In specific cases we get:
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• Normal copula: lnK∗ = 0, ln g1(x) = ln g2(x) = −x/2;

• Student-T copula: lnK∗ = ln
[

Γ((ν+K)/2)Γ(ν/2)K−1

Γ((ν+1)/2)

]
, ln g1(x) = −ν+K

2
ln
(
1 + x

ν

)
,

g2(x) = −ν+1
2

ln
(
1 + x

ν

)
.

Parameters entering the matrix c

The portion of the score relative to the free parameters of the c matrix has elements

∇cij l = ∇cij

[
−T

K∑
i=2

lnDi +
T∑
t=1

ln g1(˜̃qt)
]
, i < j. (21)

Using some algebra we can show that

∇cij

K∑
i=2

ln(Di) = −DjCij

and
∇cij ln g1(˜̃qt) = −2∇˜̃qt(ln g1(˜̃qt))Djq

∗
t,j(q̃t,i − Cijqt,j).

By replacing them into (21) we obtain

∇cij l = TDjCij + 2Dj

T∑
t=1

q∗t,j(Cijqt,j − q̃t,i)∇˜̃qt(ln g1(˜̃qt)).
Parameters entering the vector ν

The portion of the score relative to ν is

∇ν l = ∇ν

[
T lnK∗ +

T∑
t=1

ln g1(˜̃qt)− T∑
t=1

K∑
i=1

ln g2(q2
t,i)

]
.

The derivative of lnK∗ = lnK∗(ν;K) can sometimes be computed analytically. For
instance, in the Student–T copula we have

∇ν lnK
∗(ν;K) =

1

2

[
ψ

(
ν +K

2

)
+ (K − 1)ψ

(ν
2

)
−Kψ

(
ν + 1

2

)]
.

For the remaining quantities we suggest numerical derivatives when, as in the Student–T
case, the quantile function G−1(x;ν) cannot be computed analytically.

Parameters entering the vector φ

The portion of the score relative to φ has elements

∇φi
l = ∇φi

T∑
t=1

[
ln g1(˜̃qt)− K∑

i=1

ln g2(q2
t,i) +

K∑
i=1

ln fi(εt,i)

]
.
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After some algebra we obtain

∇φi
l =

T∑
t=1

[∇φi
Fi(εt,i)dt,i +∇φi

ln fi(εt,i)] , (22)

where
dt,i =

1

g(qt,i)

[
2q∗t,i∇˜̃qt ln g1(˜̃qt)−∇qt,i ln g2(q2

t,i)
]
. (23)

For instance, if a marginal has a distribution Gamma(φi, φi) then

∇φifi(εt,i) = ln(φi)− ψ(φi) + ln(εt,i)− εt,i + 1,

whereas ∇φiFi(εt,i) can be computed numerically.

Parameters entering the vector θ

By exploiting the notation introduced in this section, we can now detail the structure of bt
entering into (14) and then into the portion of the score function relative to θ. From (20),
εt � bt + 1 (cf. 14) has elements

εt,ibt,i + 1 = εt,ifi(εt,i)dt,i + εt,i∇εt,i ln fi(εt,i)) + 1 (24)

where dt,i is given in (23). For our choice, fi(εt,i) is the pdf of a Gamma(φi, φi) distri-
bution, so that

εt,i∇εt,i ln fi(εt,i) + 1 = φi − εt,iφi. (25)

3.2.1 Expectation Targeting

Assuming weak-stationarity of the process, numerical stability and a reduction in the
number of parameters to be estimated can be achieved by expressing ω in terms of the
unconditional mean of the process, say µ, which can be easily estimated by the sample
mean (expectation targeting2). Since E(xt) = E(µt) = µ is well defined and is equal to

µ =

[
I −

L∑
l=1

(
αl + βl +

γl
2

)]−1

ω, (26)

Equation (3) becomes

µt =

[
I −

L∑
l=1

(
αl + βl +

γl
2

)]
µ+

L∑
l=1

(
αlxt−l + γlx

(−)
t−l + βlµt−l

)
. (27)

In a GARCH framework, the consequences of this practice have been been investigated
by Kristensen and Linton (2004) and, more recently, by Francq et al. (2011) who show

2This is equivalent to variance targeting in a GARCH context (Engle and Mezrich (1995)), where the
constant term of the conditional variance model is assumed to be a function of the sample unconditional
variance and of the other parameters. In this context, other than a preference for the term expectation
targeting since we are modeling a conditional mean, the main argument stays unchanged.
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its merits in terms of stability of estimation algorithms and accuracy in estimation of
both coefficients and long term volatility (cf. Appendix 5 for some details in the present
context).

From a technical point of view, a trivial replacement of µ by the sample mean xT fol-
lowed by a ML estimation of the remaining parameters, preserves consistency but leads
to wrong standard errors (Kristensen and Linton, 2004). The issue can faced by identify-
ing the inference problem as involving a two-step estimator (Newey and McFadden (1994,
ch. 6)), namely by rearranging (θ;λ) as (µ;ϑ), whereϑ collects all model parameters but
µ. Under conditions able to guarantee consistency and asymptotic normality of (ϑ;µ) (in
particular, the existence of E(µtµ

′
t): see Francq et al. (2011)), we can adapt the notation

of Newey and McFadden (1994) to write the asymptotic variance of
√
T
(
ϑ̂T − ϑ

)
as

G−1
ϑ

[
I −GµM

−1
] [ Ωϑ,ϑ′ Ωϑ,µ′

Ωµ,ϑ′ Ωµ,µ′

] [
I

− (GµM
−1)
′

]
G−1′
ϑ (28)

where

Gϑ = E(∇ϑϑ′lt)
Gµ = E(∇ϑµ′lt)
M = E(∇µ′mt),

and

m =
T∑
t=1

mt =
T∑
t=1

(xt − µ)

is the moment function giving the sample average xT as an estimator of µ. The Ω matrix
denotes the variance-matrix of (∇ϑlt;mt) partitioned in the corresponding blocks.

To give account of the necessary modifications to adopt with expectation targeting, we
provide sufficiently general and compact expressions for the parameters µ (the uncondi-
tional mean) and θ (the remaining parameters) in the conditional mean expressed by (27).

Gθ = E (∇θθ′lt) = E
[
AtH

(ε)A′t
]

Gµ = E(∇θµ′lt) = −E
(
AtH

(ε) diag(µt)
−1
)
A

M = −I

Ωθ,θ′ = E (∇θlt∇θ′lt) = E
[
AtI(ε)A′t

]
Ωθ,µ′ = E (∇θltm′t) = E [At [E [(bt � εt) ε′t|Ft−1] + 11′] diag(µt)]BA

−1′

Ωµ,µ′ = E (mtm
′
t) = A−1 (BΣvB

′ +C (Σv �ΣI)C
′)A−1′
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where

A = I −
L∑
l=1

(
αl + βl +

γl
2

)
B = I −

L∑
l=1

βl

C =
L∑
l=1

γl

Σv = E(µtµ
′
t)�Σ.

The expression for Ωµ,µ′ is obtained by using the technique in Horváth et al. (2006) and
Francq et al. (2011). In this sense, we extend the cited works to a multivariate formulation
including asymmetric effects as well.

Some further simplification is also possible when the model is correctly specified since,
in such a case,H(ε) = −I(ε) and E [(bt � εt) ε′t|Ft−1] = −11′ leading to Ωθ,µ′ = 0 and
to

E
[
AtI(ε)A′t

]
+E

(
AtI(ε) diag(µt)

−1
)

[ΣvB
′ +C (Σv �ΣI)C

′]E
(

diag(µt)
−1I(ε)A′t

)
for what concerns the inner part of (28).

3.2.2 Concentrated Log-likelihood

Some further numerical estimation stability and reduction in the number of parameters
can be achieved – if needed – within the framework of elliptical copulas: we can use
current values of residuals to compute current estimates of R (Kendall correlations are
suggested by Lindskog et al. (2003)) and of the shape parameter ν (tail dependence in-
dices are proposed by Kostadinov (2005)). This approach may be fruitful with other
copulas as well when sufficiently simple moment conditions can be exploited. A simi-
lar strategy can be applied also to the parameters of the marginals. For instance, if they
are assumed Gamma(φi, φi) distributed, the relation V (εt,i|Ft−1) = 1/φi leads to very
simple estimator of φi from current values of residuals. By means of this approach, the
remaining parameters can be updated from a sort of pseudo-loglikelihood conditioned on
current estimates of the pre–estimated parameters.

In the case of a Normal copula a different strategy can be followed. The formula of the
(unconstrained) ML estimator of theR matrix (Cherubini et al. (2004, p. 155)), namely

Q =
q′q

T

where q = (q′1; . . . ; q′T ) is a T×K matrix, can be plugged into the log-likelihood in place
ofR obtaining a sort of concentrated log-likelihood

T

2
[− ln |Q| −K + trace(Q)] +

T∑
t=1

K∑
i=1

ln fi(εt,i|Ft−1) (29)
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leading to a relatively simple structure of the score function. However, this estimator of
R is obtained without imposing any constraint relative to its nature as a correlation matrix
(diag(R) = 1 and positive definiteness). Computing directly the derivatives with respect
to the off–diagonal elements ofR we obtain, after some algebra, that the constrained ML
estimator ofR satisfies the following equations:

(R−1)ij − (R−1)i.
q′q

T
(R−1).j = 0

for i 6= j = 1, . . . , K, whereRi. and R.j indicate, respectively, the i–th row and the j–th
column of the matrixR. Unfortunately, these equations do not have an explicit solution.3

An acceptable compromise which should increase efficiency, although formally it cannot
be interpreted as an ML estimator, is to normalize the estimatorQ obtained above in order
to transform it to a correlation matrix:

R̃ = D
− 1

2
Q QD

− 1
2

Q ,

where DQ = diag(Q11, . . . , QKK). This solution can be justified observing that the
copula contribution to the likelihood depends on R exactly as if it was the correlation
matrix of iid rv’s qt normally distributed with mean 0 and correlation matrix R (see also
McNeil et al. (2005, p. 235)). Using this constrained estimator of R, the concentrated
log-likelihood becomes

T

2

[
− ln |R̃| − trace(R̃−1Q+ trace(Q)

]
+

T∑
t=1

K∑
i=1

ln fi(εt,i|Ft−1). (30)

It is interesting to note that, as long as (29), Equation (30) too gives a relatively simple
structure of the score function. Using some tedious algebra, we can show that the com-
ponents of the score corresponding to θ and φ have exactly the same structure as above,
with the quantity dt,i into (23) changed to

dt,i =
Ci.qt
φ(qt,i)

(31)

where the C matrix is here given by

C = Q−1D
1/2
Q QD

1/2
Q Q−1 −Q−1 + IK − R̃−1 +D−1

Q −D
−1/2
Q diag(Q−1D

1/2
Q Q)

and φ(.) indicates here the pdf of the standard normal computed at its argument. Of
course, also in this case the parameters of the marginals can be updated by means of
moment estimators computed from current residuals (instead that via ML) exactly as ex-
plained above.

3Even whenR is a (2, 2) matrix, the value ofR12 has to satisfy the cubic equation:

R3
12 −R2

12

q′1q2
T

+R12

[
q′1q1
T

+
q′2q2
T
− 1

]
− q′1q2

T
= 0.
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4 Trading Activity and Volatility within a vMEM

Trading activity produces a lot of indicators which are therefore characterized by inter-
dependence, even in a dynamic sense. In this application, we concentrate on the joint
dynamics of three series proxying such trading activity, namely volatility (measured as
realized kernel volatility, cf. Barndorff-Nielsen et al. (2011), and references therein),
volume of shares traded and number of shares per day. The relationship between volatil-
ity and volume as relating to trading activity was documented, for example, in the early
contribution by Andersen (1996). Ever since, the evolution of the structure of financial
markets, industry innovation, the increasing participation of institutional investors and
the adoption of automated trading practices have strengthened such a relationship, and
the number of trades clearly reflects an important aspect of trading intensity. To be clear
at the outset, for the sake of parsimony, we choose the realized volatility forecasts as the
main object of interest of the multivariate effort; we take univariate modeling of volatility
by itself as a benchmark against specifications which explore the extra information in the
other indicators as well as the contemporaneous correlation in the error terms.

The availability of ultra high frequency data allows us to construct daily series of the vari-
ables exploiting the most recent development in the volatility measurement literature. As
a leading example, we consider Johnson & Johnson (JNJ) between January 3, 2007 to July
31, 2013 (1656 observations). Such a stock has desirable properties of liquidity and a lim-
ited riskiness represented by a market beta generally smaller than 1. Raw trade data from
TAQ are cleaned according to the Brownlees and Gallo (2006) algorithm. Subsequently,
we build the daily series of realized kernel volatility, following Barndorff-Nielsen et al.
(2011), computing the value at day t as

rkv =

√√√√ H∑
h=−H

k

(
h

H

)
γh γh =

n∑
j=|h|+1

xjxj−|h|

where k(x) is the Parzen kernel

k(x) =


1− 6x2 + 6x3 if x ∈ [0, 1/2]
2(1− x)3 if x ∈ (1/2, 1]
0 otherwise

,

H = 3.51 · n3/5

(∑n
j=1 x

2
j/(2n)∑ñ

j=1 x̃
2
j

)2/5

,

xj is the j-th high frequency return computed according to Barndorff-Nielsen et al. (2009,
Section 2.2)) and x̃j is the intradaily return of the j-th bin (equally spaced on 15 minute
intervals). For volumes (vol) and the number of trades (nt) we simply aggregate the data
(sum of intradaily volumes and count of the number of trades, respectively).

According to Figure 1, the turmoil originating with the subprime mortgage crisis is clearly
affecting the profile of the series with an underlying trend. For volatility, the presence of
a changing average level was analyzed by Gallo and Otranto (2015) with a number of
non-linear MEM’s. Without adopting their approach, in what follows we implement a

14



Figure 1: Time series of the trading activity indices for JNJ (Jan. 3, 2007 – July 31, 2013).
Left: original data; Right: detrended data; Top: realized kernel volatility (annualized
percentage); Middle: volumes (millions); Bottom: number of trades (thousands). The
spike on June 13, 2012 corresponds to an important acquisition and a buy back of some
of its common stock by a subsidiary.
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strategy of trend removal (separately for each indicator) in order to identify short term
interactions among series apart from lower frequency movements. The presence of an
upward slope in the first portion of the sample is apparent and is in line with the evidence
produced by Andersen (1996) for volumes. Remarkably, this upward trend is interrupted
after the peak of the crisis in October 2008, with a substantial and progressive reduction
of the average level of the variables. To remove the trend, we adopt a solution similar
to Andersen (1996), that is, a flexible function of time which smooths out the series. In
detail, assuming that the trend is multiplicative, we remove it in each indicator as follows:

• we take the log of the original series;

• we fit on each log-series a spline based regression with additive errors, using time
t (a progressive counter from the first to the last observation in the sample) as an
independent variable;4

• the residuals of the previous regression are then exponentiated to get the detrended
series.

When used to produce out-of-sample forecasts of the original quantities, the described
approach is applied assuming that the trend component remains constant at the last in-
sample estimate. This strategy is simple to implement and fairly reliable for forecasting
at moderate horizons.

Extracting low frequency movements in a financial market activity series with a spline
is reminiscent of the stream of literature initiated by Engle and Rangel (2008) with a
spline-GARCH and carried out in Brownlees and Gallo (2010) within a MEM context.
Table 1 shows very similar correlations between the estimated trends, all around 0.87.
Although quite large, correlations among the detrended series are less homogeneous: as
expected, the value concerning volumes and the number of trades, above 0.9, is the highest
one; cor(rkv, vol) is below 0.6, whereas the cor(rkv, nt) is around 0.7, confirming the
intuition that the enlargement of the variables involved is warranted by the data. Note also
that removing trends tends to widen the differences among correlations when compared
with the original series.

Table 1: Correlations for JNJ (Jan. 3, 2007 – July 31, 2013). rkv = realized kernel
volatility; vol = volume; ntr = number of trades.

Original Trend Detrended
vol ntr vol ntr vol ntr

rkv 0.645 0.779 0.875 0.877 0.579 0.707
vol 0.903 0.874 0.936

4Alternative methods, such as a moving average of fixed length (centered or uncentered), can be used
but in practice they deliver very similar results and will not be discussed in detail here. The spline regression
is estimated with the gam() function in the R package mgcv by using default settings.
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4.1 Modeling Results

In the application, we consider a vMEM on detrended data, where the conditional expec-
tation has the form (cf. Equation (3))

µt = ω +α1xt−1 +α2xt−2 + γ1x
(−)
t−1 + β1µt−1. (32)

In order to appreciate the contribution of the different model components, in this con-
ditional mean we consider alternative specifications for the coefficient matrices α1 and
β1 (α2 and γ1 are kept diagonal in all specifications), and for the error term. As of the
former, we consider formulations with both α1 and β1 diagonal (labeled D); α1 full and
β1 diagonal (labeled A); both α1 and β1 full (labeled AB). For the joint distribution of
the errors, we adopt a Student–T, a Normal and an Independent copula (T , N and I as
respective labels), in all cases with Gamma distributed marginals. The estimated specifi-
cations are summarized in Table 2. When coupled with the conditional means in the table,
the specifications with the Independent copula can be estimated equation–by–equation.

Table 2: Estimated specifications of the vMEM defined by (1), (32) and (8) with Gamma
marginals.

Error Distribution (copula)
Conditional Mean (parameters) I: Independent N : Normal T : Student-T
D: α1, β1, γ1, α1 diagonal D-I
A: α1 full; β1, γ1, α1 diagonal A-I A-N A-T
AB: α1, β1 full; γ1, α1 diagonal AB-N AB-T

Estimation results are reported in Table 3, limiting ourselves to the equation for the real-
ized volatility.5 The Student-T copula turns out to be the favorite specification, judging
upon a significantly higher log–likelihood function value, and lower information criteria;6

the equation–by–equation approach (Independent copula) is dominated in both respects.
Without reporting the parameter details, an estimation of the Diagonal model with the
Normal/Student-T copula function shows log-likelihood values of 1993.77, respectively,
2076.51 pointing to both a substantial improvement coming from the contemporaneous
correlation of the innovations and to the joint significance of the other indicators when the
A specification is adopted. It is interesting to note that residual autocorrelation is substan-
tially reduced only in the case of richer parameterizations (AB), where both non–diagonal
α1 and β1 are allowed to capture possible interdependencies.

The impact of volumes and trades on the realized volatility is present but generally indi-
vidually not significant, probably due to collinearity (as noted, a log–likelihood test would

5All models are estimated using Expectation Targeting (Section 3.2.1). The Normal copula based spec-
ifications are estimated resorting to the concentrated log-likelihood approach (Section 3.2.2). We omit
estimates of the constant term ω.

6The estimated degrees of freedom are 9.10 (s.e. 1.24) and 8.72 (s.e. 1.13), respectively, in the A-T
and AB-T formulations. We also tried full ML estimation of the AB-N specification getting a value of the
log-likelihood equal to 2093.52, very close to the concentrated log-likelihood approach (Section 3.2.2) used
in Table 3.
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reject the joint hypothesis of the relevant coefficients being equal to zero). In general, it
seems that the contribution of the number of trades is more discernible in the presence
of a full β1; such a significance is also highlighted by the causality tests. The coeffi-
cients at lag 2 are always significant with negative signs. The Normal and the Student-T
specifications appear to provide similar point estimates, except for the non-diagonal β co-
efficients: for the latter, once again, the picture is clouded by collinearity, since a formal
log–likelihood test does indicate joint significance.

The overview on the results is complete by examining the Table 4 where we report the
estimated coefficient φ̂ for all three Gamma marginals, showing that the estimated uncon-
ditional distributions of the estimated residuals have slightly different shapes.

Table 3: Estimated coefficients of the realized volatility equation for different model for-
mulations (cf. Table 2) for JNJ (Jan. 3, 2007 – July 31, 2013). Robust t-stats in paren-
theses. An empty space indicates that the specification did not include the correspond-
ing coefficient. Causality tests (rows with the arrows) report p-values for the hypothesis
H0 : α1,j = β1,j = 0 (j = 2, 3). Diagnostics report Log-likelihood values, Akaike and
Bayesian Information Criteria, and p-values of a joint Ljung–Box test of no autocorrela-
tion at various lags.

D-I A-I A-N A-T AB-N AB-T

rkvt−1
0.4929 0.4601 0.4263 0.4239 0.3718 0.3757
(58 .78 ) (53 .00 ) (50 .39 ) (50 .30 ) (39 .53 ) (41 .37 )

volt−1
−0.0244 −0.0281 −0.0241 −0.0209 −0.0305
(−0 .89 ) (−0 .83 ) (−0 .68 ) (−0 .49 ) (−0 .72 )

ntt−1
0.0568 0.0615 0.0533 0.1846 0.1821
(1 .53 ) (1 .37 ) (1 .22 ) (2 .70 ) (2 .74 )

rkvt−2
−0.2647 −0.2453 −0.1961 −0.2007 −0.1785 −0.1843
(−5 .16 ) (−3 .91 ) (−3 .19 ) (−3 .70 ) (−3 .84 ) (−4 .40 )

rkv
(−)
t−1

0.0265 0.0276 0.0272 0.0304 0.0182 0.0219
(0 .84 ) (0 .83 ) (0 .87 ) (1 .00 ) (0 .44 ) (0 .54 )

µ
(rkv)
t−1

0.7172 0.6990 0.6821 0.6942 0.7533 0.7638
(13 .94 ) (9 .96 ) (10 .03 ) (11 .75 ) (14 .18 ) (16 .49 )

µ
(vol)
t−1

−0.1233 −0.0586
(−0 .91 ) (−0 .49 )

µ
(nt)
t−1

−0.0918 −0.1463
(−0 .64 ) (−1 .11 )

rkvt ← volt−1 0.3733 0.4083 0.4979 0.2530 0.3187
rkvt ← ntt−1 0.1268 0.1703 0.2224 0.0124 0.0133

logLik 238.24 270.87 2062.12 2133.07 2092.77 2168.15
AIC -440.48 -493.73 -4070.25 -4210.14 -4119.53 -4268.30
BIC -323.28 -337.47 -3894.46 -4027.83 -3904.68 -4046.94

LB(12) 0.0000 0.0000 0.0005 0.0002 0.0552 0.0239
LB(22) 0.0000 0.0000 0.0003 0.0002 0.0291 0.0195
LB(32) 0.0000 0.0001 0.0015 0.0012 0.0357 0.0261
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Table 4: Estimated φ parameters of the Gamma marginal distributions.

D-I A-I A-N A-T AB-N AB-T
φ1 23.08 23.22 23.31 22.34 23.70 22.62
φ2 15.56 16.01 15.82 15.38 15.89 15.46
φ3 19.55 19.63 19.23 18.23 19.34 18.36

Finally, the correlation coefficients implied by the copula–based specifications are re-
ported in Table 5, showing that a strong correlation among innovations further supports
the need for taking simultaneity into account.

Table 5: Estimated correlation matrices of the copula functions.

A-N A-T AB-N AB-T
volt ntt volt ntt volt ntt volt ntt

rkvt 0.479 0.606 0.499 0.621 0.481 0.609 0.502 0.625
volt 0.902 0.917 0.903 0.917

4.2 Forecasting

We left the period August 1 – December 31, 2013 (106 observations) for out–of–sample
forecasting comparisons. We adopt a Diebold and Mariano (1995) test statistic for supe-
rior predictive ability using the error measures

eN,t =
1

2
(xt − µt)2 eG,t = ln

xt
µt
− xt
µt
− 1. (33)

where xt and µt denote here the observed and the predicted values, respectively. eN,t is
the squared error, and can be interpreted as the loss behind an xt Normally distributed
with mean µt; similarly, eG,t can be interpreted as the loss we can derive considering xt
as Gamma distributed with mean µt and variance proportional to µ2

t .

Table 6 reports the values of the Diebold-Mariano test statistic of different model formu-
lations, against the D-I specification, considering one-step ahead predictions. We notice a
progressive and significant improvement of the specifications allowing for more interde-
pendencies, for both the detrended and the original series,7 when the Normal-based error
is considered. As far as the Gamma-based error, significant statistics emerge for the spec-
ifications with the Student-T copula, although also those involving the Normal copula are
borderline.

7One-step ahead predictions at time t for the original series are computed multiplying the corresponding
forecast of the detrended indicator by the value of the trend at t− 1.
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Table 6: Diebold-Mariano test statistics for unidirectional comparisons, against the D-
I formulation, considering 1-step ahead forecasts (out–of–sample period August 1 –
December 31, 2013). The error measures are defined as eN,t = 0.5(xt − µt)

2 and
eG,t = ln(xt/µt) − xt/µt − 1, where xt and µt denote the observed and the predicted
values, respectively (cf. Section 4.2 for the interpretation). Boldface indicates 5% signif-
icant statistics.

eN,t eG,t
Formulation detrended original detrended original

A-I 0.924 0.949 1.043 1.050
A-N 1.644 1.754 1.564 1.571
A-T 1.821 1.950 1.763 1.768

AB-N 2.004 1.940 1.641 1.649
AB-T 2.128 2.088 1.807 1.814

5 Conclusions

In this paper we have presented a general discussion of the vector specification of the
Multiplicative Error Model introduced by Engle (2002): a positive valued process is seen
as the product of a scale factor which follows a GARCH type specification and a unit
mean innovation process. Engle and Gallo (2006) estimate a system version of the MEM
by adopting a dynamically interdependent specification for the scale factors (each vari-
able enters other variables’ specifications with a lag) but keeping a diagonal variance–
covariance matrix for the Gamma–distributed innovations. The extension to a truly mul-
tivariate process requires a complete treatment of the interdependence among the inno-
vation terms; in this respect, the specification using multivariate Gamma distributions is
too restrictive because of their limitations. One possibility is to avoid the specification of
the distribution and adopt a semiparametric GMM approach as in Cipollini et al. (2013).
Alternatively, and it is the avenue pursued here, we can derive a maximum likelihood es-
timator by framing the innovation vector as a copula function linking Gamma marginals.

We illustrate the procedure on three indicators related to market activity: realized volatil-
ity, volumes, and number of trades. The empirical results are presented in reference to
daily data on the Johnson and Johnson (JNJ) stock. The data on the three variables show
a (slowly moving) time varying local average which can be removed before the rest of
the analysis is performed. The three trends are highly correlated with one another, but
interestingly, their removal does not have a substantial impact on the correlation among
the detrended series. The specifications adopted start from the consideration of a diag-
onal structure where no dynamic interaction is allowed and an Independent copula (de
facto an equation–by–equation specification) as a benchmark. Refinements are obtained
by inserting a Normal copula and a Student–T copula (which dramatically improve the
estimated log–likelihood function values) and then allowing for the presence of dynamic
interdependence. Although hindered by the presence of collinearity, the results clearly
show a significant improvement for the fit of the equation for realized volatility when
volumes and number of trades are considered. This is highlighted by significantly better
log–likelihood, better information criteria and improved autocorrelation diagnostics. The
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results of an out–of–sample forecasting exercise confirm the superiority of richer spec-
ifications and a slight preference for the Student-T copula. From a substantive point of
view, we interpret the results as showing that the past of realized volatility by itself is not
enough information to reconstruct the dynamics and establish its forecastability as such a
variable is influenced by other indicators of market activity.
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Appendix: Expectation Targeting

We show how to obtain the asymptotic distribution of the estimator of the parameters
of the vMEM when the constant ω model is reparameterized, via expectation targeting
(Section 3.2.1), by exploiting the assumption of weak-stationarity of the process (Section
2). Under assumptions detailed in what follows, the distribution of xT can be found by
extending the results in Francq et al. (2011) and Horváth et al. (2006) to a multivariate
framework and to asymmetric effects.

Framework. Let us assume a model defined by (1), (5) and (3) where the x(−)
t ’s are

associated with negative returns on the basis of assumptions detailed in Section 2

Besides mean-stationarity, in order to get asymptotic normality also, we assume the
stronger condition that E(µtµ

′
t) exists (a similar condition on existence of the uncon-

ditional squared moment of the conditional variance is assumed in the cited papers).

Auxiliary results. In order to simplify the exposition we introduce two quantities em-
ployed in the following, namely the zero mean residual

vt = xt − µt (34)

and
x̃t = x

(−)
t − xt/2. (35)

Since vt = µt � (εt − 1), and x̃t = µt � εt � (It − 1/2), we can easily check that

E(vt) = 0

V (vt) = E(µtµ
′
t)�Σ ≡ Σv

C(vs,vt) = 0 s 6= t

E(x̃t) = 0

V (x̃t) = Σv �ΣI

C(x̃s, x̃t) = 0 s 6= t

C(vs, x̃t) = 0 s, t.

We remark that Σv represents also the unconditional average of xtx′t. By consequence,
the sample averages vT = T−1

∑T
t=1 vt and x̃T = T−1

∑T
t=1 x̃t are such that

√
T

(
vT
x̃T

)
d→ N

[(
0
0

)
,

(
Σv 0
0 Σv �ΣI

)]
. (36)

The asymptotic distribution of xT .

By replacing (34) and (35) into equation (3) and arranging it we get

xt −
L∑
l=1

(
αl + βl +

γl
2

)
xt−l = ω + vt −

L∑
l=1

βlvt−l +
L∑
l=1

γlx̃
(−)
t−l

so that, averaging both sides,[
I −

L∑
l=1

(
αl + βl +

γl
2

)]
xT = ω +

[
I −

L∑
l=1

βl

]
vT +

L∑
l=1

γlx̃T +Op(T
−1).
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Deriving xT we get

xT = µ+

[
I −

L∑
l=1

(
αl + βl +

γl
2

)]−1 [(
I −

L∑
l=1

βl

)
vT +

L∑
l=1

γlx̃T

]
+Op(T

−1)

= µ+A−1
[
BvT +Cx̃T

]
+Op(T

−1),

where µ is given in (26).

By means of (36), the asymptotic distribution of xT follows immediately as

√
T (xT − µ)

d→ N
[
0,A−1 (BΣvB

′ +C (Σv �ΣI)C
′)A−1′] (37)
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