
© Copyr ight is held by the author(s) .

D I S I A W O R K I N G P A P E R
2 0 1 6 / 0 5

A Rigorous Framework for Specification,

Analysis and Enforcement

of Access Control Policies

Andrea Margheri, Massimiliano Masi,
Rosario Pugliese, Francesco Tiezzi

A Rigorous Framework for Specification, Analysis and Enforcement
of Access Control Policies

ANDREA MARGHERI, Università degli Studi di Firenze, Università di Pisa
MASSIMILIANO MASI, Tiani “Spirit” GmbH
ROSARIO PUGLIESE, Università degli Studi di Firenze
FRANCESCO TIEZZI, Università di Camerino

Access control systems are widely used means for the protection of computing systems. They are defined
in terms of access control policies regulating the accesses to system resources. In this paper, we intro-
duce a formally-defined, fully-implemented framework for the specification, analysis and enforcement of
attribute-based access control policies. The framework rests on FACPL, a formal language with a compact,
yet expressive, syntax that permits expressing real-world access control policies. By relying on the FACPL
denotational semantics, we devise a constraint formalism that uniformly represents access control policies in
terms of SMT formulae, whose solvers provide effective and efficient analysis. To this aim, we introduce and
formalise a set of properties that permit assessing the authorisations enforced by policies and understand-
ing the relationships among them. Our analysis approach explicitly addresses the role of missing attributes,
erroneous values and obligations, that are crucial in policy evaluation and are instead overlooked in other
proposals. The framework is supported by Java-based tools that allow access control system developers to
use formally-defined functionalities without requiring them to be familiar with formal methods.

1. INTRODUCTION
Nowadays computing systems have pervaded every daily activity and prompted the
proliferation of a variety of innovative services and applications. These modern dis-
tributed systems manage a huge amount of data that, due to its importance and soci-
etal impact, has brought out security issues of paramount importance. Controlling the
access to system resources is thus crucial to prevent unauthorised accesses that could
jeopardise trustworthiness of data.

This has prompted increasing research interest towards access control systems,
which are the first line of defense for the protection of computing systems. They are
defined by rules that establish under which conditions a subject’s request for accessing
a resource has to be permitted or denied. In practice, this amounts to restrict physical
and logical access rights of subjects to system resources.

Access control is a broad field, covering several different approaches, using differ-
ent technologies and involving various degrees of complexity. Since the first appli-
cations in operating systems, to the more recent ones in distributed systems, many
access control approaches have been proposed. Traditional approaches are based on
the identity of subjects, either directly – e.g., Access Control Matrix [Lampson 1974] –
or through predefined features, such as roles or groups – e.g., Role-Based Access Con-
trol (RBAC [Ferraiolo and Kuhn 1992]). These approaches are however inadequate for
dealing with modern distributed systems, as they suffer from scalability and interop-
erability issues. Moreover, they cannot easily encompass information representing the
evaluation context, as e.g. system status or current time. An alternative approach that
permits to overcome these problems is Attribute-Based Access Control (ABAC) [Hu
et al. 2015]. Here, the rules are based on attributes, which represent arbitrary security-
relevant information exposed by the system, the involved subjects, the action to be per-
formed, or by any other entity of the evaluation context relevant to the rules at hand.
Thus, ABAC permits defining fine-grained, flexible and context-aware access control
rules that are expressive enough to uniformly represent all the other approaches [Jin
et al. 2012]. Attribute-based rules are typically hierarchically structured and paired

Working Paper

2 A. Margheri et al.

with strategies for resolving possible conflicting authorisation results. These struc-
tured specifications are called policies; from this name derives the terminology Policy-
Based Access Control (PBAC) [NIST 2009], sometimes used in place of ABAC.

Many languages have been proposed for the specification of access control poli-
cies (see, e.g., [Han and Lei 2012] for a survey). Among the proposed languages, in
the authors’ knowledge, the OASIS standard eXtensible Access Control Markup Lan-
guage (XACML) [OASIS XACML TC 2013] is the best-known one. Due to its XML-
based syntax and the advanced access control features it provides, XACML is com-
monly used in many real-world systems, e.g., in service-oriented ones. However, the
management of access control policies is in practice cumbersome and error-prone, and
should be supported by rigorous analysis techniques. Unfortunately, XACML is gen-
erally acknowledged as lacking of a formally defined semantics (see, e.g., [Rao et al.
2009; Crampton and Morisset 2012; Ramli et al. 2012; Arkoudas et al. 2014]), which
makes it difficult the specification and realisation of analysis techniques.

To cope with these difficulties, we propose a full-fledged, formally-defined frame-
work, based on the Formal Access Control Policy Language (FACPL), supporting de-
velopers in the specification, analysis and enforcement of access control policies.

The FACPL-based Access Control Framework
Our framework relies on the FACPL language and is built on the top of solid formal
foundations. FACPL defines a core, yet expressive syntax for high-level access control
policies. It is partially inspired by XACML (with which it shares the main traits of the
policy structure), but it refines some aspects of XACML and introduces novel features
from the access control literature. Evaluation of FACPL policies is formalised by a de-
notational semantics, which clarifies intricate aspects of access controls like, e.g., man-
agement of missing attributes (i.e. attributes requested by a policy but not provided by
the request to authorise) and formalisation of combining algorithms (i.e. strategies to
resolve conflictual decisions that policy evaluation can generate).

The analysis functionalities offered by our framework permits verifying authorisa-
tion properties and structural properties. The former properties permit to statically
reason on the result of the evaluation of a policy with respect to a specific request, by
also considering additional attributes that can be possibly introduced in the request at
run-time and that might lead to unexpected authorisations. Instead, the latter prop-
erties permit to statically reason on the whole set of authorisations enforced by one or
more policies and can be exploited, e.g., to implement maintenance and change-impact
analysis [Fisler et al. 2005] techniques.

The verification of these properties requires extensive checks on large (possibly infi-
nite) amounts of requests, hence tool support is essential. As no off-the-shelf analysis
tool directly accepts FACPL specifications as an input, our framework exploits a con-
straint formalism that uniformly represents policy elements and enables automatic
analysis. The constraint formalism we introduce is based on Satisfiability Modulo The-
ories (SMT) formulae, that is formulae defining satisfiability problems involving mul-
tiple theories, e.g. boolean and linear arithmetic ones. The relevant progress made in
the development of automatic SMT solvers has led SMT to be extensively employed in
diverse analysis applications [de Moura and Bjørner 2011], even for access control poli-
cies [Arkoudas et al. 2014; Turkmen et al. 2015]. In practice, SMT-based approaches
are more effective than many other ones, like e.g. decision diagrams [Fisler et al. 2005]
or description logic [Kolovski et al. 2007]. Notably, we formally prove the correspon-
dence between the FACPL semantics and that of its constraint-based representation.

Our framework is equipped with a Java-based software toolchain. The key software
tool is an Eclipse-based IDE that offers a tailored developing and analysis environ-
ment for FACPL-based policies. Specifically, it helps developers in the tasks of policy

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 3

specification, analysis and enforcement by providing, e.g., static checks on FACPL code
and automatic generation of runnable SMT-based code and Java code. The evaluation
of SMT-based code relies on the Z3 solver [de Moura and Bjørner 2008], while the
enforcement of policies is made via an expressly developed Java library.

Contributions
The main contribution of this paper is the development of a comprehensive method-
ology supporting the whole life-cycle of access control policies, from their specification
and analysis to their enforcement. Each ingredient of our methodology is formally in-
troduced in this paper, together with its tools implementation. Our approach allows ac-
cess control system developers to use formally-defined functionalities without requir-
ing them to be familiar with formal methods. Indeed, our aim is to propose and deploy
a compact, yet expressive, language whose formal foundations enable tool-supported
analysis techniques, rather than to supersede XACML or face its semantic issues.

Additional contributions of this paper can be summarised as follows.

— The FACPL semantics manages missing attributes in a way similar to [Crampton
and Morisset 2012] and extends it with explicit error management.

— The formalisation of combining algorithms extends that of [Li et al. 2009] with ex-
plicit combination of obligations and with different fulfilment strategies.

— The authorisation properties explicitly take into account the non-monotonicity issue
of policy evaluation [Tschantz and Krishnamurthi 2006] by appropriately employing
the request extensions set of [Crampton et al. 2015] for property formalisation.

— The main structural properties of [Fisler et al. 2005] and [Kolovski et al. 2007] are
uniformly formalised in terms of policy semantics.

— The constraint formalism defines a low-level tool-independent representation of
attribute-based policies that is capable to deal with all aspects of policy evaluation.

This paper is a revised and extended version of [Masi et al. 2012; Margheri et al.
2015]. Besides significant revisions and extensions of syntax and semantics of the pol-
icy language (we refer to Section 9 for a detailed comparison) this paper proposes a
complete development methodology for access control policies. Most of all, differently
from previous works, we introduce a constraint-based representation of policies en-
abling the verification of a variety of properties through SMT solvers.

Summary of the rest of the paper. In Section 2 we overview the FACPL evaluation pro-
cess. In Section 3 we introduce an e-Health case study we use throughout the paper. In
Section 4 we present the syntax of FACPL and its informal semantics, together with
the FACPL-based specification of the case study. In Section 5 we formally define the
FACPL semantics. In Section 6 we introduce the constraint formalism and the repre-
sentation it enables of FACPL policies. In Section 7 we introduce various properties for
access control policies and their verification via SMT solvers. In Section 8 we outline
the Java-based software toolchain. In Section 9 we discuss the closest related work
and, finally, in Section 10 we conclude and touch upon directions for future work. Ap-
pendixes A, B and C report, respectively, the definitions of combining algorithms and
constraint combinations, and the proofs of the formal results.

2. THE FACPL EVALUATION PROCESS
The FACPL evaluation process of (access control) policies and requests is shown in
Figure 1. It defines the interactions, leading to the final authorisation decision, among
three key components: the Policy Repository (PR), the Policy Decision Point (PDP)
and the Policy Enforcement Point (PEP). These entities and their interactions were
introduced in [Yavatkar et al. 2000] to define the evaluation process of policy-based

Working Paper

4 A. Margheri et al.

Context
HandlerPDP

PEPRequester

4. FACPL request

5. attribute names
8. attribute values
9. PDP response

3. FACPL request

10. PDP response

2. request 11. obligations

Environment
7. attribute values
6. attribute names

PR

1. FACPL policies

12. obligation results

Obligation
services

13. enforced decision

Fig. 1. The FACPL evaluation process

systems. Each policy language, e.g. XACML, has then tailored them according to its
specific features.

The evaluation process assumes that system resources are paired with one or more
FACPL policies, which define the credentials necessary to gain access to such re-
sources. The PR stores the policies and makes them available to the PDP (step 1),
which then decides if the access can be granted.

When a request is received by the PEP (step 2), the credentials contained in the
request are encoded as a sequence of attribute elements (i.e., name-value pairs rep-
resenting arbitrary information relevant for evaluating the access request) forming
a FACPL request (step 3). PEPs can have many different forms, e.g. a gateway or a
Web server. Therefore, this encoding allows policies and requests to be written and
evaluated independently from their specific nature.

The context handler sends the request to the PDP (step 4), by possibly adding envi-
ronmental attributes, e.g. request receiving time, that may be used in the evaluation.

The PDP authorisation process computes the PDP response for the request by check-
ing the attributes, that may belong either to the request or to the environment (steps
5-8), against the controls contained in the policies. The PDP response (steps 9-10) con-
tains an authorisation decision and possibly some obligations.

The decision is one among permit, deny, not-app and indet. The meaning of the first
two decisions is obvious, the third one means that there is no policy that applies to the
request and the latter one means that some errors have occurred during the evalua-
tion. Policies can automatically manage these errors by using operators that combine,
according to different strategies, indet decisions with the others.

Obligations are instead additional actions connected to the access control system
that must be discharged by the PEP through appropriate obligation services (steps 11-
12). Obligations usually correspond to, e.g., updating a log file, sending a message or
executing a command. The enforcement process performed by the PEP determines the
enforced decision (step 13) on the basis of the obligation results. This decision could
differ from the PDP one and is the overall outcome of the evaluation process.

3. AN E-HEALTH CASE STUDY
The case study we consider throughout this paper concerns the provision of e-Health
services for exchanging private health data. To improve the effectiveness of healthcare,
e-Health services aim at allowing healthcare professionals (such as doctors, nurses,

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 5

Pharmacist NCP-B NCP-A

getE-Prescriptions(Alice)

loop

PEP-A PDP-A

getE-Prescriptions(Alice)

retrieveE-Prescriptions(Alice)

reqAuthzDecision
[for each e-Prescription]

authzRequest

decision

enforceDecisionresAuthzDecision

createListOfE-Prescriptions
listOfE-Prescriptions

listOfE-Prescriptions

e-Dispensations
e-Dispensations

Fig. 2. e-Prescription service protocol

pharmacists, etc.) to remotely access patients data. In order to preserve confidentiality
and integrity of such data, we control these accesses by means of FACPL policies.

The exchange of patients health data among European points of care (such as clinics,
hospitals, pharmacies, etc.) has been pursued by the EU through the large scale pilot
epSOS1, with the goal of improving healthcare treatments to EU citizens that are
abroad. This exchange must respect a set of requirements in order to fulfil country-
specific legislations [European Parliament and Council 1995; The Article 29 Data Pro-
tection WP 2013] and to enforce the patient informed consent, i.e. the patients informed
indications pertaining to personal data processing.

These data exchanging services, standardised by epSOS, are currently used by many
European countries to facilitate the cross-board interoperability of their healthcare
systems [Kovac 2014]. As a case study for this paper, we take into account the elec-
tronic prescription (e-Prescription) service. This service allows EU patients, while stay-
ing in a foreign country B participating to the project, to have dispensed a medicine
prescribed by a doctor in the country A where the patient is insured. The protocol im-
plemented by this service is illustrated in the message sequence diagram in Figure 2.
The e-Prescription service helps pharmacists in country B to retrieve (and properly con-
vert) e-Prescriptions from country A; this is due to trusted actors named National Con-
tact Points (NCPs). Therefore, once a pharmacist has identified the patient (Alice), the
remote access is requested to the local NCP (NCP-B), which in its own turn contacts
the remote NCP (NCP-A). The latter one retrieves the e-Prescriptions of the patient
from the national infrastructure and, for each e-Prescription, performs through PEP-A
an authorisation check against the patient informed consent. In details, PEP-A asks
PDP-A to evaluate the pharmacist request with respect to the e-Prescription and the
policies expressing the patient consent. Once all decisions are enforced by PEP-A, NCP-
A creates the list of e-Prescriptions, by transcoding and translating them into the code
system and language of the country B. Finally, the pharmacist dispenses the medicine to
the patient and updates the e-Prescription, i.e. it returns e-Dispensation documents.

By looking at the epSOS specifications, we can deduce a set of business requirements
concerning the e-Prescription service. For instance, it is forbidden to pharmacists to
write e-Prescriptions, which is instead obviously granted to a doctor having a specific
set of permissions. In Table I, we report in a closed-world form, i.e. everything not re-

1The Large scale pilot epSOS (Smart Open Services for European Patients), http://www.epsos.eu

Working Paper

http://www.epsos.eu

6 A. Margheri et al.

Table I. Requirements for the e-Prescription service
Description
1 Doctors can write e-Prescriptions
2 Doctors can read e-Prescriptions
3 Pharmacists can read e-Prescriptions
4 Authorised user accesses must be recorded by the system
5 Patients must be informed of unauthorised access attempts
6 Data exchanged should be compressed

ported has to be forbidden, the self-explanatory requirements we focus on in the rest
of the paper when dealing with the case study. The first three requirements deal with
access restrictions, while the others deal with additional functionalities that sophisti-
cated access control systems, like the one we introduce, can provide.

4. THE FACPL LANGUAGE
In this section we present FACPL, the language we propose for defining high-level ac-
cess control policies and requests. First, we introduce its syntax (Section 4.1). Then, we
informally explain the semantics of its linguistic constructs (Section 4.2) and employ
them to implement the access control system of the e-Health case study (Section 4.3).

4.1. Syntax
The syntax of FACPL is reported in Table II. It is given through EBNF-like grammars,
where as usual the symbol ? stands for optional items, ∗ for (possibly empty) sequences,
and + for non-empty sequences.

Table II. Syntax of FACPL

Policy Authorisation Systems PAS ::= (pep : EnfAlg pdp : PDP)

Enforcement algorithms EnfAlg ::= base | deny-biased | permit-biased

Policy Decision Points PDP ::= {Alg policies : Policy+}

Combining algorithms Alg ::= p-overδ | d-overδ | d-unless-pδ | p-unless-dδ
| first-appδ | one-appδ | weak-conδ | strong-conδ

Fulfilment strategies δ ::= greedy | all

Policies Policy ::= (Effect target :Expr obl : Obligation∗)
| {Alg target :Expr policies : Policy+ obl : Obligation∗ }

Effects Effect ::= permit | deny

Obligations Obligation ::= [Effect ObType PepAction(Expr∗)]

Obligation types ObType ::= m | o

Expressions Expr ::= Name | Value
| and(Expr ,Expr) | or(Expr ,Expr) | not(Expr)
| equal(Expr ,Expr) | in(Expr ,Expr)
| greater-than(Expr ,Expr) | add(Expr ,Expr)
| subtract(Expr ,Expr) | divide(Expr ,Expr)
| multiply(Expr ,Expr)

Attribute names Name ::= Identifier/Identifier

Literal values Value ::= true | false | Double | String | Date

Requests Request ::= (Name,Value)+

A top-level term is a Policy Authorisation System (PAS) encompassing the specifica-
tions of a PEP and a PDP. The PEP is defined in terms of the enforcement algorithm

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 7

applied for establishing how decisions have to be enforced, e.g. if only decisions permit
and deny are admissible, or also not-app and indet can be returned. The PDP is instead
defined by a sequence of policies Policy+ and an algorithm Alg for combining the re-
sults of the evaluation of these policies.

A policy can be a basic authorisation rule (Effect target :Expr obl :Obligation∗) or
a policy set {Alg target :Expr policies : Policy+ obl :Obligation∗} collecting rules and
other policy sets, so that it defines policy hierarchies. A policy set specifies a target,
that is an expression indicating the set of access requests to which the policy applies,
a list of obligations, that defines mandatory or optional actions to be discharged by the
enforcement process, a sequence of enclosed policies and an algorithm, that is used
for combining the enclosed policies. A rule specifies an effect, that is the permit or deny
decision returned when the rule is successfully evaluated, a target, that refines the one
of the enclosing policy, and a list of obligations. Notably, obligations may be missing.

Expressions are built from attribute names and literal values, i.e. booleans, doubles,
strings, and dates, by using standard operators. As usual, string values are written as
sequences of characters delimited by double quotes. For simplicity sake, the expression
syntax does not take types explicitly into account (because they are not relevant in this
setting and, statically, their treatment would be standard). However, at evaluation-
time an error will be returned when operator arguments are of unexpected types; there
are then specific operators that can manage and mask errors. Notably, FACPL support-
ing tools implement a type inference system that statically avoids writing expressions
that always produce errors. Moreover, the syntax of expressions accepted by the tools
can be extended with additional operators (see Section 8 for further details).

An attribute name indicates the value of an attribute. This can either be contained
in the request or retrieved from the environment by the context handler (steps 5-8
in Figure 1). To group attributes under categories, FACPL uses structured names of
the form Identifier/Identifier , where the first identifier stands for a category name and
the second for an attribute name. For example, the structured name subject/role rep-
resents the value of the attribute role within the category subject. Categories permit a
fine-grained classification of attributes, varying from the classical categories of access
control, i.e. subject, resource and action, to possibly application-dependent ones.

A combining algorithm aims at resolving conflicts among the decisions resulting
from policy evaluations, e.g. whenever both decisions permit and deny occur. The re-
ported algorithms offer various strategies (as e.g. the p-overδ algorithm stating that
‘decision permit takes precedence over the others’) and can be specialised by choosing
different strategies for the fulfilment of obligations (as e.g. the greedy strategy stating
that ‘only the obligations resulting from the evaluated policies are returned’). Note
that algorithm names use ‘p’ and ‘d’ as shortcuts for permit and deny, respectively.

An obligation [Effect ObType PepAction(Expr∗)] specifies an applicability effect,
a type, i.e. mandatory (m) or optional (o), and the identifier and the arguments of an
action to be performed by the PEP. The set of action identifiers accepted by the PEP can
be chosen, from time to time, according to the specific application (therefore, PepAction
is intentionally left unspecified). Action arguments are expressions.

A request consists of a sequence of attributes, i.e. name-value pairs, that enumer-
ate request credentials in the form of literal values. Attributes are organised under
categories by exploiting their structured names. Multivalued attributes, i.e. names as-
sociated to a set of values, are rendered as multiple attributes sharing the same name.

The responses resulting from the evaluation of a FACPL request are written using
the auxiliary syntax reported in Table III.

The two-stage evaluation process described in Section 2 produces two different kinds
of responses: PDP responses and decisions (i.e. responses by the PEP). The former ones,

Working Paper

8 A. Margheri et al.

Table III. Auxiliary Syntax for FACPL responses

PDP responses PDPResponse ::= 〈Decision FObligation∗〉

Decisions Decision ::= permit | deny | not-app | indet

Fulfilled obligations FObligation ::= [ObType PepAction(Value∗)]

in case of decision permit and deny, pair the decision with a (possibly empty) sequence
of fulfilled obligations. A fulfilled obligation is a pair made of a type (i.e., m or o) and
an action whose arguments are values.

In the sequel, to simplify notations, we omit the keyword preceding a sub-term gen-
erated by the grammar in Table II whenever the sub-term is missing or is the expres-
sion true. Thus, e.g., the rule (deny target : true obl :) will be simply written as (deny).
Moreover, when in the PDPResponse the sequence of fulfilled obligations is empty, we
sometimes write Decision instead of 〈Decision〉.

4.2. Informal Semantics
We now informally explain how the FACPL linguistic constructs are dealt with in the
evaluation process of access requests described in Section 2. We first present the PDP
authorisation process and then the PEP enforcement process.

When the PDP receives an access request, first it evaluates the request on the basis
of the available policies. Then, it determines the resulting decision by combining the
decisions returned by these policies through the top-level combining algorithm.

The evaluation of a policy with respect to a request starts by checking its applica-
bility to the request, which is done by evaluating the expression defining its target.
Let us suppose that the applicability holds, i.e. the expression evaluates to true. In
case of rules, the rule effect is returned. In case of policy sets, the result is obtained
by evaluating the contained policies and combining their evaluation results through
the specified algorithm. In both cases, the evaluation ends with the fulfilment of the
enclosed obligations. Let us suppose now that the applicability does not hold. If the ex-
pression evaluates to false, the policy evaluation returns not-app, while if the expression
returns an error or a non-boolean value, the policy evaluation returns indet. Clearly, a
policy with target expression true (resp., false) applies to all (resp., no) requests.

Evaluating expressions amounts to apply operators and to resolve the attribute
names occurring within, that is to determine the value corresponding to each such
name. If this is not possible, i.e. an attribute with that name is missing in the request
and cannot be retrieved through the context handler, the special value ⊥ is returned.
This value can be exploited to enforce different strategies for managing the absence
of attributes. In details, dealing with ⊥ as an error would mean that all occurring at-
tributes must be present in the request, otherwise the policy evaluation immediately
returns indet. Instead, as chosen by the FACPL semantics, dealing with ⊥ in a way
similar to value false allows attributes to be missing without always generating errors.

The evaluation of expressions takes into account the types of the operators’ argu-
ments, and possibly returns the special values ⊥ and error. In details, if the arguments
are of the expected type, the operator is applied, else, i.e. at least one argument is
error, error is returned; otherwise, i.e. at least one argument is ⊥ and none is error, ⊥ is
returned. The operators and and or enforce a different treatment of these special val-
ues. Specifically, and returns true if both operands are true, false if at least one operand
is false, ⊥ if at least one operand is ⊥ and none is false or error, and error otherwise
(e.g. when an operand is not a boolean value). The operator or is the dual of and. Hence,
and and or may mask ⊥ and error. Instead, the unary operator not only swaps values
true and false and leaves ⊥ and error unchanged. In the following, we use operators and

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 9

and or in infix notation, and assume that they are commutative and associative, and
that operator and takes precedence over or.

The evaluation of a policy ends with the fulfilment of all obligations whose appli-
cability effect coincides with the decision calculated for the policy. The fulfilment of
an obligation consists in evaluating all the expression arguments of the enclosed ac-
tion. If an error occurs, the policy decision is changed to indet. Otherwise, the fulfilled
obligations are paired with the policy decision to form the PDP response.

Evaluating a policy set requires the application of the specified combining algorithm.
Given a sequence of policies in input, the combining algorithms prescribe the sequen-
tial evaluation of the given policies and behave as follows:

— p-overδ (d-overδ is specular): if the evaluation of a policy returns permit, then the result
is permit. In other words, permit takes precedence, regardless of the result of any other
policy. Instead, if at least one policy returns deny and all others return not-app or deny,
then the result is deny. If all policies return not-app, then the result is not-app. In the
remaining cases, the result is indet.

— d-unless-pδ (p-unless-dδ is specular): similarly to p-overδ, this algorithm gives prece-
dence to permit over deny, but it always returns deny in all the other cases.

— first-appδ: the algorithm returns the evaluation result of the first policy in the se-
quence that does not return not-app, otherwise the result is not-app.

— one-appδ: when exactly one policy is applicable, the result of the algorithm is that of
the applicable policy. If no policy applies, the algorithm returns not-app, while if more
than one policy is applicable, it returns indet.

— weak-conδ: the algorithm returns permit (resp., deny) if some policies return permit
(resp., deny) and no other policy returns deny (resp., permit); if both decisions are re-
turned, the algorithm returns indet. If policies only return not-app or indet, then indet,
if present, takes precedence.

— strong-conδ: this algorithm is the stronger version of the previous one, in the sense
that to obtain permit (resp., deny) all policies have to return permit (resp., deny), other-
wise indet is returned. If all policies return not-app then the result is not-app.

The algorithms described in the first four items above are those popularised by
XACML. They combine decisions according to a given precedence criterium or to pol-
icy applicability. The remaining two algorithms, instead, are borrowed from [Li et al.
2009] and compute the combined decision by achieving different forms of consensus.

If the resulting decision is permit or deny, each algorithm also returns the sequence
of fulfilled obligations according to the chosen fulfilment strategy δ. There are two
possible strategies. The all strategy requires evaluation of all policies in the input se-
quence and returns the fulfilled obligations pertaining to all decisions. Instead, the
greedy strategy prescribes that, as soon as a decision is obtained that cannot change
due to evaluation of subsequent policies in the input sequence, the execution halts.
Hence, the result will not consider the possibly remaining policies and only contains
the obligations already fulfilled. Therefore, the fulfilment strategies mainly affect the
amount of fulfilled obligations possibly returned. Notice that the greedy strategy may
significantly improve the evaluation performance of a sequence of several policies.

As last step, the calculated PDP response is sent to the PEP for the enforcement. To
this aim, the PEP must discharge all obligations and decide, by means of the chosen
enforcement algorithm, how to enforce decisions not-app and indet. In particular, the
deny-biased (resp., permit-biased) algorithm enforces permit (resp., deny) only when all the
corresponding obligations are correctly discharged, while enforces deny (resp., permit)
in all other cases. Instead, the base algorithm leaves all decisions unchanged but, in
case of decisions permit and deny, enforces indet if an error occurs while discharging
obligations. This means that obligations not only affect the authorisation process due

Working Paper

10 A. Margheri et al.

to their fulfilment, but also the enforcement one. It is worth noticing that errors caused
by optional obligations, i.e. with type o, are safely ignored.

4.3. Policies for the e-Health case study
We now use the FACPL linguistic abstractions to formalise the requirements for the
e-Health case study reported in Table I. These rules are meant to prevent unautho-
rised access to patient data and hence to ensure their confidentiality and integrity. The
specification of this access control system is introduced bottom-up, from single rules
to whole policies, thus illustrating in a step-by-step fashion the combination strategies
that could be pursued and their effects.

The system resources to protect via the access control system are e-Prescriptions.
The access control rules need to deal with requester credentials, i.e. doctor and
pharmacist roles, along with their assigned permissions, and with read or write actions.

Requirement (1), allowing doctors to write e-Prescriptions, can be formalised as a
positive FACPL rule (i.e., with effect permit) as follows

(permit target : equal(subject/role, “doctor”) and equal(action/id, “write”)
and in(“e-Pre-Write”, subject/permission)
and in(“e-Pre-Read”, subject/permission))

The rule target2 checks if the requester role is doctor, if the action is write, and if the
permissions include those for writing and reading an e-Prescription. Notably, that the
resource type is equal to e-Prescription will be controlled by the target of the policy
enclosing the rule. This, because of the hierarchical processing of FACPL elements, is
enough to ensure that the rule will only be applied to e-Prescriptions.

Requirement (2) can be expressed like the previous one: it differs for the action iden-
tifier and for the required permissions, i.e. only e-Pre-Read. Requirement (3) only differs
from the second one for the role value.

These three rules, modelling Requirements (1), (2) and (3), can be combined together
in a policy set whose target specifies the check on the resource type e-Prescription3.
Since all granted requests are explicitly authorised, choosing the p-overall algorithm as
combining strategy seems a natural choice. Let thus Policy (1) be defined as follows

{ p-overall

target : equal(resource/type, “e-Prescription”)
policies : (permit target : equal(subject/role, “doctor”)and equal(action/id, “write”)

and in(“e-Pre-Write”, subject/permission)
and in(“e-Pre-Read”, subject/permission))

(permit target : equal(subject/role, “doctor”)and equal(action/id, “read”)
and in(“e-Pre-Read”, subject/permission))

(permit target : equal(subject/role, “pharmacist”)and equal(action/id, “read”)
and in(“e-Pre-Read”, subject/permission))

obl : [permit m log(system/time, resource/type, subject/id, action/id)] }

(1)

Policy (1) reports not only access controls but also an obligation formalising Assump-
tion (4) about the logging of each authorised access, i.e. all the permit ones. The argu-
ments of the obligation action are separated by commas to increase their readability.

2To improve code readability, we use the infix notation for operators, a textual notation for permissions and
an additional check on the subject role. Of course, in a setting with semantically different roles, a standard-
ised permission-based coding, as e.g. HL7 (http://www.hl7.org), should be used for defining role checks.
3Again to improve code readability, the resource is encoded as text; in a real application, for interoperability
reasons, the LOINC (http://loinc.org/) universal code system for clinical data should be used.

Working Paper

http://www.hl7.org
http://loinc.org/

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 11

Let us now consider a FACPL request and evaluate it with respect to Policy (1). For
the sake of presentation, hereafter we write A , t to assign the symbolic name A to
the term t. Let us suppose that doctor Dr. House wants to write an e-Prescription; the
corresponding request is defined as follows

req1 , (subject/id, “Dr. House”) (subject/role, “doctor”) (action/id, “write”)
(resource/type, “e-Prescription”) (subject/permission, “e-Pre-Read”)
(subject/permission, “e-Pre-Write”) . . .

where attributes are organised into the categories subject, resource and action. Ad-
ditional attributes possibly included in the request are omitted because they are not
relevant for this evaluation. Notice that subject/permission is a multivalued attribute
and it is properly handled in the previous rules by using the in operator, which verifies
the membership of its first argument to the set that constitutes its second argument.

The authorisation process of req1 returns a permit decision. In fact, the request
matches the policy target, as the resource type is e-Prescription, and exposes all the
permissions required in the first rule for the write action and the doctor role. The re-
sponse, that is a permit including a log obligation, is defined, e.g., as follows

〈 permit [m log(2016-01-22 10:15:12, “e-Prescription”, “Dr. House”, “write”)]〉
The fulfilled obligation indicates that the PDP succeeded in retrieving and evaluating
all the attributes occurring within the arguments of the action; runtime information,
such as the current time, is retrieved through the context handler.

The evaluation of req1 returns the expected result. We might be led to believe that
due to the simplicity of Policy (1), this is true for all requests. However, this correctness
property cannot be taken for granted as, in general, even though the meaning of a rule
is straightforward, this may not be the case for a combination of rules. Depending on
the chosen combination strategy, some unexpected results can arise. For example, a
request from a pharmacist for a write action on an e-Prescription must be forbidden. In
fact, this behaviour is not explicitly allowed (see Table I), hence due to the closed-world
assumption it has to be forbidden. However, the corresponding request

req2 , (subject/id, “Dr. Wilson”) (subject/role, “pharmacist”) (action/id, “write”)
(resource/type, “e-Prescription”) (subject/permission, “e-Pre-Read”) . . .

would evaluate to not-app. In fact, all enclosed rules do not apply (i.e., their targets do
not match) and the resulting not-app decisions are combined by the p-overall algorithm
to not-app as well. Therefore, the enforcement algorithm of the PEP is entrusted with
the task of taking the final decision for request req2. Even though this is correct in a
setting where the PEP is well-defined, e.g. the epSOS system, it is not recommended
when design assumptions on the PEP implementation are missing. In fact, a biased
algorithm might transform not-app into permit, possibly causing unauthorised accesses.

To prevent not-app decisions to be returned by the policy, we can replace the combin-
ing algorithm of Policy (1) with the d-unless-pall one. This implies that deny is taken as
the default decision and is returned whenever no rule returns permit. Alternatively, we
can obtain the same effect by using a policy set defined as the combination, through
the p-overall algorithm, of Policy (1) and a rule forbidding all accesses. This rule is sim-
ply defined as (deny): the absence of the target and the negative effect means that it
always returns deny. Now, let Policy (2) be defined as

{ p-overall

policies : { . . .Policy (1) . . . } (deny)
obl : [deny m mailTo(resource/patient-mail,“Data request by unauthorised subject”)]

[permit o compress()] }
(2)

Working Paper

12 A. Margheri et al.

Policy (2) reports two obligations formalising, respectively, the last two requirements
of Table I: (i) a patient is informed about unauthorised attempts to access her data and
(ii) if possible, data are exchanged in compressed form. Notably, the type ‘optional’ is
exploited so that compressed exchanges are not strictly required but, e.g., only when-
ever the corresponding service is available.

Policy (2) can be used as a basis for the definition of the patient informed consent
(see Section 3). For instance, Alice’s policy for the management of her health data could
be simply obtained by adding target : equal(“Alice”, resource/patient-id) to Policy (2), i.e. a
check on the patient identifier to which the policy applies. In this way, Alice grants ac-
cess to her e-Prescription data to the healthcare professionals that satisfy the require-
ments expressed in her consent policy. Another patient expressing a more restrictive
consent, where e.g. writing of e-Prescriptions is disabled, will have a similar policy
set where the rule modelling Requirement (1) is not included. In a more general per-
spective, the PDP could have a policy set for each patient, that encloses the policies
expressing the consent explicitly signed by the patient. This is the approach followed,
e.g., in the Austrian e-Health platform4.

As shown before, it could be challenging to identify unexpected authorisations and
to determine whether policy fixes affect authorisations that should not be altered. The
combination of a large number of complex policies is indeed an error-prone task that
has to be supported with effective analysis techniques. Therefore we equip FACPL with
a formal semantics and then define a constraint-based analysis providing effective
supporting techniques for the verification of properties on policies.

5. FACPL FORMAL SEMANTICS
In this section, we present the formal semantics of FACPL by formalising the eval-
uation process introduced in Section 2 and detailed in Section 4.2. The semantics is
defined by following a denotational approach which means that

— we introduce some semantic functions mapping each FACPL syntactic construct to
an appropriate denotation, that is an element of a semantic domain representing the
meaning of the construct;

— the semantic functions are defined in a compositional way, so that the semantic of
each construct is formulated in terms of the semantics of its sub-constructs.

To this purpose, we specify a family of semantic functions mapping each syntactic
category to a specific semantic domain. These functions are inductively defined on the
FACPL syntax through appropriate semantic clauses following a ‘point-wise’ style.

In the sequel, we convene that the application of the semantic functions is left-as-
sociative, omits parenthesis whenever possible, and surrounds syntactic objects with
the emphatic brackets [[and]] to increase readability. For instance, E [[n]]r stands for
(E(n))(r) and indicates the application of the semantic function E to (the syntactic
object) n and (the semantic object) r . We also assume that each nonterminal symbol in
Tables II and III (defining the FACPL syntax) denominates the set of constructs of the
syntactic category defined by the corresponding EBNF rule, e.g. the nonterminal Policy
identifies the set of all FACPL policies. The used notations are summarised in Table IV
(the missing semantic domains coincide with the corresponding syntactic ones).

In the rest of this section we detail the semantics of requests (Section 5.1), PDP
(Sections 5.2 and 5.3), PEP (Section 5.4), Policy Authorisation System (Section 5.5)
and we conclude with some properties of the semantics (Section 5.6).

4For additional details see the Austria?s ELGA system - http://www.elga.gv.at/

Working Paper

http://www.elga.gv.at/

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 13

Table IV. Correspondence between syntactic and semantic domains

Syntactic Generic Semantic Syntactic Semantic
category synt. elem. function domain domain

Attribute names n Name
Literal values v Value

Requests req R Request R , Name → (Value ∪ 2Value ∪ {⊥})
Expressions expr E Expr R→ Value ∪ 2Value ∪ {error,⊥}

Effects e Effect
Obligation Types t ObType

Pep Actions pepAct PepAction
fulfilled obligations fo FObligation

Obligations o O Obligation R→ FObligation ∪ {error}
PDP Responses res PDPReponse

Policies p P Policy R→ PDPReponse
Policy Decision Points pdp Pdp PDP R→ PDPReponse
Combining algorithms a A Alg × Policy+ R→ PDPReponse

Decisions dec Decision
Enforcement algorithms ea EA EnfAlg PDPReponse → Decision

Policy Auth. System pas Pas PAS Request → Decision

5.1. Semantics of Requests

The meaning of a request5 is a function of the set R , Name → (Value ∪ 2Value ∪ {⊥}),
that is a total function that maps attribute names to either a literal value, or a set of
values (in case of multivalued attributes), or the special value ⊥ (if the value for an
attribute name is missing). The mapping from a request to its meaning is given by the
semantic function R : Request → R, defined as follows:

R[[(n ′, v ′)]]n =

{
v ′ if n = n ′

⊥ otherwise

R[[(ni, vi)
+

(n ′, v ′)]]n =

{
R[[(ni, vi)

+
]]n d v ′ if n = n ′

R[[(ni, vi)
+

]]n otherwise

(S-1)

The semantics of a request, which is a function r ∈ R, is thus inductively defined on the
length of the request. To deal with multivalued attributes we introduce the operator
d, which is straightforwardly defined by case analysis on the first argument as follows

v d v′ = {v, v′} V d v′ = V ∪ {v′} ⊥ d v′ = v′

where we let V ∈ 2Value .

5.2. Semantics of the Policy Decision Process
We start defining the semantics of expressions and obligations that will be then ex-
ploited for defining the semantics of policies.

In Table V we report (an excerpt of) the clauses defining the function E : Expr →
(R → Value ∪ 2Value ∪ {error,⊥}) modelling the semantics of expressions. This means
that the semantics of an expression is a function of the form R → Value ∪ 2Value ∪
{error,⊥} that, given a request, returns a literal value, or a set of values, or the special
value ⊥, or an error (e.g. when an argument of an operator has incorrect type).

The first raw of the table contains the clauses for basic expressions, i.e. attribute
names and literal values. The semantics of the expression formed by a name n is a
function that, given a (semantic) request r in input, returns the value that r associates

5For simplicity sake, here we assume that, when the evaluation of a request takes place, the original request
has been already enriched with the information that would be retrieved at run-time (steps 5-8 in Figure 1).

Working Paper

14 A. Margheri et al.

Table V. Semantics of (an excerpt of) FACPL Expressions (T stands for one of the sets of literal values or for the
powerset of the set of all literal values, and i, j ∈ {1, 2} with i 6= j)

E[[n]]r = r(n) E[[v]]r = v

E[[or(expr1, expr2)]]r =
true if E[[expr1]]r = true ∨ E[[expr2]]r = true
false if E[[expr1]]r = E[[expr2]]r = false
⊥ if E[[expr i]]r =⊥ ∧ E[[exprj]]r ∈ {false,⊥}
error otherwise

E[[and(expr1, expr2)]]r =
true if E[[expr1]]r = E[[expr2]]r = true
false if E[[expr1]]r = false ∨ E[[expr2]]r = false
⊥ if E[[expr i]]r =⊥ ∧ E[[exprj]]r ∈ {true,⊥}
error otherwise

E[[not(expr)]]r =
true if E[[expr]]r = false
false if E[[expr]]r = true
⊥ if E[[expr]]r =⊥
error otherwise

E[[equal(expr1, expr2)]]r =
(E[[expr1]]r = E[[expr2]]r) if E[[expr1]]r , E[[expr2]]r ∈ T
⊥ if E[[expr i]]r = ⊥

∧ E[[exprj]]r 6= error
error otherwise

E[[in(expr1, expr2)]]r = (E[[expr1]]r ∈ E[[expr2]]r) if E[[expr1]]r ∈ T ∧ E[[expr2]]r ∈ 2T

⊥ if E[[expr i]]r = ⊥ ∧ E[[exprj]]r 6= error
error otherwise

E[[add(expr1, expr2)]]r = (E[[expr1]]r + E[[expr2]]r) if E[[expr1]]r , E[[expr2]]r ∈ Double
⊥ if E[[expr i]]r =⊥ ∧ E[[exprj]]r 6= error
error otherwise

to n. This is written as the clause E [[n]]r = r(n). Similarly, the case of a value v is a
function that always returns the value itself, that is the clause E [[v]]r = v.

The remaining clauses in Table V present (an excerpt of) the semantics of expres-
sion operators. In particular, each clause, one for each operator, uses straightforward
semantic operators for composing denotations (e.g. = corresponds to equal), and en-
forces the management strategy for the special values ⊥ and error. They establish that
error takes precedence over ⊥ and is returned every time the operator arguments have
unexpected types; whereas ⊥ is returned when at least an argument is ⊥ and there is
no error. Notably, the clauses of operators and and or possibly mask these special values
by implementing the behaviour informally described in Section 4.2.

Function E is straightforwardly extended to sequences of expressions by the clauses

E [[ε]]r = ε E [[expr ′ expr∗]]r = E [[expr ′]]r • E [[expr∗]]r (S-2)

The operator • denotes concatenation of sequences of semantic elements and ε denotes
the empty sequence. We assume that • is strict on error and ⊥, i.e. error is returned
whenever an error or ⊥ is in the sequence. Therefore, the evaluation of E [[expr∗]]r fails
if any of the expressions forming expr∗ evaluates to error or ⊥.

The semantics of the fulfilment of obligations is formalised by the function O :
Obligation → (R→ FObligation ∪ {error}) defined by the following clause

O[[[e t pepAct(expr∗)]]]r =

{
[t pepAct(w∗)] if E [[expr∗]]r = w∗

error otherwise
(S-3a)

where w stands for a literal value or a set of literal values. Thus, the fulfilment of an
obligation, given a request, returns a fulfilled obligation when the evaluation of every
expression argument of the action returns a value. Otherwise, it returns an error.

Function O is straightforwardly extended to sequences of obligations as follows

O[[ε]]r = ε O[[o′ o∗]]r = O[[o′]]r • O[[o∗]]r (S-3b)

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 15

Notably, a sequence of fulfilled obligations is returned only if every obligation in the
sequence successfully fulfils; otherwise, error is returned (indeed, • is strict on error).

We can now define the semantics of a policy as a function that, given a request,
returns an authorisation decision paired with a (possibly empty) sequence of fulfilled
obligations. Formally, it is given by the function P : Policy → (R → PDPReponse) that
has two defining clauses: one for rules and one for policy sets. The clause for rules is

P[[(e target : expr obl : o∗)]]r =
〈e fo∗〉 if E [[expr]]r = true ∧ O[[o∗|e]]r = fo∗

not-app if E [[expr]]r = false ∨ E [[expr]]r = ⊥
indet otherwise

(S-4a)

Thus, the rule effect is returned as a decision when the target evaluates to true, which
means that the rule applies to the request, and all obligations with the same applica-
bility effect as the rule successfully fulfil. In this case, the fulfilled obligations are also
part of the response. Otherwise, it could be the case that (i) the rule does not apply to
the request, i.e. the target evaluates to false or to ⊥, or that (ii) an error has occurred
while evaluating the target or fulfilling the obligations with the same effect as the rule.
Notation o∗|e indicates the subsequence of o∗ made of those obligations whose effect is
e. Formally, its definition is as follows

ε|e = ε

([e ′ t pepAct(expr∗)] o∗)|e =

{
[e ′ t pepAct(expr∗)] (o∗|e) if e ′ = e

o∗|e otherwise

The semantics of policy sets relies on the semantics of combining algorithms. Indeed,
as detailed in Section 5.3, we use a semantic function A to map each combining algo-
rithm a to a function that, to a sequence of policies, associates a function from requests
to PDP responses. The clause for policy sets is

P[[{a target : expr policies : p+ obl : o∗ }]]r =
〈e fo∗1 • fo∗2〉 if E [[expr]]r = true ∧ A[[a, p+]]r = 〈e fo∗1〉

∧ O[[o∗|e]]r = fo∗2
not-app if E [[expr]]r = false ∨ E [[expr]]r = ⊥

∨ (E [[expr]]r = true ∧ A[[a, p+]]r = not-app)

indet otherwise

(S-4b)

Thus, the policy set applies to the request when the target evaluates to true, the seman-
tic of the combining algorithm a (which is applied to the enclosed sequence of policies
and the request) returns the effect e and a sequence of fulfilled obligations fo∗1, and
all enclosed obligations with effect e successfully fulfil and return a sequence fo∗2. In
this case, the PDP response contains e and the concatenation of sequences fo∗1 and fo∗2.
Instead, if the target evaluates to false or to ⊥, or the combining algorithm returns
not-app, the policy set does not apply to the request. In the remaining cases, an error
has occurred and the response is indet.

Finally, the semantic of a PDP is that function from requests to PDP responses ob-
tained by applying the combining algorithm to the enclosed sequence of policies, i.e.

Pdp[[{a policies : p+}]]r = A[[a, p+]]r (S-5)

5.3. Semantics of Combining Algorithms
The semantics of combining algorithms is defined in terms of a family of binary oper-
ators. Let alg denote the name of a combining algorithm (i.e., p-over, d-over, etc.); the

Working Paper

16 A. Margheri et al.

Table VI. Combination matrix for the ⊗p-over operator (res1 and res2 indicate the
first and the second argument, respectively)

res1\res2 〈permit fo∗
2〉 〈deny fo∗

2〉 not-app indet

〈permit fo∗
1〉 〈permit fo∗

1 • fo∗
2〉 〈permit fo∗

1〉 〈permit fo∗
1〉 〈permit fo∗

1〉
〈deny fo∗

1〉 〈permit fo∗
2〉 〈deny fo∗

1 • fo∗
2〉 〈deny fo∗

1〉 indet
not-app 〈permit fo∗

2〉 〈deny fo∗
2〉 not-app indet

indet 〈permit fo∗
2〉 indet indet indet

corresponding semantic operator is identified as ⊗alg and is defined by means of a two-
dimensional matrix that, given two PDP responses, calculates the resulting combined
response. For instance, Table VI reports the combination matrix for the ⊗p-over op-
erator. Basically, the matrix specifies the precedences among the permit, deny, not-app
and indet decisions, and shows how the resulting (sequence of) fulfilled obligations is
obtained, i.e. by concatenating the fulfilled obligations of the responses whose decision
matches the combined one. All other combining algorithms described in Section 4.2,
and possibly many others, can be defined in the same manner (see Appendix A). No-
tice that the operators are not commutative (in fact, the matrices are not symmetric
because the order in which sequences of obligations are combined does matter).

The semantics of the combining algorithms can be now formalised by the function
A : Alg × Policy+ → (R → PDPReponse). This function is defined in terms of the iter-
ative application of the binary combining operators by means of two definition clauses
according to the adopted fulfilment strategy: the all strategy always requires evalu-
ation of all policies, while the greedy strategy halts the evaluation as soon as a final
decision is determined (i.e. without necessarily taking into account all policies in the
sequence). If the all strategy is adopted, the definition clause is as follows

A[[algall, p1 . . . ps]]r = ⊗alg(⊗alg(. . .⊗ alg(P[[p1]]r ,P[[p2]]r), . . .),P[[ps]]r) (S-6a)

meaning that the combining operator is sequentially applied to the denotations of all
input policies6. Instead, if the greedy strategy is used, the definition clause is as follows

A[[alggreedy, p1 . . . ps]]r =

res1 if P[[p1]]r = res1 ∧ isFinalalg(res1)

res2 elseif ⊗alg(res1,P[[p2]]r) = res2 ∧ isFinalalg(res2)
...

...
ress-1 elseif ⊗alg(ress-2,P[[ps-1]]r) = ress-1 ∧ isFinalalg(ress-1)

⊗alg(ress-1,P[[ps]]r) otherwise

(S-6b)

where the elseif notation is a shortcut to represent mutually exclusive conditions.
The auxiliary predicates isFinalalg (one for each combining algorithm alg), given a re-
sponse in input, check if the response decision is final with respect to the algorithm
alg, i.e. if such decision cannot change due to further combinations. Their definition is
in Table VII; as a matter of notation, we use res.dec to indicate the decision of response
res. These predicates are straightforwardly derived from the combination matrices of
the binary operators, thus we only comment on salient points. In case of the p-over
algorithm (and similarly for the others in the first two rows of the table), the permit
decision is the only decision that can never be overwritten, hence, it is final. In case
of the first-app algorithm, instead, all decisions except not-app are final since they rep-
resent the fact that the first applicable policy has been already found. Both consensus

6Notably, in case of a single policy, operators ⊗p-unless-d and ⊗d-unless-p turn the not-app and indet re-
sponses into, respectively, 〈permit ε〉 and 〈deny ε〉, while the remaining operators leave them unchanged.

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 17

Table VII. Definition of the isFinalalg(res) predicate

isFinalp-over (res) =

{
true if res.dec = permit
false otherwise

isFinald-over (res) =

{
true if res.dec = deny
false otherwise

isFinald-unless-p (res) =

{
true if res.dec = permit
false otherwise

isFinalp-unless-d (res) =

{
true if res.dec = deny
false otherwise

isFinalfirst-app (res) =

{
false if res.dec = not-app
true otherwsise

isFinalone-app (res) =

{
true if res.dec = indet
false otherwsise

isFinalweak-con (res) =

{
true if res.dec = indet
false otherwsise

isFinal strong-con (res) =

{
true if res.dec = indet
false otherwsise

algorithms have indet as final decision, because no form of consensus can be reached
once an indet is obtained. Similarly, the one-app algorithm has indet as final decision.

5.4. Semantics of the Policy Enforcement Process
The semantics of the enforcement process defines how the PEP discharges obligations
and enforces authorisation decisions. To define this process, we use the auxiliary func-
tion (()) : FObligation∗ → {true, false} that, given a sequence of fulfilled obligations,
executes such obligations and returns a boolean value that indicates whether the eval-
uation is successfully completed. Notably, since failures caused by optional obligations
can be safely ignored by the PEP, only failures of mandatory obligations (i.e. of type
m) have to be taken into account. The function is thus defined as follows

((ε)) = true

(([o pepAct(w∗)] • fo∗)) = ((fo∗))

(([m pepAct(w∗)] • fo∗)) =

{
((fo∗)) if pepAct(w∗) ⇓ ok

false otherwise

where ⇓ ok denotes that the discharge of the action pepAct(w∗) succeeded. Since the set
of action identifiers is intentionally left unspecified (see Section 4.1), the definition of
predicate ⇓ ok is hence unspecified too (in other words, the syntactic domain PepAction
is a parameter of the syntax, while ⇓ ok is a parameter of the semantics); we just
assume that it is total and deterministic.

The semantics of PEP is thus defined with respect to the enforcement algorithms.
Formally, given an enforcement algorithm and a PDP response, the function EA :
EnfAlg → (PDPReponse → Decision) returns the enforced decision. It is defined by
three clauses, one for each algorithm. The clause for the deny-biased algorithm follows

EA[[deny-biased]]res =

{
permit if res.dec = permit ∧ ((res.fo))
deny otherwise

(S-7a)

Likewise res.dec that indicates the decision of the response res, notation res.fo indicates
the sequence of fulfilled obligations of res. The permit decision is enforced only if this
is the decision returned by the PDP and all accompanying obligations are successfully
discharged. If an error occurs, as well as if the PDP decision is not permit, a deny is
enforced. The clause for the permit-biased algorithm is the dual one, whereas the clause
for the base algorithm is as follows

EA[[base]]res =


permit if res.dec = permit ∧ ((res.fo))

deny if res.dec = deny ∧ ((res.fo))

not-app if res.dec = not-app

indet otherwise

(S-7b)

Working Paper

18 A. Margheri et al.

Both decisions permit and deny are enforced only if all obligations in the PDP response
are successfully discharged, otherwise they are enforced as indet. Instead, decisions
not-app and indet are enforced without modifications.

5.5. Semantics of the Policy Authorisation System
The semantics of a Policy Authorisation System is defined in terms of the composition
of the semantics of PEP and PDP. It is given by the function Pas : PAS → (Request →
Decision) defined by the following clause

Pas[[{ pep : ea pdp : pdp }, req]] = EA[[ea]](Pdp[[pdp]](R[[req]])) (S-8)

Basically, given a request req in the FACPL syntax, this is converted into its functional
representation by the function R (see Section 5.1). This result is then passed to the
semantics of the PDP, i.e. Pdp[[pdp]], which returns a response that on its turn is passed
to the semantics of the PEP, i.e. EA[[ea]]. The latter function returns then the final
decision of the Policy Authorisation System when given the request req in input.

5.6. Properties of the Semantics
We conclude this section with some properties and results of the FACPL semantics. In
particular, we address the so-called ‘reasonability’ properties of [Tschantz and Krish-
namurthi 2006] that precisely characterise the expressiveness of a policy language.

The main result is that FACPL semantics is deterministic and total. Informally, this
means that, given a FACPL specification, i.e. a Policy Authorisation System, and a
possible request, multiple evaluations of such request produce the same decision.

THEOREM 5.1 (DETERMINISTIC AND TOTAL SEMANTICS). For all pas ∈ PAS ,
req ∈ Request and dec, dec′ ∈ Decision, it holds that

Pas[[pas, req]] = dec ∧ Pas[[pas, req]] = dec′ ⇒ dec = dec′

PROOF. It boils down to show that Pas is a total function (see Appendix C.1).

Furthermore, concerning compositionality of policies, FACPL ensures independent
composition, i.e. the results of the combining algorithms depend only on the decisions
of the policies given in input. This clearly follows from the use of combination matrices.

On the contrary, FACPL ensures neither safety, e.g. a request that is granted may not
be granted anymore if new attributes are introduced in the request, nor monotonicity,
e.g. the introduction of a new policy in a combination may modify a permit decision to
a different one. These properties are ensured neither by XACML nor by other policy
languages featuring deny rules and combining algorithms like those we have shown.

Finally, we highlight the relationship between attribute names occurring in a policy
and names defined by requests. By letting Names(p) to indicate the set of attribute
names occurring in (the expressions within) p, we can state the following result.

LEMMA 5.2. For all p ∈ Policy and r , r ′ ∈ R such that r(n) = r ′(n) for all n ∈
Names(p), it holds that P[[p]]r = P[[p]]r ′.

PROOF. The statement straightforwardly derives from the semantics of FACPL ex-
pressions and from Theorem 5.1 (see Appendix C.1).

6. FACPL CONSTRAINT-BASED REPRESENTATION
The analysis of access control policies, like those expressible in FACPL, is essential for
ensuring confidentiality and integrity of system resources. However, the hierarchical
structure of policies, the presence of conflict resolution strategies and the intricacies
deriving from the many involved controls complicate the analysis. From a more prac-
tical point of view, no off-the-shelf analysis tool directly accepts a FACPL specification

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 19

Table VIII. Constraints syntax

Constraints Constr ::= Value | Name | isMiss(Constr) | isErr(Constr) | isBool(Constr)

| ¬ Constr | ¬̇ Constr | Constr cop Constr

cop ::= ∧ | ∨ | ∧̇ | ∨̇ | = | > | ∈ | + | − | ∗ | /

in input. Therefore, to enable the analysis of FACPL policies through well-established
and efficient tools, we propose and exploit a constraint formalism that permits, on the
one hand, to uniformly represent policies and, on the other hand, to perform extensive
checks of (a possibly infinite number of) requests.

The constraint-based representation we propose specifies satisfaction problems in
terms of formulae based on multiple theories as, e.g., boolean and linear arithmetics.
Such kind of formulae are usually called satisfiability modulo theories (SMT) formulae.
The SMT-based approach is supported by the relevant progress made in the develop-
ment of automatic SMT solvers (e.g., Z3 [de Moura and Bjørner 2008], CVC4 [Barrett
et al. 2011], Yices [Dutertre 2014]), which make SMT formulae to be extensively em-
ployed in diverse analysis applications [de Moura and Bjørner 2011].

This section introduces our constraint-based representation of FACPL policies, while
the analysis it enables is presented in Section 7. In particular, we first introduce the
constraint formalism (Section 6.1), then we formalise how to generate constraints from
FACPL policies (Section 6.2) and we finally conclude with some examples of constraints
obtained from our e-Health case study (Section 6.3).

6.1. A Constraint Formalism
The constraint formalism we present here extends boolean and inequality constraints
with a few additional operators aiming at precisely representing FACPL constructs.
Intuitively, a constraint is a relation defined by conditions on a set of attribute names7.
An assignment of values to attribute names satisfies a constraint if its conditions are
matched. Our formalism, besides classical operators and values, explicitly considers
the role of missing attributes, by assigning ⊥ to attribute names, and of run-time er-
rors, i.e. type mismatches in constraint evaluations.
Syntax. Constraints are written according to the grammar shown in Table VIII (the
nonterminals Value and Name are defined in Table II). Thus, a constraint can be a
literal value, an attribute name, or a more complex constraint obtained through pred-
icates isMiss(), isErr() and isBool(), or through boolean, comparison and arithmetic
operators. Notably, operators ¬, ∧ and ∨ are the classical boolean ones, while ¬̇, ∧̇ and
∨̇ correspond to the 4-valued ones used by FACPL expressions.

In the sequel, in addition to the notations of Table IV, we use the letter c to denote
a generic element of the set of all constraints identified by the nonterminal Constr .
Semantics. The semantics of constraints is modelled by the function C : Constr → (R→
Value ∪ 2Value ∪ {error,⊥}) inductively defined by the clauses in Table IX (the clauses
for >, ∈, −, ∗ and / are omitted as they are similar to those for = or +). Hence, the
semantics of a constraint is a function that, given the functional representation of a
request (i.e., an assignment of values to attribute names), returns a literal value or a
set of literal values or the special values ⊥ and error.

The semantics of constraints, except for the cases of predicates and classical boolean
operators, mimics the semantic definitions of the ‘corresponding’ FACPL expression

7In the literature, constraints are typically defined on a set of variables. In our framework, the role of
variables is played by attribute names. Therefore, to maintain a coherent terminology throughout the paper,
we refer to constraint variables as attribute names.

Working Paper

20 A. Margheri et al.

Table IX. Semantics of constraints (T stands for one of the sets of literal values or for the powerset of the set of all
literal values, and i, j ∈ {1, 2} with i 6= j)

C[[n]]r = r(n) C[[v]]r = v

C[[isMiss(c)]]r ={
true if C[[c]]r =⊥
false otherwise

C[[isErr(c)]]r ={
true if C[[c]]r = error

false otherwise

C[[isBool(c)]]r ={
true if C[[c]]r ∈ {true, false}
false otherwise

C[[¬ c]]r ={
true if C[[c]]r = false or C[[c]]r =⊥
false otherwise

C[[¬̇ c]]r =
true if C[[c]]r = false

false if C[[c]]r = true

⊥ if C[[c]]r =⊥
error otherwise

C[[c1 ∧ c2]]r ={
true if C[[c1]]r = true and C[[c2]]r = true

false otherwise

C[[c1 ∧̇ c2]]r =
true if C[[c1]]r = C[[c2]]r = true

false if C[[c1]]r = false or C[[c2]]r = false

⊥ if C[[ci]]r =⊥ and C[[cj]]r ∈ {true,⊥}
error otherwise

C[[c1 ∨ c2]]r ={
true if C[[c1]]r = true or C[[c2]]r = true

false otherwise

C[[c1 ∨̇ c2]]r =
true if C[[c1]]r = true or C[[c2]]r = true

false if C[[c1]]r = C[[c2]]r = false

⊥ if C[[ci]]r =⊥ and C[[cj]]r ∈ {false,⊥}
error otherwise

C[[c1 = c2]]r =
true if C[[c1]]r , C[[c2]]r ∈T and C[[c1]]r = C[[c2]]r

false if C[[c1]]r , C[[c2]]r ∈T and C[[c1]]r 6= C[[c2]]r

⊥ if C[[ci]]r =⊥ and C[[cj]]r 6= error

error otherwise

C[[c1 + c2]]r =
C[[c1]]r + C[[c2]]r if C[[c1]]r , C[[c2]]r ∈Double

⊥ if C[[ci]]r =⊥ and C[[cj]]r 6= error

error otherwise

operators defined in Table V (e.g., the constraint operator ∨̇ corresponds to the expres-
sion operator or, as well as + corresponds to add). The clause defining the semantics
of predicate isMiss(c) (resp. isErr(c)) returns true only if the constraint c evaluates
to ⊥ (resp. error), while that of predicate isBool(c) returns true only if the constraint
c evaluates to a boolean value. The clauses for classical boolean operators are instead
defined ensuring that only boolean values can be returned. Specifically, they explic-
itly define conditions leading to result true, while in all the other cases the result is
false. Notably, constraint ¬ c evaluates to true not only when the evaluation of c returns
false, but also when it returns ⊥. This is particularly convenient for translating FACPL
policies because, in case of not-app decisions, ⊥ is treated as false.

6.2. From FACPL Policies to Constraints
The constraint-based representation of FACPL policies is a logical combination of
the constraints representing targets, obligations and combining algorithms occurring
within policies. We present a compositional translation, defined by a family of transla-
tion functions T·, that formally defines the constraints representing FACPL terms. We
use the emphatic brackets {| and |} to represent the application of a translation function
to a syntactic term. It is worth noticing that constraint-based representation of FACPL
policies can only deal with statical aspects of policy evaluation, thus disregarding pure
dynamic aspects like the greedy fulfilment strategy and the PEP evaluation.

We start by presenting the translation of FACPL expressions, whose operators are
very close to (some of) those on constraints. The translation is formally given by the

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 21

function TE : Expr → Constr , whose defining clauses are given below

TE{|v |} = v TE{|n|} = n TE{|not(expr)|} = ¬̇TE{|expr |}
TE{|op(expr1, expr2)|} = TE{|expr1|} getCop(op) TE{|expr2|}

(T-1)

Thus, TE acts as the identity function on attribute names and values, and as an ho-
momorphism on operators. In fact, FACPL negation corresponds to the constraint op-
erator ¬̇, while the binary FACPL operators correspond to the constraint operators
returned by the auxiliary function getCop(), which is defined as follows

getCop(and)= ∧̇ getCop(or)= ∨̇ getCop(equal)= =

getCop(in)= ∈ getCop(greater-than)= > getCop(add)= +

getCop(subtract)= − getCop(multiply)= ∗ getCop(divide)= /

The translation of (sequences of) obligations returns a constraint whose satisfiability
corresponds to the successful fulfilment of all the obligations. The translation function
TOb : Obligation∗ → Constr is defined as follows
TOb{|ε|} = true TOb{|o o∗|} = TOb{|o|} ∧ TOb{|o∗|}

TOb{|[e t PepAction(expr∗)]|} =
∧

expr∈expr∗ ¬isMiss(TE{|expr |}) ∧ ¬isErr(TE{|expr |})
(T-2)

Hence, a sequence of obligations corresponds to the conjunction of the constraints rep-
resenting each obligation. When translating a single obligation, predicates isMiss()
and isErr() are used to check the fulfilment conditions, i.e. that the occurring expres-
sions cannot evaluate to ⊥ or error. Notably, the n-ary conjunction operator returns true
if the considered obligation contains no expression (i.e., when expr∗ = ε).

The translation function for policies, TP , exploits the translation functions previ-
ously introduced, as well as a function TA representing the effect of applying a com-
bining algorithm to a sequence of policies. Functions TP and TA are indeed mutually
recursive. Moreover, for representing all the decisions that a policy can return, both
these two functions return 4-tuples of constraints of the form

〈permit : cp deny : cd not-app : cn indet : ci 〉
where each constraint represents the conditions under which the corresponding deci-
sion is returned. We call these tuples policy constraint tuples and denote their set by
PCT . As a matter of notation, we will use the projection operator ↓l which, when ap-
plied to a constraint tuple, returns the value of the field labelled by l′, where l is the
first letter of l′ (e.g., ↓p returns the permit constraint cp).

The function TP : Policy → PCT is defined by two clauses for rules, i.e. one for each
effect, and one clause for policy sets. The clause for rules with effect permit is as follows

TP {|(permit target : expr obl : o∗)|} =

〈 permit : TE{|expr |} ∧ TOb{|o∗|permit |}
deny : false

not-app : ¬ TE{|expr |}
indet : ¬ (isBool(TE{|expr |}) ∨ isMiss(TE{|expr |}))

∨ (TE{|expr |} ∧ ¬TOb{|o∗|permit |}) 〉

(T-3a)

(the clause for effect deny is omitted, as it just swaps the permit and deny constraints).
The clause takes into account the rule constituent parts and combines them accord-
ing to the rule semantics (see clause (S-4a)). Notably, because of the semantics of the
constraint operator ¬, the not-app constraint is satisfied when the constraint corre-
sponding to the target expression evaluates to false or to ⊥. Instead, the negation

Working Paper

22 A. Margheri et al.

Table X. Constraint combination strategy for the p-over algorithm

p-over(A,B) = 〈permit : A ↓p ∨B ↓p
deny : (A ↓d ∧B ↓d) ∨ (A ↓d ∧B ↓n) ∨ (A ↓n ∧B ↓d)
not-app : A ↓n ∧B ↓n
indet : (A ↓i ∧¬B ↓p) ∨ (¬A ↓p ∧B ↓i)〉

of a constraint corresponding to a sequence of obligations represents the failure of
their fulfilment. Likewise FACPL semantics, the operator |e returns the subsequence
of obligations defined on the effect e. In the indet constraint, together with condition
¬ isBool(TE{|expr |}), we introduce ¬ isMiss(TE{|expr |}) because we want to exclude
that TE{|expr |} =⊥ (otherwise, we would fall in the case of decision not-app).

The clause for policy sets is as follows

TP {|〈a target : expr policies : p+ obl : o∗ 〉|} =

〈 permit : TE{|expr |} ∧ TA{|a, p+|} ↓p ∧ TOb{|o∗|permit |}
deny : TE{|expr |} ∧ TA{|a, p+|} ↓d ∧ TOb{|o∗|deny |}
not-app : ¬ TE{|expr |} ∨ (TE{|expr |} ∧ TA{|a, p+|} ↓n)

indet : ¬ (isBool(TE{|expr |}) ∨ isMiss(TE{|expr |}))
∨ (TE{|expr |} ∧ TA{|a, p+|} ↓i)
∨ (TE{|expr |} ∧ TA{|a, p+|} ↓p ∧¬ TOb{|o∗|permit |})
∨ (TE{|expr |} ∧ TA{|a, p+|} ↓d ∧¬ TOb{|o∗|deny |}) 〉

(T-3b)

With respect to the clauses for rules, it additionally takes into account the effect of
the application of the combining algorithm according to the policy set semantics (see
clause (S-4b)). It is worth noticing that the exclusive use of operators ¬, ∧ and ∨ en-
sures that constraint tuples are only formed by boolean constraints.

Combining algorithms are dealt with by the function TA : Alg×Policy+ → PCT that,
given an algorithm (using the all fulfilment strategy) and a sequence of policies, returns
a constraint tuple representing the effect of the algorithm application. Its definition is

TA{|algall, p1 . . . ps|} = alg(. . . alg(TP {|p1|}, TP {|p2|}), . . . , TP {|ps|}) (T-4)

By means of TP , the policies given in input are translated into constraint tuples which
are then iteratively combined, two at a time, according to the algorithm combination
strategy. By way of example, Table X reports the combination of two constraint tuples,
say A and B, according to the p-over algorithm. The combinations for the remaining
algorithms are in Appendix B. If s = 1, i.e. the algorithm must be applied to one tuple
only, all the algorithms leave the input tuple unchanged, but for p-unless-d, which given
an input tuple A returns the tuple

〈permit : A ↓p ∨ A ↓n ∨ A ↓i deny : A ↓d not-app : false indet : false〉

and d-unless-p, which behaves similarly.
Finally, the translation of top-level PDP terms {Alg policies : Policy+} is the

same as that of the corresponding policy sets with target true and no obligations,
i.e. {Alg target : true policies : Policy+ }.

We conclude by presenting the key result ensured by the constraint-based approach
described so far: the correspondence between the semantics of the constraint-based
representation of a policy and the semantics of the policy itself. The correspondence is
clearly limited to only those policies using the fulfilment strategy all. Before presenting
this result, we prove that the constraint semantics is deterministic and total.

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 23

THEOREM 6.1 (DETERMINISTIC AND TOTAL CONSTRAINT SEMANTICS). For all
c ∈ Constr , r ∈ R and el , el ′ ∈ (Value ∪ 2Value ∪ {error,⊥}), it holds that

C[[c]]r = el ∧ C[[c]]r = el ′ ⇒ el = el ′

PROOF. By structural induction on the syntax of c (see Appendix C.2).

THEOREM 6.2 (POLICY SEMANTIC CORRESPONDENCE). For all p ∈ Policy enclos-
ing combining algorithms only using all as fulfilment strategy, and r ∈ R, it holds that

P[[p]]r = 〈dec fo∗〉 ⇔ C[[TP {|p|} ↓dec]]r = true

PROOF. The proof (see Appendix C.2) is by induction on the depth, i.e. the nesting
level, of p and relies on three auxiliary correspondence results regarding expressions
(Lemma C.1), obligations (Lemma C.2) and combining algorithms (Lemma C.3).

The latter theorem means that the properties verified over constraints would return
the same results if they were directly proven on FACPL policies. Thus, it ensures that
the analysis we present in Section 7 is sound. Notice also that this result can be easily
tailored to extensions of FACPL. For instance, in case of additional expression oper-
ators, it only requires devising a constraint operator (or a combination thereof) that
faithfully represents the semantics of the new operator.

Additionally, from the previous theorems it follows that policy constraint tuples par-
tition the set of input requests, that is each request satisfies only one of the constraints
of a tuple. Basically, the following corollary extends Theorem 5.1 to constraint tuples.

COROLLARY 6.3 (CONSTRAINT-BASED PARTITION). For all r ∈ R and p ∈ Policy ,
such that TP {|p|} = 〈permit : c1 deny : c2 not-app : c3 indet : c4 〉, it holds that

∃!k ∈ {1, . . . , 4} : C[[ck]]r = true ∧
∧
j∈{1,...,4}\{k}C[[cj]]r = false

PROOF. The thesis immediately follows from Theorems 5.1 and 6.2.

6.3. Constraint-based Representation of the e-Health case study
We now apply the translation functions just introduced to (a part of) the considered
case study. For the sake of presentation, we shorten the attribute names used within
policies. For instance, the rule addressing Requirement (1) becomes as follows

(permit target : equal(sub/role, “doctor”) and equal(act/id, “write”)
and in(“e-Pre-Write”, sub/perm) and in(“e-Pre-Read”, sub/perm))

Its translation starts by applying function TE to the target expression. The resulting
constraint is as follows

ctrg1 , sub/role = “doctor” ∧̇ act/id = “write” ∧̇ “e-Pre-Write” ∈ sub/perm
∧̇ “e-Pre-Read” ∈ sub/perm

The translation proceeds by considering obligations; in this case they are missing (i.e.,
they correspond to the empty sequence ε), hence the constraint true is obtained. Func-
tion TP finally defines the constraint tuple for the rule as follows

〈 permit : ctrg1 ∧ true deny : false

not-app : ¬ctrg1 indet : ¬(isBool(ctrg1) ∨ isMiss(ctrg1)) ∨ (ctrg1 ∧ ¬true) 〉
The tuples for the rules addressing Requirements (2) and (3) are defined similarly, they
only differ in the constraints representing their targets, which are denoted as ctrg2 and
ctrg3, respectively.

We can now define the constraint-based representation of Policy (1). Besides the
target expression, which is straightforwardly translated to the constraint ctrgP ,

Working Paper

24 A. Margheri et al.

res/typ = “e-Pre”, the constraint tuple is built up from the result of function TA rep-
resenting the application of the algorithm p-over. Specifically, the constraint tuples of
rules are iteratively combined according to Table X. For example, the combination of
the first two rules generates the following tuple
〈 permit : (ctrg1 ∧ true) ∨ (ctrg2 ∧ true)
deny : (false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1 ∧ false)
not-app : ¬ctrg1 ∧ ¬ctrg2
indet : ((¬(isBool(ctrg1) ∨ isMiss(ctrg1)) ∨ (ctrg1 ∧ ¬true)) ∧ ¬(ctrg2 ∧ true))

∨(¬(ctrg1 ∧ true) ∧ (¬(isBool(ctrg2) ∨ isMiss(ctrg2)) ∨ (ctrg2 ∧ ¬true))) 〉
Notably, the deny constraint is never satisfied, because it is a disjunction of conjunc-
tions having at least one false term as argument. This is somewhat expected, because
the rules have the permit effect and the used combining algorithm is p-over. This tuple
is then combined with that of the remaining rule in a similar way.

To generate the constraint tuple of the policy, we also need the constraint-based
representation of its obligations. The policy contains only one obligation, which has
effect permit. The corresponding constraint is as follows

cobl p ,
∧
n∈{sys/time,res/typ,sub/id,act/id} ¬isMiss(n) ∧ ¬isErr(n)

The constraint for obligations with effect deny, which are missing, is instead true.
Finally, the constraint tuple of Policy (1) generated by function TP is as follows

〈permit : ctrgP ∧ ((ctrg1 ∧ true) ∨ (ctrg2 ∧ true) ∨ (ctrg3 ∧ true)) ∧ cobl p
deny : ctrgP ∧ ((((false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1 ∧ false)) ∧ false)

∨(((false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1 ∧ false)) ∧ ¬ctrg3)
∨((¬ctrg1 ∧ ¬ctrg2) ∧ false)) ∧ true

not-app : ¬ctrgP ∨ (ctrgP ∧ (¬ctrg1 ∧ ¬ctrg2 ∧ ¬ctrg3))

indet : ¬(isBool(ctrgP) ∨ isMiss(ctrgP))
∨(ctrgP ∧ (((¬(isBool(ctrg1) ∨ isMiss(ctrg1)) ∨ (ctrg1 ∧ ¬true)) ∧ ¬(ctrg2 ∧ true))
∨ ¬((ctrg1 ∧ true) ∧ (¬(isBool(ctrg2) ∨ isMiss(ctrg2)) ∨ (ctrg2 ∧ ¬true))) ∧ ¬(ctrg3 ∧ true))
∨ (¬((ctrg1 ∧ true) ∨ (ctrg2 ∧ true)) ∧ (¬(isBool(ctrg3) ∨ isMiss(ctrg3)) ∨ (ctrg3 ∧ ¬true)))
∨(ctrgP ∧ ((ctrg1 ∧ true) ∨ (ctrg2 ∧ true) ∨ (ctrg3 ∧ true)) ∧ ¬cobl p)
∨(ctrgP ∧ ((((false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1 ∧ false)) ∧ false)
∨(((false ∧ false) ∨ (false ∧ ¬ctrg2) ∨ (¬ctrg1 ∧ false)) ∧ ¬ctrg3)
∨((¬ctrg1 ∧ ¬ctrg2) ∧ false)) ∧ ¬true) 〉
As this example demonstrates, the constraints resulting from the translation are

a single-layered representation of policies that fully details all the aspects of policy
evaluation. It is also worth noticing that the translation functions are applied without
considering possible optimisations, e.g., simplifications of unsatisfiable constraints like
that of deny. It is also evident that the evaluation, as well as the generation, of such
constraints cannot be done manually, but requires a tool support.

7. ANALYSIS OF FACPL POLICIES
The analysis of FACPL policies we propose aims at verifying different types of prop-
erties by exploiting the constraint-based representation of policies. We first formalise
a relevant set of properties in terms of expected authorisations for requests, and then
we define the strategies for their automatic verification by means of constraints. Recall
that the pure dynamic aspects of FACPL are not addressed by constraints.

Furthermore, since FACPL does not enjoy the safety property (see Section 5.6), the
analysis investigates how the extension of a request through the addition of further
attributes might change its authorisation in a possibly unexpected way. Intuitively,

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 25

it is important to consider the authorisation decisions not only of specific requests,
but also of their extensions because, e.g., a malicious user could try to exploit them to
circumvent the access control system. This analysis approach is partially inspired by
the probabilistic analysis on missing attributes introduced in [Crampton et al. 2015].

In the following, we first formalise the proposed properties (Section 7.1) and present
some concrete examples of them from the case study (Section 7.2). Afterwards, we show
how to express the constraint formalism into a tool-accepted specification (Section 7.3)
and exploit it to automatically verify the properties with an SMT solver (Section 7.4).

7.1. Formalisation of Properties
We consider both properties that refer to the expected authorisation of single requests,
i.e. authorisation properties (Section 7.1.1), and to the relationships among policies
with respect to the authorisations they enforce, i.e. structural properties (Section 7.1.2).

7.1.1. Authorisation Properties. To formalise some of these properties, we introduce the
notion of request extension set of a given request r . It is defined as follows

Ext(r) , {r ′ ∈ R | r(n) 6=⊥ ⇒ r ′(n) = r(n)}

The set is formed by all those requests that possibly extend request r with new at-
tributes assignments not already defined by r .
Evaluate-To. This property, written r eval dec, requires the policy under examination
to evaluate the request r to decision dec. The satisfiability, written sat, of the Evaluate-
To property by a policy p is defined as follows

p sat r eval dec iff P[[p]]r = 〈dec fo∗〉

In practice, the verification of the property boils down to apply the semantic function
P to p and r , and check that the resulting decision is dec.
May-Evaluate-To. This property, written r evalmay dec, requires that at least one re-
quest extending the request r evaluates to decision dec. The satisfiability of the May-
Evaluate-To property by a policy p is defined as follows

p sat r evalmay dec iff ∃ r ′ ∈ Ext(r) : P[[p]]r ′ = 〈dec fo∗〉

This property, as well as the next one, addresses additional attributes extending the
request r by considering the requests in its extension set Ext(r).
Must-Evaluate-To. This property, written r evalmust dec, differs from the previous one
as it requires all the extended requests to evaluate to decision dec. The satisfiability of
the Must-Evaluate-To property by a policy p is defined as follows

p sat r evalmust dec iff ∀r ′ ∈ Ext(r) : P[[p]]r ′ = 〈dec fo∗〉

Notably, additional properties can be obtained by combining the previous ones, like
a property requiring, e.g., that all requests in Ext(r) may evaluate to dec and must not
evaluate to dec′. Indeed, request extensions can be exploited to track down possibly
unexpected authorisations.

It is worth noticing that the analysis approach based on request extensions is prac-
tically feasible, although such sets might be infinite. Indeed, Lemma 5.2 ensures that
the attribute names whose assignments generate significant extensions of a given re-
quest are only those belonging to the finite set of attribute names occurring within
the considered policy. This fact paves the way for carrying out property verification by
means of SMT solvers.

Working Paper

26 A. Margheri et al.

7.1.2. Structural Properties. A structural property aims at characterising the relation-
ships among the authorisations enforced by one or multiple policies. Different struc-
tural properties have been proposed in the literature (e.g., in [Fisler et al. 2005]
and [Kolovski et al. 2007]) by pursuing different approaches for their definition and
verification. Here, we consider a set of commonly addressed properties and provide a
uniform characterisation thereof in terms of requests and policy semantics.
Completeness. A policy is complete if it applies to all requests. Thus, the satisfiability
of the property by a policy p is defined as follows

p sat complete iff ∀ r ∈ R : P[[p]]r = 〈dec fo∗〉, dec 6= not-app

Essentially, we require that the policy applies to any request, i.e. it always returns a
decision different from not-app. Notably, in this formulation indet is considered as an
acceptable decision; a more restrictive formulation could only accept permit and deny.
Disjointness. Disjointness among policies means that such policies apply to disjoint
sets of requests. Thus, this property, written disjoint p′, requires that there is no
request for which both the policy under examination and the policy p′ evaluate to
permit or deny. The satisfiability of the property by a policy p is defined as follows

p sat disjoint p′ iff ∀ r ∈ R :

P[[p]]r = 〈dec fo∗〉,P[[p′]]r = 〈dec′ fo′∗〉, { dec, dec′ } 6⊆ {permit, deny}
It is worth noticing that disjoint polices can be combined with the assurance that the
allowed or forbidden authorisations enforced by each of them are not in conflict, which
simplifies the choice of the combining algorithm to be used.
Coverage. Coverage among policies means that one of such policies enforces the same
decisions as the other ones. More specifically, the property cover p′ requires that for
each request r for which p′ evaluates to an admissible decision, i.e. permit or deny,
the policy under examination evaluates to the same decision. The satisfiability of the
property by a policy p is defined as follows

p sat cover p′ iff ∀ r ∈ R :

P[[p′]]r = 〈dec fo∗〉, dec ∈ {permit, deny} ⇒ P[[p]]r = 〈dec fo′∗〉
Thus, p calculates at least the same admissible decisions as p′. Consequently, if p′ also
covers p, the two policies enforce exactly the same admissible authorisations.

These structural properties statically reason on the relationships among policies and
support system designers in developing and maintaining policies. One technique they
enable is the change-impact analysis [Fisler et al. 2005]. This analysis examines the
effect of policy modifications for discovering unintended consequences of such changes.

7.2. Properties on the e-Health case study
By way of example, we address in terms of authorisation and structural properties the
case of pharmacists willing to write an e-Prescription in the e-Health case study.

Given the patient consent policies in Section 4.3, i.e. Policies (1) and (2), we can verify
whether they disallow the access to a pharmacist that wants to write an e-Prescription.
To this aim, we define an Evaluate-To property8 as follows

(sub/role, “pharmacist”)(act/id, “write”)(res/typ, “e-Pre”) eval deny (Pr1)
which requires that such request evaluates to deny. Alternatively, by exploiting request
extensions, we can check if there exists a request for which a pharmacist acting on

8For the sake of presentation, in this subsection we write requests using the FACPL syntax (i.e., they are
specified as sequences of attributes) rather than using their semantics, i.e. functional representation.

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 27

e-Prescription can be evaluated to not-app. This corresponds to the May-Evaluate-To
property defined as follows

(sub/role, “pharmacist”)(res/typ, “e-Pre”) evalmay not-app (Pr2)

The verification of these properties with respect to Policy (1) results in

Policy (1) unsat (Pr1) Policy (1) sat (Pr2)

where unsat indicates that the policy does not satisfy the property. Indeed, as already
discussed in Section 4.3, each request assigning to act/id a value different from read
evaluates to not-app, hence property (Pr1) is not satisfied while property (Pr2) holds.
On the contrary, the verification with respect to Policy (2) results in

Policy (2) sat (Pr1) Policy (2) unsat (Pr2)

Both results are due to the internal policy (deny) which, together with the algorithm
p-over, prevents not-app to be returned and enforces deny as default decision.

The analysis can also be conducted by relying on the structural properties. By ver-
ifying completeness, we can check if there exists a request that evaluates to not-app,
and we get

Policy (1) unsat complete Policy (2) sat complete

As expected, Policy (1) does not satisfy completeness, i.e. there is at least one request
that evaluates to not-app, whereas Policy (2) is complete. Instead, we can check if Pol-
icy (2) correctly refines Policy (1) by simply verifying coverage. We get

Policy (2) sat cover Policy (1)

This follows from the fact that Policy (2) evaluates to permit the same set of requests as
Policy (1) and that Policy (1) never returns deny; the opposite coverage property does
not clearly hold. It is also worth noticing that the two policies are not disjoint (in fact,
they share the set of permitted requests).

7.3. Expressing Constraints with SMT-LIB
Property verification requires extensive checks on large (possibly infinite) amounts of
requests, hence, in order to be practically effective, tool support is essential. To this
aim, we express the constraints defined in Section 6 by means of the SMT-LIB lan-
guage (http://smtlib.cs.uiowa.edu/), that is a standardised constraint language accepted
by most of the SMT solvers. Intuitively, SMT-LIB is a strongly typed functional lan-
guage expressly defined for the specification of constraints. Of course, the feasibility of
the SMT-based reasoning crucially depends on decidability of the satisfiability checks
to be done; in other words, the used SMT-LIB constructs must refer to decidable the-
ories, as e.g. uninterpreted function and array theories. In the following, we provide a
few insights on the SMT-LIB coding of our constraints.

The key element of the coding strategy is the parametrised record type representing
attributes. This type, named TValue, is defined as follows

(declare-datatypes (T) ((TValue (mk-val (val T)(miss Bool)(err Bool)))))

Hence, each attribute consists of a 3-valued record, whose first field val is the value
with parametric type T assigned to the attribute, while the boolean fields miss and
err indicate, respectively, if the attribute value is missing or has an unexpected type.
Additional assertions, not shown here for the sake of presentation, ensure that the
fields miss and err cannot be true at the same time, and that, when one of the last
two fields is true, it takes precedence over val. Of course, a specification formed by
multiple assertions is satisfied when all the assertions are satisfied.

Working Paper

http://smtlib.cs.uiowa.edu/

28 A. Margheri et al.

Table XI. Type inference rules for (an excerpt of) FACPL expressions; we use X as a type variable, U as a type
name or a type variable, and we assume that Bool , Double, String , Date, 2Value identify both the values’ domains
and their type names

v ∈ Bool

Γ ` v : Bool | true

v ∈ Double

Γ ` v : Double | true

v ∈ String

Γ ` v : String | true

v ∈ Date

Γ ` v : Date | true

v ∈ 2Value

Γ ` v : 2Value | true

Γ(n) = X

Γ ` n : X | true

Γ ` expr : U | C
Γ ` not(expr) : Bool | C ∧U = Bool

Γ ` expr1 : U1 | C1 Γ ` expr2 : U2 | C2

Γ ` eop(expr1, expr2) : Bool | C1 ∧ C2 ∧U1 = Bool ∧U2 = Bool
eop ∈ {and, or}

Γ ` expr1 : U1 | C1 Γ ` expr2 : U2 | C2

Γ ` equal(expr1, expr2) : Bool | C1 ∧ C2 ∧U1 = U2

Γ ` expr1 : U1 | C1 Γ ` expr2 : 2U2 | C2

Γ ` in(expr1, expr2) : Bool | C1 ∧ C2 ∧U1 = U2

The declaration of TValue outlines the syntax of SMT-LIB and its strongly typed
nature. This means that each attribute occurring in a policy has to be typed, by prop-
erly instantiating the type parameter T. Since FACPL is an untyped language, to re-
construct the type of each attribute, we define the type inference system (whose ex-
cerpt is) reported in Table XI. The rules are straightforward and infer the judgment
Γ ` expr : U | C which, under the typing context Γ, assigns the type (or the type vari-
able) U to the FACPL expression expr and generates the typing constraint C. Specifi-
cally, Γ is an injective function that associates a type variable to each attribute name,
while C is basically made of conjunctions and disjunctions of equalities between vari-
ables and types. The generated typing constraint will be processed at the end of the
inference process to establish well-typedness of an expression. Thus, a FACPL expres-
sion is well-typed if C is satisfiable, i.e. there exists a type assignment for the typing
variables occurring in C that satisfies C. Moreover, a FACPL policy is well-typed if the
typing constraints generated by all the expressions occurring in the policy are satisfied
by a same assignment. These type assignments are then used to instantiate the type
parameters of the SMT-LIB constraints representing well-typed policies.

The type inference system aims at statically discarding all policies contain-
ing expressions that are not well-typed. For instance, given the expression
or(cat/id, equal(cat/id, 5)) and the typing context Γ(cat/id) = Xcat/id, the inference rules
assign the type Bool to the expression and generate the constraint Xcat/id = Double ∧
Xcat/id = Bool ∧Bool = Bool . This constraint is clearly unsatisfiable (as attribute cat/id
cannot simultaneously be a double and a boolean), hence a policy containing such ex-
pression is not well-typed and would be statically discarded. Notably, the use of the
field err allows the analysis to still address the role of erroneous attribute values,
even though we discard policies that are not well-typed.

On top of the TValue datatype we build the uninterpreted functions expressing the
constraint operators of Table VIII. By way of example, the 4-valued operator ∧̇ corre-
sponds to the FAnd function defined as follows

(define-fun FAnd ((x (TValue Bool)) (y (TValue Bool))) (TValue Bool)
(ite (and (isTrue x) (isTrue y))

(mk-val true false false)
(ite (or (isFalse x) (isFalse y))

(mk-val false false false)
(ite (or (err x) (err y))

(mk-val false false true)
(mk-val false true false)))))

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 29

where mk-val is the constructor of TValue records. Hence, the function takes as input
two TValue Bool records, i.e. type Bool is the instantiation of the type parameter T, and
returns a Bool record as well. The conditional if-then-else assertions ite are nested
to form a structure that mimics the semantic conditions of Table IX, so that differ-
ent TValue records are returned according to the input. Notably, the function isFalse
(resp. isTrue) is used to compactly check that all fields of the record are false (resp. only
the field val is true). All the other constraint operators, except ∈, are defined similarly.

To express the operator ∈, we need to represent multivalued attributes. Firstly, we
define an array datatype, named Set, to model sets of elements as follows

(define-sort Set (T) (Array Int T))

where the type parameter T is the type of the elements of the array. By definition of
array, each element has an associated integer index that is used to access the corre-
sponding value. Thus, a multivalued attribute is represented by a TValue record with
type an instantiated Set, e.g. (TValue (Set Int)) is an attribute whose value is a
set of integers. Consequently, we can build the uninterpreted function modelling the
constraint operator ∈. In case of integer sets, the function is

(define-fun inInt ((x (TValue Int)) (y (TValue (Set Int)))) (TValue Bool)
(ite (or (err x)(err y))

(mk-val false false true)
(ite (or (miss x) (miss y))

(mk-val false true false)
(ite (exists ((i Int)) (= (val x) (select (val y) i)))

(mk-val true false false)
(mk-val false false false)))))

where the command (select (val y) i) takes the value in position i of the set in
the field val of the argument y. In addition to the conditional assertions, the function
uses the existential quantifier exists for checking if the value of the argument x is
contained in the set of the argument y.

The coding approach we pursue generates, in most of the cases, fully decidable con-
straints. In fact, since we support non-linear arithmetic, i.e. multiplication, it is possi-
ble to define constraints for which a constraint solver is not able to answer. Anyway,
modern constraint solvers are actually able to resolve nontrivial nonlinear problems
that, for what concerns access control policies, should prevent any undefined evalu-
ation9. Similarly, the quantifier-based constraints are in general not decidable, but
solvers still succeed in evaluating complicated quantification assertions due to, e.g.,
powerful pattern techniques (see, e.g., the documentation of Z3). Notice anyway that
if we assume that each expression operator in (and, consequently, constraint operator
∈) is applied to at most one attribute name, the quantifications are bounded by the
number of literals defining the other operator argument.

Concerning the value types we support, SMT-LIB does not provide a primitive type
for Date. Hence, we use integers to represent its elements. Furthermore, even though
SMT-LIB supports the String type, the Z3 solver we use does not. Thus, given a policy
as an input, we define an additional datatype, say Str, with as many constants as the
string values occurring in the policy. The string equality function is then defined over
TValue records instantiated with type Str.

By way of example, the SMT-LIB code for the constraint ctrg1 (see Section 6.3) is

9Notably, if at least one argument of each occurrence of the multiply operator is a numeric constant, the
resulting non-linear arithmetic constraints are decidable.

Working Paper

30 A. Margheri et al.

(define-fun cns_target_Rule1 () (TValue Bool)
(FAnd (equalStr n_sub/role cst_doc) (FAnd (equalStr n_act/id cst_write)
(FAnd (inStr cst_permWrite n_sub/perm) (inStr cst_permRead n_sub/perm)))))

where identifiers starting with n (resp. cst) represent attribute names (resp. literals)
of the represented expression. The whole SMT-LIB code for Policy (1) can be found at
http://facpl.sf.net/eHealth/index.html.

7.4. Automated Properties Verification
The SMT-LIB coding permits using SMT solvers to automatically verify the properties
of Section 7.1. Below, we present the verification strategies to follow.
Authorisation Properties. The automated verification of authorisation properties re-
quires to modify, according to the considered property, the policy constraint modelling
the decision of interest and then to check its satisfiability.

The Evaluate-To property does not exploit request extensions, hence all attribute
names not assigned by the considered request can only assume the special value ⊥.
Given the property r eval dec, we explicitly represent the request r in terms of addi-
tional assertions for the constraint modelling the decision dec of the considered policy.
In details, for each attribute in r , say (attr1 , v1), we insert

(assert (= (val attr1) v1))
(assert (and (not (miss attr1)) (not (err attr1))))

and, for any other attribute name, say attr2, not explicitly assigned by r but used
within the constraint, we insert

(assert (miss attr2))

to assert that attr2 is ⊥. The satisfiability of the property thus corresponds to that of
the resulting constraint.

To verify the May-Evaluate-To property, since we have to consider request exten-
sions, we do not assert the unassigned names to ⊥. Thus, property r evalmay dec is
satisfied by a policy if the constraint modelling the decision dec, to which we add as-
sertions representing the request r , is satisfiable.

The Must-Evaluate-To property requires instead a different verification approach.
In fact, given the property r evalmust dec, we take the constraint modelling dec, we
represent the request r as in the May-Evaluate-To property, and we have to prove
the validity of the resulting constraint, i.e. that it is satisfied by all assignments for
attribute names. This amounts to check if the negation of the resulting constraint is
not satisfiable, in which case the property holds.
Structural Properties. The automated verification of structural properties does not re-
quire to modify policy constraints, but rather to check the validity of combinations of
constraints. The trivial case is that of the completeness property, which only amounts
to check if the constraint modelling the decision not-app is not satisfiable, i.e. if its neg-
ation is valid; if it is, the property holds. The other properties require multiple checks.

The disjointness of two policies is verified by checking, one at a time, if the conjunc-
tions between the permit or deny constraint of the first policy and the permit or deny
constraint of the second policy are not satisfiable. If this holds for the four possible
combinations of those constraints, the property holds.

The coverage of policy p on policy p′ is verified by checking if the conjunction be-
tween the negation of the permit (resp., deny) constraint of p and the permit (resp., deny)
constraint of p′ is not satisfiable. If this holds for the two conjunctions separately, the
property holds.

Working Paper

http://facpl.sf.net/eHealth/index.html

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 31

<<generates>><<uses>>

Policy
Developer

<<interacts>>

FACPL IDE

FACPL Policies FACPL Library

JAVA JAR

Xtext

XML
< / >

XACML
Policies

<<generates>>

FACPL CODE <<generates>>

XML
< / >

XACML

<<generates>>

FACPL Constraints

<<uses>>
SMT-LIB Z3

<<uses>>

< code >

Fig. 3. The FACPL toolchain

Finally, it is worth noticing that we are not considering the set R of all possible re-
quests because, due to Lemma 5.2, only the attribute names occurring in the policies of
interest are relevant for the analysis; any other name cannot affect policy evaluation.

8. THE FACPL TOOLCHAIN
The coding, analysis and enforcement tasks pursued in the development of FACPL
specifications are fully supported by a Java-based software toolchain10, graphically de-
picted in Figure 3. Key element of the toolchain is an Eclipse-based IDE that provides
features like, e.g., static code checks and automatic generation of runnable Java and
SMT-LIB code. An expressly developed Java library is used to compile and execute the
Java code, while the analysis of SMT-LIB code exploits the Z3 solver.

To provide interoperability with the standard XACML and the variety of available
tools supporting it (e.g., XCREATE [Bertolino et al. 2012], Margrave [Fisler et al. 2005]
and Balana [WSO2 2015]), the IDE automatically translates FACPL code into XACML
one and vice-versa. Because of slightly different expressivity, there are some limita-
tions in FACPL and XACML interoperability (see Section 9.1 for further details).

Furthermore, to allow newcomer users to directly experiment with FACPL, the web
application “Try FACPL in your Browser” (reachable from the FACPL website) of-
fers an online editor for creating and evaluating FACPL policies; the e-Health case
study is there reported as a running example. Additionally, the web interface reach-
able from http://facpl.sf.net/eHealth/demo.html shows a proof-of-concept demo on how a
FACPL-based access control system can be exploited for providing e-Health services.

In the rest of this section, we detail the FACPL Java library and IDE, while Sec-
tion 9.4 reports performance and functionality comparisons with other similar tools.

8.1. The FACPL library
The Java library we provide aims at representing and evaluating FACPL policies,
hence at fully implementing the evaluation process formalised in Section 5. To this
aim, driven by the formal semantics, we have defined a conformance test-suite that
systematically verifies each library unit (e.g., expressions and combining algorithms)
with respect to its formal specification.

10The FACPL supporting tools are freely available and open-source; binary files, source files, unit tests and
documentation can be found at the FACPL website http://facpl.sf.net.

Working Paper

http://facpl.sf.net/eHealth/demo.html
http://facpl.sf.net

32 A. Margheri et al.

For each element of the language the library contains an abstract class that provides
its evaluation method. In practice, a FACPL policy is translated into a Java class that
instantiates the corresponding abstract one and adds, by means of specific methods
(e.g., addObligation), its forming elements. Similarly, a request corresponds to a Java
class containing the request attributes and a reference to a context handler that can
be used to dynamically retrieve additional attributes at evaluation-time.

Evaluating requests amounts to invoke the evaluation method of a policy, which
coordinates the evaluation of its enclosed elements in compliance with its formal spec-
ification. In addition to the authorisation process, the library supports the enforcement
process by defining the three enforcement algorithms and a minimal set of pre-defined
PEP actions, i.e. log, mailTo and compress. Additional actions can be introduced by
dynamically providing their implementation classes to the PEP initialisation method.

By way of example, we report here an excerpt of the Java code of Policy (1).

public class PolicySet_e -Prescription extends PolicySet{
public PolicySet_e -Prescription (){

addCombiningAlg(PermitOverrides.class);
addTarget(new ExpressionFunction(Equal.class , "e-Prescription",

new AttributeName("resource","type")));
addRule(new rule1());
addRule(new rule2());
addRule(new rule3());
addObligation(new Obligation("log",Effect.PERMIT ,ObligationType.M,

new AttributeName("system","time"),new AttributeName("resource","type"),
new AttributeName("subject","id"),new AttributeName("action","id")));

}
private class rule1 extends Rule{

rule1 (){
addEffect(Effect.PERMIT);
addTarget (... new ExpressionFunction(In.class ,

new AttributeName("subject","permission"),"e-Pre -Write") ,...);
}

}
private class rule2 extends Rule{ rule2 (){...} }
private class rule3 extends Rule{ rule3 (){...} }

}

Besides the specific methods used for adding policy elements, the previous Java code
highlights the use of class references for selecting expression operators and combin-
ing algorithms. This design choice, together with the use of Java reflection and best-
practices of object-oriented programming, allows the library to be easily extended with,
e.g., new expression operators, combining algorithms and enforcement actions. Note
also that rules are defined as private inner classes, because they cannot be referred by
policy sets different from the enclosing one.

8.2. The FACPL IDE
The FACPL IDE is developed as an Eclipse plug-in and aims at bringing together the
available functionalities and tools. Indeed, it fully supports writing, evaluating and
analysing of FACPL specifications. The plug-in has been implemented by means of
Xtext, that is a framework to design and deploy domain-specific languages.

The plug-in accepts an enriched version of the FACPL language, which contains high
level features facilitating the coding tasks. In particular, each policy has an identifier
that can be used as a reference to include the policy within other policies, while specific
linguistic handles enable the definition of new expression operators and combining
algorithms. Notably, to ease the organisation of large policy specifications, the plug-in
supports modularisation of files and import commands extending file scopes.

The development environment provided by the plug-in is standard. It offers graph-
ical features (e.g., keywords highlighting, code suggestion and navigation within and

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 33

among files), static controls on FACPL code (e.g., uniqueness of identifiers and type
checking), and automatic generation of Java, XACML, and SMT-LIB code. To config-
ure all the required libraries, a dedicated wizard creates a FACPL-type project.

To facilitate the analysis of FACPL policies, the plug-in also provides a simple inter-
face allowing policy developers to specify the authorisation and structural properties
to be verified on a certain policy. Thus, the plug-in automatically generates the corre-
sponding SMT-LIB files according to the strategies reported in Section 7.4; an execu-
tion script for the Z3 solver is also generated. Notably, the SMT-LIB files can be also
evaluated by any other solver accepting SMT-LIB and supporting the theories we use.

As previously pointed out, the Java library is flexible enough to be easily extended.
The plug-in facilitates this task by means of dedicated commands. For instance, to
define a new expression operator, once a developer has defined the signature of the
new function (which is used for type checking and inference), a template of its Java
and SMT-LIB implementation is automatically generated. The actual implementation
of the Java class, as well as of the SMT-LIB function, is left to the developer.

9. RELATED WORK
A preliminary version of FACPL was introduced in [Masi et al. 2012] with the aim of
formalising the semantics of XACML. The language presented here addresses a wider
range of aspects concerning access control. Specifically, the syntax of the language is
cleaned up and streamlined (e.g., rule conditions are integrated with rule targets and
the policy structure is simplified); at the same time, it is extended with additional com-
bining algorithms, the PEP specification, an explicit syntax for expressions, and obli-
gations. This latter extension widens FACPL applicability range and expressiveness,
as it provides the policy evaluation process with further, powerful means to affect the
behaviour of controlled systems (see e.g. [Margheri et al. 2013] for a practical example
of a policy-based manager for a Cloud platform). Additional significative differences
concern the definition of the policy semantics: in [Masi et al. 2012] it is given in terms
of partitions of the set of all possible requests, while here it is defined in a functional
fashion with respect to a generic request. The new approach also features the formali-
sation of combining algorithms in terms of binary operators and fulfilment strategies,
and the automatic management of missing attributes and evaluation errors through-
out the evaluation process. Most of all, the aim of this work is significantly different: we
do not only propose a different language, but we provide a complete methodology that
encompasses all phases of policy lifecycle, i.e. specification, analysis and enforcement.
Concerning the analysis, we define a set of relevant authorisation and structural prop-
erties (whose preliminary definition is given in [Margheri et al. 2015]) characterised
in terms of sets of requests. We then introduce a constraint-based representation of
policies and an SMT-based approach for mechanically verifying properties on top of
constraints. To effectively support the functionalities, we provide a fully-integrated
software toolchain.

In the rest of this section we survey more closely related work. First, we comment
on differences and interoperability of FACPL with the already mentioned standard
XACML (Section 9.1). Then, we discuss other relevant policy languages (Section 9.2),
and approaches to the analysis of (access control) policies (Section 9.3). Finally, we
compare supporting tools (Section 9.4).

9.1. FACPL vs XACML
XACML [OASIS XACML TC 2013] is a well-established standard for the specification
of attribute-based access control policies and requests. It has an XML-based syntax
and an evaluation process defined in accordance with [Yavatkar et al. 2000] (hence

Working Paper

34 A. Margheri et al.

Table XII. FACPL vs. XACML on the e-Health case study

Policy Number of lines Saved Number of characters Saved
XACML FACPL lines XACML FACPL characters

e-Prescription 239 24 89,95% 10.656 894 91,61%
e-Dispensation 239 24 89,95% 10.674 914 91,43%
Consent Policy 423 38 91,01% 19.195 1.558 91,88%

similar to the FACPL one). As a matter of notation, hereafter the words emphasised
in sans-serif, e.g. Rule, are XML elements, while element attributes are in italics.

From a merely lexical point of view, FACPL allows developers to define each policy
element via a lightweight mnemonic syntax and leads to compact policy specifications.
Instead, the XML-based syntax used by XACML ensures cross-platform interoperabil-
ity, but generates verbose specifications that are hardly of immediate comprehension
for developers and are not suitable for formally defining semantics and analysis tech-
niques. Table XII exemplifies a lexical comparison between the FACPL policies for the
e-Health case study and the corresponding XACML ones (both groups of policies can
be downloaded from http://facpl.sf.net/eHealth/index.html).

Although FACPL and XACML policies have a similar structure, there are quite a
number of (semantic) differences. In the following, we outline the main ones.

In FACPL, request attributes are referred by structured names. In XACML, they
are referred by either AttributeDesignator or AttributeSelector elements. The former one
corresponds to a typed version of a structured name, while the latter one is defined in
terms of XPath expressions, which are not supported by FACPL. Anyway, FACPL can
represent some of them by appropriately using structured names; e.g. an AttributeSe-
lector with category subject and an XPath expression like type/id/text() correspond to
subject/type.id.

A XACML Target is made of Match elements defining basic comparison functions
on request attributes. The elements are then organised in terms of the tag structure
AnyOf-AllOf-Match. This structure can be rendered in FACPL by means of, respec-
tively, the expression operators and-or-and. However, slightly different results can be
obtained from target evaluations due to the management of errors and missing at-
tributes. Indeed, when a value is missing, XACML semantics returns false, and this
occurs since the level of Match elements, whereas the FACPL semantics of the target
elements returns ⊥ until the level of policies is reached, where ⊥ is converted to false.
Thus, a missing attribute could be masked in XACML but not in the corresponding
FACPL expression; the same occurs for evaluation errors. Additionally, the evaluation
of Match functions in XACML is iteratively defined on all the retrieved attribute val-
ues. To ensure a similar behaviour in FACPL, a XACML expression such as, e.g., an
equality comparison must be translated into an operator defined on sets, like e.g. in.
Clearly, this limits the amount of XACML functions that can be faithfully represented
in FACPL. Furthermore, XACML poses specific restrictions on PolicySet targets: they
can only contain comparison functions and each comparison can only contain one at-
tribute name.

XACML imposes that Rules can be combined with other Rules but not with
PolicySets. It supports fewer combining algorithms than FACPL, as well as fulfilment
strategies (indeed, XACML can only render the greedy one). Furthermore, XACML spe-
cialises the decision indet into three sub-decisions: due to space limitations, we have not
considered them here but they are supported by the FACPL library.

Finally, XACML provides some constructs that do not crucially affect policy expres-
siveness and evaluation. For instance, Variable elements permit defining pointers to
expression declarations. These constructs are not directly supported by FACPL.

Working Paper

http://facpl.sf.net/eHealth/index.html

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 35

Table XIII. Comparison of a relevant set of policy languages (where X∗ means that user encoding are required)

Features XACML Ponder ASL PTaCL [Rao et al. 2009] [Arkoudas et al. 2014] FACPL
Rule-based X X X
Logic-based X X X X

Mnemonic spec. X X
Comb. algorithms X X∗ X∗ X X∗ X

Obligations X X X
Missing attributes X X X

Error handling X X

9.2. Policy Languages for Access Control
Policy languages have recently been the subject of extensive research, both by industry
and academia. Indeed, policies permit managing different important aspects of system
behaviours, ranging from access control to adaptation and emergency handling. We
compare in the following the main policy languages devoted to access control, which is
our focus; Table XIII summarises the comparison.

Among the many proposed policy languages, we can identify two main specifica-
tion approaches: rule-based, as e.g. the XACML standard and Ponder [Damianou
et al. 2001; Twidle et al. 2009], and logic-based, as e.g. ASL [Jajodia et al. 1997],
PTaCL [Crampton and Morisset 2012] and the logical frameworks in [Arkoudas et al.
2014]. Many other works, as e.g. [Li et al. 2009; Rao et al. 2009; Ramli et al. 2014],
study (part of) XACML by formally addressing peculiar features of design and evalua-
tion of access control policies.

In the rule-based approach, policies are structured into sets of declarative rules.
The seminal work [Sloman 1994] introduces two types of policies: authorisations and
obligations. Policies of the former type have the aim of establishing if an access can
be performed, while those of the latter type are basically Event-Condition-Action rules
triggering the enforcement of adaptation actions. This setting is at the basis of Ponder.

Ponder is a strongly-typed policy language that, differently from FACPL, takes au-
thorisation and obligations policies apart. Ponder does not provide explicit strategies
to resolve conflictual decisions possibly arising in policy evaluation, rather it relies on
abductive reasoning to statically prevent conflicts from occurring, although no imple-
mentation or experimental results are presented. On the contrary, FACPL provides
combining algorithms, as we think they offer higher degrees of freedom to policy de-
velopers for managing conflicts. Similarly to Ponder, FACPL uses a mnemonic tex-
tual specification language and addresses value types, although they are not explicitly
reported. Finally, the FACPL evaluation process is triggered by requests and not by
events as in Ponder. Anyway, the FACPL approach is as general as the Ponder one
since, by exploiting attributes, requests can represent any event of a system.

The logic-based approach mainly exploits predicate or multi-valued logics. Most of
these proposals are based on Datalog [Ceri et al. 1989] (see, e.g., [Jajodia et al. 1997;
Hashimoto et al. 2009; DeTreville 2002]), which implies that the access rules are de-
fined as first order logic predicates. In general, these approaches offer valuable means
for a low-level design of rules, but the lack of high-level features, e.g. combining algo-
rithms or obligations, prevent them from representing policies like those of FACPL.

ASL is one of the firstly defined logic-based languages. It expresses authorisation
policies based on user identity credentials and authorisation privileges, and supports
hierarchisation and propagation of access rights among roles and groups of users. Ad-
ditional predicates enable the definition of (a posteriori) integrity checks on authori-
sation decisions, e.g. conflict resolution strategies. Differently from ASL, FACPL pro-
vides high-level constructs and offers by-construction many not straightforward fea-

Working Paper

36 A. Margheri et al.

tures like, e.g., conflict resolution strategies. A suitable use of policies hierarchisation
enables propagation of access rights also in FACPL specifications.

PTaCL follows the logic-based approach as well, but it does not rely on Datalog. It
defines two sets of algebraic operators based on a multi-valued logic: one modelling tar-
get expressions, the other one defining policy combinations. These operators emphasise
the role of missing attributes in policy evaluation, in a way similar to FACPL, but only
partially address errors. In fact, combination operators are not defined on error values:
it is rather assumed that all target functions are string equalities that never produce
errors. Similarly to FACPL, PTaCL permits reasoning on non-monotonicity and safety
properties of attribute-based policies [Tschantz and Krishnamurthi 2006].

A similar study, but more focussed on the distinguishing features of XACML, is re-
ported in [Ramli et al. 2014]. It introduces a formalisation of XACML in terms of multi-
valued logics, by first considering 4-valued decisions and then 6-valued ones. Most of
the XACML combining algorithms are formalised as operators on a partially ordered
set of decisions, while the algorithms first-app and one-app are defined by case analysis.
Differently from FACPL, this formalisation does not deal with missing attributes and
obligations, which have instead a crucial role in XACML policy evaluation.

Another logic-based language is presented in [Arkoudas et al. 2014]. In this case, a
policy is a list of constraint assertions that are evaluated by means of an SMT solver.
The framework supports reasoning about different properties, but any high-level fea-
ture, as e.g. combining algorithms, has to be encoded ‘by hand’ into low-level assertions.
In addition, missing attributes, erroneous values and obligations are not addressed.

Multi-valued logics and the relative operators have also been exploited to model the
behaviour of combining algorithms. For example, the Fine-Integration Algebra intro-
duced in [Rao et al. 2009] models the strategies of XACML combining algorithms by
means of a set of 3-valued (i.e., permit, deny and not-app) binary operators. The be-
haviour of each algorithm is then defined in terms of the iterative application of the
operators to the policies of the input sequence. This approach significantly differs from
the FACPL one since it does not consider the indet decision. Instead, [Li et al. 2009]
explicitly introduces an error handling function that, given two decisions, determines
whether their combination produces an error, i.e. an indet decision. Each (binary) oper-
ator is then defined using such error function. The formalisation of FACPL combining
algorithms follows a similar approach, but it also deals with obligations and fulfilment
strategies, which require different iterative applications of the operators.

Moreover, in [Li et al. 2009] nonlinear constraints are used for the specification of
combining algorithms which return a decision dec if the majority of the input policies
return dec. Such algorithms are not usually dealt with in the literature and cannot be
expressed in terms of iterative application of some binary operators.

9.3. Analysis of Access Control Policies
The increasing spread of policy-based specifications has prompted the development of
many verification techniques like, e.g., property checking and behavioural character-
isations. Such techniques have been implemented by means of different formalisms,
ranging from SMT formulae to multi-terminal binary decision diagrams (MTBDD),
including different kinds of logics. Below, we review the more relevant ones.

The works concerning policy analysis that are closer to our approach are of course
those exploiting SMT formulae. In [Turkmen et al. 2015], a strategy for representing
XACML policies in terms of SMT formulae is introduced. The representation, which
is based on an informal semantics of XACML, supports integers, booleans and reals,
while the representation of sets of values and strings is only sketched. The combining
algorithms are modelled as conjunctions and disjunctions of formulae representing the
policies to be combined, i.e. in a form similar to the approach shown in Appendix B.

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 37

As a design choice, formulae corresponding to the not-app decision are not generated,
because they can be inferred as the complementary of the other ones. Thus, in case of
algorithms like d-unless-p, additional workload is required. Moreover, the representa-
tion assumes that each attribute name is assigned only to those values that match the
implicit type of the attribute, hence the analysis cannot deal with missing attributes or
erroneous values. Finally, it does not take into account obligations, which have instead
an important role in the evaluation. The SMT-based framework of [Arkoudas et al.
2014], introduced in Section 9.2, suffers from similar drawbacks.

The only analysis approach that takes missing attributes into account is presented
in [Crampton et al. 2015]. The analysis is based on a notion of request extension,
as we have done in Section 7. Differently from our approach, this analysis aims at
quantifying the impact of possibly missing attributes on policy evaluations.

The change-impact analysis of XACML policies presented in [Fisler et al. 2005] aims
at studying the consequences of policy modifications. In particular, to verify struc-
tural properties among policies by means of automatic tools, this approach relies on
an MTBDD-based representation of policies. However, it cannot deal with many of the
XACML combining algorithms and, as outlined in [Arkoudas et al. 2014], an SMT-
based approach like ours scales significantly better than the MTBDD one.

Datalog-based languages, like e.g. ASL, only provide limited analysis functionalities,
that are anyway significantly less performant than SMT-based approaches. In general,
these languages are useful to reason on access control issues at an high abstraction
level, but they neglect many of the advanced features of modern access control systems.

Description Logic (DL) is used in [Kolovski et al. 2007] as a target formalism for rep-
resenting a part of XACML. The approach does not take into account many combining
algorithms and the decisions not-app and indet. Thus, it only permits reasoning on a set
of properties significantly reduced with respect to that supported by our SMT-based
approach. Furthermore, DL reasoners support the verification of structural properties
of policies but suffer from the same scalability issues as the MTBDD-based reasoners.

Answer Set Programming (ASP) is used in [Ahn et al. 2010; Ramli et al. 2012] for
encoding XACML and enabling verification of structural properties that are similar to
the complete one defined in Section 7.1.2. This approach however suffers from some
drawbacks due to the nature of ASP. In fact, differently from SMT, ASP does not sup-
port quantifiers and multiple theories like datatype and arithmetic. Some seminal
extensions of ASP to “Modulo Theories” have been proposed, but, to the best of our
knowledge, no effective solver like Z3 is available. Similarly, the work in [Hughes and
Bultan 2008] exploits the SAT-based tool Alloy [Jackson 2002] to detect inconsistencies
in XACML policies. However, as outlined in [Arkoudas et al. 2014] and [Fisler et al.
2005], Alloy is not able to manage even quite small policies and, more importantly, it
cannot reason on arithmetic or any additional theory.

Finally, it is worth noticing that various analysis approaches using SAT-based tools
have been developed for the Ponder language, see e.g. [Bandara et al. 2003]. These
approaches, however, cannot actually be compared with ours due to the consistent
differences among Ponder and FACPL. Furthermore, many other works deal with the
analysis of access control policies by using, e.g., process algebra and model checking
techniques. However, they approach only a limited part of access control policy aspects
and suffer from scalability issues with respect to SMT-based tools.

In summary, all the approaches to the analysis of access control policies mentioned
above are deficient in several respects. Those based on SMT formulae do not address
relevant aspects like, e.g. missing attributes, while the other ones do not enjoy the
benefits of using SMT, i.e. support of multiple theories and scalable performance.

Working Paper

38 A. Margheri et al.

9.4. Performance and Functionalities of Supporting Tools
The effectiveness of supporting tools is a crucial point for the usability of a policy lan-
guage. In the following, we thus compare the performance of FACPL tools with respect
to that of the most representative tools from the literature. The tests we conducted are
based on the CONTINUE case study [Krishnamurthi 2003], which has been adopted
as a standard benchmark in the field of access control tools11.

The XACML standard is by now the point-of-reference for industrial access control.
In the authors’ knowledge, the most up-to-date, freely available XACML tool is Bal-
ana [WSO2 2015]. Balana manages XACML policies directly in XML and evaluates
XACML requests in terms of a visit of the XML files, differently from FACPL that
models policies as Java classes. We have compared the evaluation of more than 1.000
requests and obtained that the mean request execution time is 2,14ms for FACPL and
1,85ms for Balana. It must also be considered that Balana requires a set-up time of
about 500ms to initially validate XACML policies, while FACPL initialises Java classes
in about 200ms.

Concerning the analysis tools, as previously pointed out, the tool closer to ours is
that of [Arkoudas et al. 2014], which relies on the SMT solver Yices [Dutertre 2014].
Differently from Z3, Yices does not support datatype theory, which is instead crucial
to deal with a wide range of policy aspects, as e.g. missing and erroneous attributes.
To analyse the completeness of the CONTINUE policies, the Yices-based tool requires
around 570ms12, while our Z3-based tool requires around 120ms. Notably, other not
SMT-based tools, like, e.g., Margrave, have significantly lower performance when poli-
cies scale. In fact, as reported in [Arkoudas et al. 2014], the increment of the number
of possible values for the attributes occurring in the CONTINUE policies prevents
Margrave to accomplish the analysis. On the contrary, SMT solvers can also deal with
infinite attribute values, as e.g. integers.

Finally, we conclude commenting on the IDEs close to the ours. To the best of our
knowledge, the only similar (freely available) IDEs are the ALFA Eclipse plugin by
Axiomatics (http://www.axiomatics.com/alfa-plugin-for-eclipse.html) and the graphical edi-
tor of the Balana-based framework (http://xacmlinfo.org/category/xacml-editor/). However,
differently from our IDE, they only provide a high-level language for writing XACML
policies. Additionally, ALFA does not provide any request evaluation engine, since the
Axiomatics one is a proprietary software.

10. CONCLUDING REMARKS AND FUTURE WORK
We have described a full-fledged approach for the specification, analysis and enforce-
ment of access control policies, which is based on the FACPL language and its tools.
The FACPL formal semantics provides a formalisation of complex access control fea-
tures —including obligations and missing attributes, which are instead overlooked
by many other proposals— and lays the basis for developing analysis techniques and
tools. Indeed, we have shown that FACPL policies can be represented in terms of SMT-
based formulae, whose automated evaluation permits verifying various authorisation
and structural properties. We have demonstrated feasibility and effectiveness of our
approach by means of an e-Health case study for the provision of exchanging services
of medical data across European countries. We have also shown that the use of SMT
solvers provides us with stable and efficient tools, ensuring better performance than
many other approaches from the literature.

11The tests have been conducted on a MacBook Pro, 2.5 GHz Intel i5 - 8 Gb RAM running OS X El Capitan.
The test suite of policies and requests, as well as the test results, is available at http://facpl.sf.net/continue/.
12This value is taken for granted from [Arkoudas et al. 2014], because the provided CONTINUE implemen-
tation only runs on Windows machines. Anyway, their hardware configuration is similar to ours.

Working Paper

http://www.axiomatics.com/alfa-plugin-for-eclipse.html
http://xacmlinfo.org/category/xacml-editor/
http://facpl.sf.net/continue/

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 39

In a general perspective, our approach brings together the benefits deriving from
using a high-level, mnemonic rule-based language with the rigorous means provided
by denotational semantics and constraints. Additionally, the supporting tools we im-
plemented allow access control system developers to use any of the formally-defined
functionalities provided by our framework, without the need that they be familiar with
formal methods.

In the next future, we want to address continuous controls while accesses are in
progress. This will require to provide a formal representation of access history and ex-
ploit it in our analysis approach. Moreover, we plan to study properties that take into
account obligations. Specifically, we want to define properties on conflicts and depen-
dencies among obligations and to devise appropriate analysis strategies.

References
G. J. Ahn, H. Hu, J. Lee, and Y. Meng. 2010. Representing and Reasoning about Web Access Control Policies.

In COMPSAC. IEEE Computer Society, 137–146.
K. Arkoudas, R. Chadha, and C.-Y. J. Chiang. 2014. Sophisticated Access Control via SMT and Logical

Frameworks. ACM Trans. Inf. Syst. Secur. 16, 4 (2014), 17.
A. K. Bandara, E. Lupu, and A. Russo. 2003. Using Event Calculus to Formalise Policy Specification and

Analysis. In POLICY. IEEE, 26.
C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and C. Tinelli. 2011.

CVC4. In Proc. of CAV (LNCS), Vol. 6806. Springer, 171–177.
A. Bertolino, S. Daoudagh, F. Lonetti, and E. Marchetti. 2012. The X-CREATE Framework - A Comparison

of XACML Policy Testing Strategies. In WEBIST. SciTePress, 155–160.
S. Ceri, G. Gottlob, and T. Tanca. 1989. What you Always Wanted to Know About Datalog (And Never Dared

to Ask). IEEE Trans. Knowl. Data Eng. 1, 1 (1989), 146–166.
J. Crampton and C. Morisset. 2012. PTaCL: A Language for Attribute-Based Access Control in Open Sys-

tems. In POST (LNCS), P. Degano and J. D. Guttman (Eds.), Vol. 7215. Springer, 390–409.
J. Crampton, C. Morisset, and N. Zannone. 2015. On Missing Attributes in Access Control: Non-deterministic

and Probabilistic Attribute Retrieval. In SACMAT. ACM, 99–109.
N. Damianou, N. Dulay, E. Lupu, and M. Sloman. 2001. The Ponder Policy Specification Language. In POL-

ICY (LNCS 1995). Springer, 18–38.
L. M. de Moura and N. Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS (LNCS), Vol. 4963. Springer,

337–340.
L. M. de Moura and N. Bjørner. 2011. Satisfiability modulo theories: introduction and applications. Commun.

ACM 54, 9 (2011), 69–77.
J. DeTreville. 2002. Binder, a Logic-Based Security Language. In Proceedings of the 2002 IEEE Symposium

on Security and Privacy (SP ’02). IEEE Computer Society, Washington, DC, USA, 105–113.
B. Dutertre. 2014. Yices 2.2. In Proc. of CAV (LNCS), Vol. 8559. Springer, 737–744.
European Parliament and Council. 1995. Directive 95/46/EC. (1995). Official Journal L 281 , 23/11/1995 P.

0031 - 0050. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML.
D. F. Ferraiolo and D. R. Kuhn. 1992. Role-Based Access Control. In NIST-NCSC National Computer Secu-

rity Conference. 554–563.
K. Fisler, S. Krishnamurthi, L.A. Meyerovich, and M.C. Tschantz. 2005. Verification and change-impact

analysis of access-control policies. In ICSE. ACM, 196–205.
W. Han and C. Lei. 2012. A survey on policy languages in network and security management. Computer

Networks 56, 1 (2012), 477–489.
M. Hashimoto, M. Kim, H. Tsuji, and H. Tanaka. 2009. Policy Description Language for Dynamic Access

Control Models. In DASC. IEEE, 37–42.
V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo. 2015. Attribute-Based Access Control. IEEE Computer 48, 2 (2015),

85–88.
G. Hughes and T. Bultan. 2008. Automated verification of access control policies using a SAT solver. STTT

10, 6 (2008), 503–520.
D. Jackson. 2002. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. 11, 2

(2002), 256–290.

Working Paper

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML

40 A. Margheri et al.

S. Jajodia, P. Samarati, and V. S. Subrahmanian. 1997. A Logical Language for Expressing Authorizations.
In Symposium On Security And Privacy. IEEE, 31–42.

X. Jin, R. Krishnan, and R. S. Sandhu. 2012. A Unified Attribute-Based Access Control Model Covering
DAC, MAC and RBAC. In DBSec. Springer, 41–55.

V. Kolovski, J. A. Hendler, and B. Parsia. 2007. Analyzing web access control policies. In WWW. ACM, 677–
686.

M. Kovac. 2014. E-Health Demystified: An E-Government Showcase. IEEE Computer 47, 10 (2014), 34–42.
http://dx.doi.org/10.1109/MC.2014.282

S. Krishnamurthi. 2003. The CONTINUE Server (or, How I Administered PADL 2002 and 2003). In PADL
(LNCS), Vol. 2562. Springer, 2–16.

B. W. Lampson. 1974. Protection. Operating Systems Review 8, 1 (1974), 18–24.
N. Li, Q. Wang, W. H. Qardaji, E. Bertino, P. Rao, J. Lobo, and D. Lin. 2009. Access control policy combining:

theory meets practice. In SACMAT. ACM, 135–144.
A. Margheri, M. Masi, R. Pugliese, and F. Tiezzi. 2013. Developing and Enforcing Policies for Access Control,

Resource Usage, and Adaptation. A Practical Approach. In WSFM (LNCS), Vol. 8379. Springer, 85–105.
A. Margheri, R. Pugliese, and F. Tiezzi. 2015. On Properties of Policy-Based Specifications. In WWV

(EPTCS), Vol. 188. 33–50.
M. Masi, R. Pugliese, and F. Tiezzi. 2012. Formalisation and Implementation of the XACML Access Control

Mechanism. In ESSoS (LNCS 7159). Springer, 60–74.
NIST. 2009. A survey of access control models. (2009). http://csrc.nist.gov/news events/

privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf.
OASIS XACML TC. 2013. eXtensible Access Control Markup Language (XACML) version 3.0 . (January

2013). https://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml.
C. D. P. K. Ramli, Nielson H. Riis, and F. Nielson. 2014. The logic of XACML. Sci. Comput. Program. 83

(2014), 80–105.
C. D. P. K. Ramli, H. Riis Nielson, and F. Nielson. 2012. XACML 3.0 in Answer Set Programming. In LOP-

STR (LNCS), Vol. 7844. Springer, 89–105.
P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo. 2009. An algebra for fine-grained integration of XACML

policies. In SACMAT. ACM, 63–72.
M. Sloman. 1994. Policy Driven Management for Distributed Systems. J. Network Syst. Manage. 2, 4 (1994),

333–360.
The Article 29 Data Protection WP. 2013. (2013). http://ec.europa.eu/justice/data-protection/article-29/.
M. C. Tschantz and S. Krishnamurthi. 2006. Towards reasonability properties for access-control policy lan-

guages. In SACMAT. ACM, 160–169.
F. Turkmen, J. den Hartog, S. Ranise, and N. Zannone. 2015. Analysis of XACML Policies with SMT. In

POST (LNCS), Vol. 9036. Springer, 115–134.
K. P. Twidle, N. Dulay, E. Lupu, and M. Sloman. 2009. Ponder2: A Policy System for Autonomous Pervasive

Environments. In ICAS. IEEE, 330–335.
WSO2. 2015. Balana: Open source XACML implementation. (2015). https://github.com/wso2/balana.
R. Yavatkar, D. Pendarakis, and R. Guerin. 2000. A Framework for Policy-based Admission Control. RFC

3060 (Proposed Standard). (2000). https://tools.ietf.org/html/rfc2753

Working Paper

http://dx.doi.org/10.1109/MC.2014.282
http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://ec.europa.eu/justice/data-protection/article-29/
https://github.com/wso2/balana
https://tools.ietf.org/html/rfc2753

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 41

A. MATRICES FOR COMBINING OPERATORS

⊗p-over 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1•FO2〉 〈permit FO1〉 〈permit FO1〉 〈permit FO1〉
〈deny FO1〉 〈permit FO2〉 〈deny FO1•FO2〉 〈deny FO1〉 indet
not-app 〈permit FO2〉 〈deny FO2〉 not-app indet
indet 〈permit FO2〉 indet indet indet

⊗d-over 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1•FO2〉 〈deny FO2〉 〈permit FO1〉 indet
〈deny FO1〉 〈deny FO1〉 〈deny FO1•FO2〉 〈deny FO1〉 〈deny FO1〉
not-app 〈permit FO2〉 〈deny FO2〉 not-app indet
indet indet 〈deny FO2〉 indet indet

⊗d-unless-p 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1•FO2〉 〈permit FO1〉 〈permit FO1〉 〈permit FO1〉
〈deny FO1〉 〈permit FO2〉 〈deny FO1•FO2〉 〈deny FO1〉 〈deny FO1〉
not-app 〈permit FO2〉 〈deny FO2〉 〈deny ε〉 〈deny ε〉
indet 〈permit FO2〉 〈deny FO2〉 〈deny ε〉 〈deny ε〉

⊗p-unless-d 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1•FO2〉 〈deny FO2〉 〈permit FO1〉 〈permit FO1〉
〈deny FO1〉 〈deny FO1〉 〈deny FO1•FO2〉 〈deny FO1〉 〈deny FO1〉
not-app 〈permit FO2〉 〈deny FO2〉 〈permit ε〉 〈permit ε〉
indet 〈permit FO2〉 〈deny FO2〉 〈permit ε〉 〈permit ε〉

⊗first-app 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1〉 〈permit FO1〉 〈permit FO1〉 〈permit FO1〉
〈deny FO1〉 〈deny FO1〉 〈deny FO1〉 〈deny FO1〉 〈deny FO1〉
not-app 〈permit FO2〉 〈deny FO2〉 not-app indet
indet indet indet indet indet

⊗one-app 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 indet indet 〈permit FO1〉 indet
〈deny FO1〉 indet indet 〈deny FO1〉 indet
not-app 〈permit FO2〉 〈deny FO2〉 not-app indet
indet indet indet indet indet

⊗weak-con 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1•FO2〉 indet 〈permit FO1〉 indet
〈deny FO1〉 indet 〈deny FO1•FO2〉 〈deny FO1〉 indet
not-app 〈permit FO2〉 〈deny FO2〉 not-app indet
indet indet indet indet indet

⊗strong-con 〈permit FO2〉 〈deny FO2〉 not-app indet

〈permit FO1〉 〈permit FO1•FO2〉 indet indet indet
〈deny FO1〉 indet 〈deny FO1•FO2〉 indet indet
not-app indet indet not-app indet
indet indet indet indet indet

Working Paper

42 A. Margheri et al.

B. CONSTRAINTS COMBINATIONS FOR COMBINING OPERATORS

p-over(A,B) = 〈 permit : A ↓p ∨ B ↓p
deny : (A ↓d ∧ B ↓d) ∨ (A ↓d ∧ B ↓n) ∨ (A ↓n ∧ B ↓d)
not-app : A ↓n ∧ B ↓n
indet : (A ↓i ∧ ¬B ↓p) ∨ (¬A ↓p ∧ B ↓i)〉

d-over(A,B) = 〈 permit : (A ↓p ∧ B ↓p) ∨ (A ↓p ∧ B ↓n) ∨ (A ↓n ∧ B ↓p)
deny : A ↓d ∨ B ↓d
not-app : A ↓n ∧ B ↓n
indet : (A ↓i ∧ ¬B ↓d) ∨ (¬A ↓d ∧ B ↓i)〉

d-unless-p(A,B) = 〈 permit : A ↓p ∨ B ↓p
deny : ¬A ↓p ∧ ¬B ↓p ∧ (A ↓d ∨ A ↓n ∨ A ↓i) ∧ (B ↓d ∨ B ↓n ∨ B ↓i)
not-app : false
indet : false〉

p-unless-d(A,B) = 〈 permit : ¬A ↓d ∧ ¬B ↓d ∧ (A ↓p ∨ A ↓n ∨ A ↓i) ∧ (B ↓p ∨ B ↓n ∨ B ↓i)
deny : A ↓d ∨ B ↓d
not-app : false
indet : false〉

first-app(A,B) = 〈 permit : A ↓p ∨ (B ↓p ∧ A ↓n)
deny : A ↓d ∨ (B ↓d ∧ A ↓n)
not-app : A ↓n ∧ B ↓n
indet : A ↓i ∨ (A ↓n ∧ B ↓i)〉

one-app(A,B) = 〈 permit : (A ↓p ∧ B ↓n) ∨ (A ↓n ∧ B ↓p)
deny : (A ↓d ∧ B ↓n) ∨ (A ↓n ∧ B ↓d)
not-app : A ↓n ∧ B ↓n
indet : A ↓i ∨ B ↓i ∨ ((A ↓p ∨ A ↓d) ∧ (B ↓p ∨ B ↓d))〉

weak-con(A,B) = 〈 permit : (A ↓p ∧ B ↓p) ∨ (A ↓p ∧ ¬B ↓d) ∨ (¬A ↓d ∧ B ↓p)
deny : (A ↓d ∧ B ↓d) ∨ (A ↓d ∧ ¬B ↓p) ∨ (¬A ↓p ∧ B ↓d)
not-app : A ↓n ∧ B ↓n
indet : (A ↓p ∧ B ↓d) ∨ (A ↓d ∧ B ↓p) ∨ A ↓i ∨ B ↓i

strong-con(A,B) = 〈 permit : A ↓p ∧ B ↓p
deny : A ↓d ∧ B ↓d
not-app : A ↓n ∧ B ↓n
indet : A ↓i ∨ B ↓i ∨ (A ↓n ∧ ¬B ↓n) ∨ (¬A ↓n ∧ B ↓n)

∨ (A ↓p ∧ B ↓d) ∨ (A ↓d ∧ B ↓p)〉

C. PROOFS OF RESULTS
To prove some of the results, we will reason by induction on the depth of policies, i.e. the
number of nested policies, which is defined by induction on the syntax of policies as
follows

depth((e target : expr obl : o∗)) = 0
depth({a target : expr policies : p+ obl : o∗ }) = 1 +max{depth(p) | p ∈ p+}

Policies with depth 0 are rules, the other ones are policies containing other policies.
Notationally, we will use pi to mean that policy p has depth i and (p+)i to mean that
at least a policy in the sequence p+ has depth i and the others have depth at most i.

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 43

C.1. Proofs of Results in Section 5

THEOREM 5.1 [Deterministic and Total Semantics] For all pas ∈ PAS , req ∈ Request
and dec, dec′ ∈ Decision, it holds that

Pas[[pas, req]] = dec ∧ Pas[[pas, req]] = dec′ ⇒ dec = dec′

PROOF. The proof reduces to showing that Pas is a total function, i.e. it uniquely
associates a decision to each input of the form (pas, req). From the clause (S-8) we have

Pas[[{ pep : ea pdp : pdp }, req]] = EA[[ea]](Pdp[[pdp]](R[[req]]))

thus, since the composition of total functions is a total function, it is enough to prove
thatR, Pdp and EA are total functions. The proofs proceed by inspecting their defining
clauses with aim of checking that they satisfy the two requirements below

R1 there is one, and only one, clause that applies to each syntactic domain element
(this usually follows since the definition is syntax-driven and considers all the syn-
tactic forms that the input can assume);

R2 for each defining clause,
— the conditions of the right hand side are mutually exclusive (from the systematic

use of the otherwise condition, it directly follows that they cover all the possible
cases for the syntactic domain elements of the form occurring in the left hand
side),

— the values assigned in each case of the right hand side are obtained by only
using total functions and/or total and deterministic operators/predicates.

Case R. From its defining clauses (S-1) we get that R is defined on all non-empty
sequences of attributes, i.e. all requests. Moreover, the conditions of the right hand
side of each clause are mutually exclusive and the operator d is total and determin-
istic by definition. Thus R1 and R2 hold, which means that R is a total function.

Case Pdp. To prove this case, we first prove that E , O, A and P are total functions.
Case E . By an easy inspection of the clauses defining E , an excerpt of which are
in Table V, it is not hard to believe that they satisfy R1 (since the application
of the clauses is driven by the syntactic form of the input expression) and R2
above, hence E is a total function. Moreover, since the operator • is total and
deterministic, from the clauses (S-2) it follows that E remains a total function
also when extended to sequences of expressions.
Case O. Since E is a total function also on sequences of expressions, from the
clauses (S-3a) and (S-3b) it follows that requirements R1 and R2 hold, thus O
is a total function both on single obligations and on sequences of obligations.
Cases A and P. The definitions of P and A are syntax-driven and consider all
the syntactic forms that the input can assume, thus R1 is satisfied. Now, since
P and A are mutually recursive, we prove by induction on the depth of their
arguments that their defining clauses satisfy R2 for all input policies.

Base Case (i = 0). Let us start from P. p0 is of the form (e target : expr obl :
o∗). We have hence to prove that the clause (S-4a), which is the defining
clause of P that applies to p0, satisfies R2. This directly follows from the
fact that E and O are total functions, as well as it is by definition the func-
tion corresponding to notation o∗|e . Now, let us consider A and proceed by
case analysis on a.

Working Paper

44 A. Margheri et al.

(a = algall for any alg). Since the clause (S-4a) satisfies (R1 and) R2, for
each p0

j in (p+)0, P[[p0
j]]r is uniquely defined. Thus, since each operator

⊗alg is total and deterministic by construction, the clause (S-6a), to be
used since the form of a, satisfies R2 (when all the input policies have
depth 0).
(a = alggreedy for any alg). This case is similar to the previous one, but
involves the clause (S-6b) that satisfies R2 (when all the input policies
have depth 0) since its conditions of the right hand side are mutually
exclusive by construction (notably, each predicate isFinalalg and each
operator ⊗alg is total and deterministic).

Inductive Case (i = n+ 1). Let us start from P. pn+1 is of the form
{a target : expr policies : (p+)n obl : o∗}. By the induction hypothesis, for any
r , a and pkj in (p+)n, with k ≤ n, the clauses defining P and A satisfy (R1
and) R2, that is P[[pkj]]r and A[[a, (p+)n]]r are uniquely defined. Hence, the
clause (S-4b), to be used since the form of pn+1, satisfies R2 as well. For A,
we can reason like in the base case by exploiting the induction hypothesis.
We can thus conclude that both the clauses (S-6a) and (S-6b) satisfy R2 (for
any input policies).

Therefore, P and A are total functions.
Now, that Pdp is a total function directly follows from its defining clause (S-5).
Case EA. The requirement R1 is satisfied by definition. Moreover, since the predi-
cate ⇓ ok is total and deterministic, the same holds for the function (()). Therefore,
also R2 is satisfied by each defining clause (the conditions on res.dec are trivially
mutually exclusive). Hence, EA is a total function.

LEMMA 5.2. For all p ∈ Policy and r , r ′ ∈ R such that r(n) = r ′(n) for all n ∈ Names(p)
it holds that P[[p]]r = P[[p]]r ′.

PROOF. The statement is based on an analogous result concerning expressions

for all expr ∈ Expr and r1, r
′
1 ∈ R such that r1(n) = r ′1(n) for all

n ∈ Names(expr), it holds that E [[expr]]r1 = E [[expr]]r ′1
(R)

which can be easily proven by structural induction on the syntax of expressions.
Functions r1 and r ′1 are only exploited in the base case when evaluating a name
n ∈ Names(expr) for which, by definition and hypothesis, we have E [[n]]r1 = r1(n) =
r ′1(n) = E [[n]]r ′1.

Since for any expr occurring in p, we have that Names(expr) ⊆ Names(p), from (R),
by taking r1 = r and r′1 = r′, it follows that

for all expr occurring in p, E [[expr]]r = E [[expr]]r ′ (R-E)

From (R-E), it also immediately follows that

for all o occurring in p, O[[o]]r = O[[o]]r ′ (R-O)

Now we can prove the main statement by induction on the depth i of p.

Base Case (i = 0). p0 has the form (e target : expr obl : o∗), thus the clause (S-4a) is
used to determine P[[p]]r . The thesis then trivially follows from (R-E) and (R-O).

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 45

Inductive Case (i = n+ 1). pn+1 is of the form {a target : expr policies : (p+)n obl : o∗},
thus the clause (S-4b) is used to determine P[[p]]r . By the induction hypothesis,
for any pkj in (p+)n, with k ≤ n, it holds that P[[pkj]]r = P[[pkj]]r ′. This, due to
the clauses (S-6a) and (S-6b), implies that A[[a, (p+)n]]r = A[[a, (p+)n]]r ′, for any
algorithm a. The thesis then follows from this fact and from (R-E) and (R-O).

C.2. Proofs of results in Section 6
THEOREM 6.1 [Deterministic and Total Constraint Semantics] For all c ∈ Constr , r ∈ R
and el , el ′ ∈ (Value ∪ 2Value ∪ {error,⊥}), it holds that

C[[c]]r = el ∧ C[[c]]r = el ′ ⇒ el = el ′

PROOF. The proof proceeds by structural induction on the syntax of c.

Base Case. If c = v, the thesis immediately follows since C[[v]]r = v; otherwise,
i.e. c = n, we have C[[n]]r = r(n) and the thesis follows because r is a total function.

Inductive Case. It is not hard to believe that all the defining clauses of C are such
that the conditions of the right hand side are mutually exclusive and cover all the
necessary cases. For each different form that c can assume, the thesis then directly
follows by the induction hypothesis.

The proof of Theorem 6.2 relies on the following three auxiliary results.

LEMMA C.1. For all expr ∈ Expr and r ∈ R, it holds that

E [[expr]]r = C[[TE{|expr |}]]r
PROOF. We proceed by structural induction on the syntax of expr according to the

translation rules of the clause (T-1).

(expr = n). Since TE{|n|} = n, the thesis follows because E [[n]]r = r(n) = C[[n]]r .
(expr = v). Since TE{|v |} = v , the thesis follows because E [[v]]r = v = C[[v]]r .
(expr = not(expr1)). Since TE{|expr |} = ¬̇ TE{|expr1|} and, by the induction hypoth-
esis, E [[expr1]]r = C[[TE{|expr1|}]]r , the thesis follows due to the correspondence of
the semantic clause of the operator ¬̇ in Table IX and that of the operator not in
Table V.
(expr = op(expr1, expr2)). Since TE{|expr |} = TE{|expr1|} getOp(op) TE{|expr2|} and,
by the induction hypothesis, E [[expr1]]r = C[[TE{|expr1|}]]r and E [[expr2]]r =
C[[TE{|expr2|}]]r , the thesis follows due to the correspondence of the semantic clause
of the expression operator op in Table IX and that of the constraint operator
getOp(op) in Table V.

LEMMA C.2. For all o ∈ Obligation and r ∈ R it holds that

O[[o]]r = fo ⇔ C[[TOb{|o|}]]r = true and O[[o]]r = error ⇔ C[[TOb{|o|}]]r = false

PROOF. We only prove the (⇒) implication as the proof for the other direction pro-
ceeds in a specular way. Let o = [e t PepAction(expr∗)] with expr∗ = expr1 . . . exprn. By
the clause (T-2), it is translated into the constraint

Working Paper

46 A. Margheri et al.

c =
∧

exprj∈expr∗
¬isMiss(TE{|expr j |}) ∧ ¬isErr(TE{|expr j |})

We now proceed by case analysis on O[[o]]r .

(O[[o]]r = fo). We have to prove that C[[c]]r = true. By the definition of C, C[[c]]r = true
corresponds to
∀j ∈ {1, . . . , n} : C[[¬ isMiss(TE{|expr j |})]]r = true ∧ C[[¬ isErr(TE{|expr j |})]]r = true

According to the constraint semantics of ¬, isMiss and isErr, this corresponds to
∀j ∈ {1, . . . , n} : C[[TE{|expr j |}]]r 6=⊥ ∧ C[[TE{|expr j |}]]r 6= error

By the hypothesis O[[o]]r = fo and the clauses (S-3a) and (S-2), we have
E [[expr∗]]r = E [[expr1]]r • . . . • E [[exprn]]r = w1 . . .wn

where wj stands for a literal value or a set of values. Thus, by Lemma C.1, we get
that

∀j ∈ {1, . . . , n} : C[[TE{|expr j |}]]r = wj 6∈ {⊥, error}
which proves the thesis.
(O[[o]]r = error). We have to prove that C[[c]]r = false. By the definition of C, C[[c]]r =
false corresponds to
∃j ∈ {1, . . . , n} : C[[¬ isMiss(TE{|expr j |})]]r = false ∨ C[[¬ isErr(TE{|expr j |})]]r = false

According to the constraint semantics of ¬, isMiss and isErr, this corresponds to
∃j ∈ {1, . . . , n} : C[[TE{|expr j |}]]r =⊥ ∨ C[[TE{|expr j |}]]r = error

By the hypothesis O[[o]]r = error and the clauses (S-3a) and (S-2), we have
E [[expr∗]]r = E [[expr1]]r • . . . • E [[exprn]]r 6= w∗ ⇒ ∃j ∈ {1, . . . , n} : E [[expr j]]r ∈ {⊥, error}
Thus, by Lemma C.1, we obtain that

∃j ∈ {1, . . . , n} : C[[TE{|expr j |}]]r ∈ {⊥, error}
which proves the thesis.

LEMMA C.3. For all algall ∈ Alg, r ∈ R and policies p1, . . . , ps ∈ Policy such that
∀ i ∈ {1, . . . , s} : P[[pi]]r = 〈deci fo∗i 〉 ⇔ C[[TP {|pi|} ↓deci]]r = true , it holds that

A[[algall, p1 . . . ps]]r = 〈dec fo∗〉 ⇔ C[[TA{|algall, p1 . . . ps|} ↓dec]]r = true

PROOF. Since the considered algorithms use the all fulfilment strategy, by the hy-
pothesis and the clauses (S-6a) and (T-4), the thesis is equivalent to prove that

⊗alg(⊗alg(. . .⊗ alg(〈dec1 fo∗1〉, 〈dec2 fo∗2〉), . . .), 〈decs fo∗s〉) = 〈dec fo∗〉
⇐⇒

C[[alg(alg(. . . alg(TP {|p1|}, TP {|p2|}), . . .), TP {|ps|}) ↓dec]]r = true

The proof proceeds by case analysis on alg. In what follows, we only report the case of
the p-over algorithm, as the other ones are similar and derive directly from the tables
in Appendixes A and B.

Notably, when s = 1, we have ⊗p-over(P[[p1]]r) = P[[p1]]r and p-over(TP {|p1|}) =
TP {|p1|} by definition, hence the thesis directly follows from the hypothesis that
P[[p1]]r = 〈dec1 fo∗1〉 ⇔ C[[TP {|p1|} ↓dec1

]]r = true . For the remaining cases, we pro-
ceed by induction on the number s of policies to combine.

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 47

Base Case (s = 2). We must prove that

⊗p-over(〈dec1 fo∗1〉, 〈dec2 fo∗2〉) = 〈dec fo∗〉 ⇔ C[[p-over(TP {|p1|}, TP {|p2|}) ↓dec]]r = true .

For the sake of simplicity, in the following we omit the sequences of fulfilled obli-
gations, as their combination does not affect the decision dec returned by ⊗p-over.
We proceed by case analysis on the decision dec.

(dec = permit). It follows that dec1 = permit or dec2 = permit. Moreover, by defi-
nition we have p-over(TP {|p1|}, TP {|p2|}) ↓p= TP {|p1|} ↓p ∨ TP {|p2|} ↓p.
(dec = deny). It follows that dec1, dec2 ∈ {deny, not-app}. Moreover, by definition
we have p-over(TP {|p1|}, TP {|p2|}) ↓d= (TP {|p1|} ↓d ∧TP {|p2|} ↓d) ∨ (TP {|p1|} ↓d
∧TP {|p2|} ↓n) ∨ (TP {|p1|} ↓n ∧ TP {|p2|} ↓d).
(dec = not-app). It follows that dec1 = dec2 = not-app. Moreover, by definition
we have p-over(TP {|p1|}, TP {|p2|}) ↓n= TP {|p1|} ↓n ∧ TP {|p2|} ↓n.
(dec = indet). It follows that dec1 = indet or dec2 = indet and dec1, dec2 6=
permit. Moreover, by definition we have p-over(TP {|p1|}, TP {|p2|}) ↓i= (TP {|p1|} ↓i
∧¬TP {|p2|} ↓p) ∨ (¬TP {|p1|} ↓p ∧ TP {|p2|} ↓i).

In any case, thesis follows from the hypothesis on TP {|pi|} and the definition of C.
Inductive Case (s = k + 1). By the induction hypothesis the thesis holds for k poli-
cies, that is

⊗alg(⊗alg(. . .⊗ alg(〈dec1 fo∗1〉, 〈dec2 fo∗2〉), . . .), 〈deck fo∗k〉) = 〈dec′ fo′∗〉
⇐⇒

C[[alg(alg(. . . alg(TP {|p1|}, TP {|p2|}), . . .), TP {|pk|}) ↓dec′]]r = true

The thesis then follows by repeating the case analysis on decision dec of the ‘Base
Case’ once we replace 〈dec1 fo∗1〉, 〈dec2 fo∗2〉, TP {|p1|} and TP {|p2|} by 〈dec′ fo′∗〉,
〈decs fo∗s〉, p-over(p-over(. . . p-over(TP {|p1|}, TP {|p2|}), . . .), TP {|pk|}) and TP {|ps|}, re-
spectively.

THEOREM 6.2 [Policy Semantic Correspondence] For all p ∈ Policy enclosing combin-
ing algorithms only using all as fulfilment strategy, and r ∈ R, it holds that

P[[p]]r = 〈dec fo∗〉 ⇔ C[[TP {|p|} ↓dec]]r = true

PROOF. The proof proceeds by induction on the depth i of p.

Base Case (i = 0). This means that p is of the form (e target : expr obl : o∗). We
proceed by case analysis on dec.

(dec = permit). By the clause (S-4a), it follows that

E [[expr]]r = true ∧ O[[o∗|permit]]r = fo∗

Thus, by Lemma C.1, it follows that

C[[TE{|expr |}]]r = true

and, by Lemma C.2 and the clause (T-2), it follows that

C[[TOb{|o∗|permit |}]]r = true

On the other hand, by the clause (T-3a), we have that

TP {|(permit target : expr obl : o∗)|} ↓p= TE{|expr |} ∧ TOb{|o∗|permit |}

Working Paper

48 A. Margheri et al.

Hence, by the definition of C, we can conclude that

C[[TP {|(permit target : expr obl : o∗)|} ↓p]]r =

C[[TE{|expr |}]]r ∧ C[[TOb{|o∗|permit |}]]r =
true ∧ true = true

which proves the thesis.
(dec = deny). We omit the proof since it proceeds like the previous case.
(dec = not-app). By the clause (S-4a), it follows that

E [[expr]]r = false ∨ E [[expr]]r =⊥

By the clause (T-3a), we have that

TP {|(e target : expr obl : o∗)|} ↓n= ¬ TE{|expr |}

Hence, the thesis directly follows by Lemma C.1 and the definition of C.
(dec = indet). By the clause (S-4a), the otherwise condition holds, that is

¬(E [[expr]]r = true ∧ O[[o∗|e]]r = fo∗) ∧ ¬(E [[expr]]r = false ∨ E [[expr]]r =⊥)

By applying standard boolean laws and reasoning on function codomains, this
condition can be rewritten as follows
¬(E [[expr]]r = true ∧ O[[o∗|e]]r = fo∗) ∧ ¬(E [[expr]]r = false ∨ E [[expr]]r =⊥)
= (E [[expr]]r 6= true ∨ O[[o∗|e]]r = error) ∧ (E [[expr]]r 6∈ {false,⊥})
= E [[expr]]r 6∈ {true, false,⊥} ∨ (E [[expr]]r 6∈ {false,⊥} ∧ O[[o∗|e]]r = error)
= E [[expr]]r 6∈ {true, false,⊥} ∨

(E [[expr]]r 6∈ {true, false,⊥} ∧ O[[o∗|e]]r = error) ∨
(E [[expr]]r = true ∧ O[[o∗|e]]r = error)

= E [[expr]]r 6∈ {true, false,⊥} ∨ (E [[expr]]r = true ∧ O[[o∗|e]]r = error)

On the other hand, by the clause (T-3a), we have that

TP {|(e target : expr obl : o∗)|} ↓i=
¬ (isBool(TE{|expr |}) ∨ isMiss(TE{|expr |})) ∨ (TE{|expr |} ∧ ¬TOb{|o∗|e |})

The thesis then follows by Lemmas C.1 and C.2 and the definition of C.
Inductive Case (i = k + 1). p is of the form {algall target : expr policies : (p+)k obl : o∗ }.
We proceed by case analysis on dec.

(dec = permit). By the clause (S-4b), it follows that

E [[expr]]r = true ∧ A[[algall, (p
+)k]]r = 〈permit fo∗1〉 ∧ O[[o∗|permit]]r = fo∗2

Thus, by Lemma C.1, it follows that

E [[expr]]r = C[[TE{|expr |}]]r = true

and, by Lemma C.2 and the clause (T-2), it follows that

C[[TOb{|o∗|permit |}]]r = true

Since by the induction hypothesis, for all phi in (p+)k with h ≤ k, it holds that

P[[phi]]r = 〈deci fo∗〉 ⇔ C[[TP {|phi |} ↓deci
]]r = true

then, by Lemma C.3, it follows that

TA{|algall, (p
+)k|} ↓p= true

Working Paper

A Rigorous Framework for Specification, Analysis and Enforcement of Access Control Policies 49

On the other hand, by the clause (T-3b), we have that

TP {|{algall target : expr policies : (p+)k obl : o∗ }|} ↓p=
TE{|expr |} ∧ TA{|algall, (p+)k|} ↓p ∧ TOb{|o∗|permit |}

Hence, by the definition of C, we can conclude that

C[[TP {|{algall target : expr policies : (p+)k obl : o∗ }|} ↓p]]r =

C[[TE{|expr |}]]r ∧ C[[TA{|algall, (p
+)k|} ↓p]]r ∧ C[[TOb{|o∗|permit |}]]r =

true ∧ true ∧ true = true

which proves the thesis.
(dec = deny). We omit the proof since it proceeds like the previous case.
(dec = not-app). By the clause (S-4b), it follows that

E [[expr]]r = false ∨ E [[expr]]r =⊥ ∨ (E [[expr]]r = true ∧ A[[algall, (p+)k]]r = not-app)

By the clause (T-3b), we have that

TP {|{algall target : expr policies : (p+)k obl : o∗ }|} ↓n=

¬ TE{|expr |} ∨ (TE{|expr |} ∧ TA{|algall, (p
+)k|} ↓n)

The thesis then directly follows by Lemmas C.1 and C.3, due to the induction
hypothesis and the definition of C.
(dec = indet). By the clause (S-4b), the otherwise condition holds, that is

¬(E [[expr]]r = true ∧ A[[algall, (p
+)k]]r = 〈e fo∗1〉 ∧ O[[o∗|e]]r = fo∗2) ∧

¬(E [[expr]]r = false ∨ E [[expr]]r = ⊥ ∨ (E [[expr]]r = true ∧ A[[algall, (p+)k]]r = not-app))

By applying standard boolean laws and reasoning on function codomains, this
condition can be rewritten as follows

¬(E [[expr]]r = true ∧ A[[algall, (p
+)k]]r = 〈e fo∗1〉 ∧ O[[o∗|e]]r = fo∗2) ∧

¬(E [[expr]]r = false ∨ E [[expr]]r = ⊥ ∨ (E [[expr]]r = true ∧ A[[algall, (p+)k]]r = not-app))

=

(E [[expr]]r 6= true ∨ A[[algall, (p
+)k]]r ∈ {not-app, indet} ∨ O[[o∗|e]]r = error)∧

(E [[expr]]r 6∈ {false,⊥} ∧ (E [[expr]]r 6= true ∨ A[[algall, (p
+)k]]r 6= not-app))

=

(E [[expr]]r 6= true ∨ A[[algall, (p
+)k]]r ∈ {not-app, indet} ∨ O[[o∗|e]]r = error)∧

(E [[expr]]r 6∈ {true, false,⊥} ∨ (E [[expr]]r 6∈ {false,⊥} ∧ A[[algall, (p
+)k]]r 6= not-app))

=

E [[expr]]r 6∈ {true, false,⊥}∨
(E [[expr]]r 6∈ {true, false,⊥} ∧ A[[algall, (p

+)k]]r 6= not-app)∨
(E [[expr]]r 6∈ {true, false,⊥} ∧ A[[algall, (p

+)k]]r ∈ {not-app, indet})∨
(E [[expr]]r 6∈ {false,⊥} ∧ A[[algall, (p

+)k]]r 6= not-app ∧ A[[algall, (p
+)k]]r ∈ {not-app, indet})∨

(E [[expr]]r 6∈ {true, false,⊥} ∧ O[[o∗|e]]r = error)∨
(E [[expr]]r 6∈ {false,⊥} ∧ A[[algall, (p

+)k]]r 6= not-app ∧ O[[o∗|e]]r = error)

=

E [[expr]]r 6∈ {true, false,⊥}∨
(E [[expr]]r 6∈ {false,⊥} ∧ A[[algall, (p

+)k]]r = indet)∨
(E [[expr]]r 6∈ {false,⊥} ∧ A[[algall, (p

+)k]]r 6= not-app ∧ O[[o∗|e]]r = error)

Working Paper

50 A. Margheri et al.

=

E [[expr]]r 6∈ {true, false,⊥}∨
(E [[expr]]r 6∈ {true, false,⊥} ∧ A[[algall, (p

+)k]]r = indet)∨
(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = indet)∨
(E [[expr]]r 6∈ {true, false,⊥} ∧ A[[algall, (p+)k]]r 6= not-app ∧ O[[o∗|e]]r = error)∨
(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r 6= not-app ∧ O[[o∗|e]]r = error)

=

E [[expr]]r 6∈ {true, false,⊥}∨
(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = indet)∨
(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r 6= not-app ∧ O[[o∗|e]]r = error)

=

E [[expr]]r 6∈ {true, false,⊥}∨
(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = indet)∨
(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = indet ∧ O[[o∗|e]]r = error)∨
(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = 〈e fo∗〉 ∧ O[[o∗|e]]r = error)

=

E [[expr]]r 6∈ {true, false,⊥}∨
(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = indet)∨
(E [[expr]]r = true ∧ A[[algall, (p

+)k]]r = 〈e fo∗〉 ∧ O[[o∗|e]]r = error)

=

E [[expr]]r 6∈ {true, false,⊥}
(E [[expr]]r = true ∧ A[[algall, (p+)k]]r = indet)∨
(E [[expr]]r = true ∧ A[[algall, (p+)k]]r = 〈permit fo∗〉 ∧ O[[o∗|permit]]r = error)∨
(E [[expr]]r = true ∧ A[[algall, (p+)k]]r = 〈deny fo∗〉 ∧ O[[o∗|deny]]r = error)

where the last step exploits the fact that e ∈ {permit, deny}.
On the other hand, by the clause (T-3b), we have that

TP {|{algall target : expr policies : (p+)k obl : o∗ }|} ↓indet =

¬ (isBool(TE{|expr |}) ∨ isMiss(TE{|expr |}))
∨ (TE{|expr |} ∧ TA{|a, (p+)k|} ↓i)
∨ (TE{|expr |} ∧ TA{|a, (p+)k|} ↓p ∧¬ TOb{|o∗|permit |})
∨ (TE{|expr |} ∧ TA{|a, (p+)k|} ↓d ∧¬ TOb{|o∗|deny |})

The thesis then follows by Lemmas C.1, C.2 and C.3, due to the induction hy-
pothesis and the definition of C.

Working Paper

	facpl_journal.pdf
	Introduction
	The FACPL evaluation process
	An e-Health case study
	The FACPL language
	Syntax
	Informal Semantics
	Policies for the e-Health case study

	FACPL formal semantics
	Semantics of Requests
	Semantics of the Policy Decision Process
	Semantics of Combining Algorithms
	Semantics of the Policy Enforcement Process
	Semantics of the Policy Authorisation System
	Properties of the Semantics

	FACPL Constraint-based Representation
	A Constraint Formalism
	From FACPL Policies to Constraints
	Constraint-based Representation of the e-Health case study

	Analysis of FACPL Policies
	Formalisation of Properties
	Authorisation Properties
	Structural Properties

	Properties on the e-Health case study
	Expressing Constraints with SMT-LIB
	Automated Properties Verification

	The FACPL toolchain
	The FACPL library
	The FACPL IDE

	Related Work
	FACPL vs XACML
	Policy Languages for Access Control
	Analysis of Access Control Policies
	Performance and Functionalities of Supporting Tools

	Concluding remarks and future work
	Matrices for combining operators
	Constraints Combinations for combining operators
	Proofs of Results
	Proofs of Results in Section 5
	Proofs of results in Section 6

