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Abstract

The development of Bayesian networks for biomedical applications is often dif-
ficult because the number of parameters defining each conditional probability
table grows exponentially with the increase in the number of parent variables.
The Noisy-MAX parameterization have been extensively used to reduce the
number of parameters defining a conditional probability table when causes in-
dependently influence the response. Unfortunately, the Noisy-MAX parameteri-
zation is not suited to a non-ordinal response variable. In this paper, we propose
a generalization of the Noisy-MAX parameterization, called SoftDom parame-
terization, which is suited to a general biomedical response variable influenced
by independent causal determinants.
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1. Introduction

Bayesian networks have been successfully applied to medical problems due
to the opportunity of representing causal understanding of phenomena [14]:
once causal relationships among domain variables are established by an acyclic
directed graph (DAG), the relevant quantitative information reduces to a set
of conditional probability tables, each referring to the relationship between a
variable and its parents in the DAG.

Knowledge engineering for non-trivial medical applications of Bayesian net-
works is challenging because, even though causal notions and conditional in-
dependence statements save from specifying the joint probability distribution
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over domain variables, the dimension of conditional probability tables grows
exponentially with the increase in the size of parent sets [5].

A widely adopted solution to this problem is the use of parametric models
defining conditional probability distributions through a number of parameters
which is linear in the number of parent variables. The most popular among such
models is the Noisy-OR parameterization, pioneered by [7] and further studied
by [17]. In the Noisy-OR, binary parent variables are assumed to influence
the value of a binary response through independent latent causes. Each latent
cause is ‘activated’ by a specific parent variable with a certain probability, and
a single activated cause is sufficient for the response to change its value from
‘absent’ to ‘present’. By using the Noisy-OR, the dimension of the CPT is
linear in the number of parent variables, instead of exponential. In [11], the
Noisy-OR parameterization was extended to multi-valued parent variables and
unmodeled causes, and the Noisy-MAX parameterization was introduced. In the
Noisy-MAX, the response is an ordinal multi-valued variable, each latent cause
‘votes’ for a state of the response, and a deterministic function selects the state
among the voted ones on which the response takes value. Further elaborations
of the Noisy-MAX parameterization were provided by [4] and [19]. In [9], the
concept of independent causal influence (ICI) was introduced to denote the
causal assumption underlying Noisy-OR and Noisy-MAX parameterizations.

Several real-world applications of Bayesian networks to medical problems
are based on an extensive use of the Noisy-MAX parameterization (see, for
example, [3, 16]). In this paper, we propose the SoftDom parameterization, a
generalization of the Noisy-MAX parameterization to address the case in which
the value of a response variable is assigned according to a probability distribution
depending on the configuration of latent causes. The SoftDom parameterization
is suited to a general biomedical response variable influenced by independent
causal determinants.

This paper is structured as follows. Section 2 includes a definition of Bayesian
network and the notation used hereinafter. In Section 3, we provide an overview
of the Noisy-MAX parameterization. In Section 4, the SoftDom parameteriza-
tion is detailed. Section 5 includes the discussion of our contribution.

2. Bayesian networks

A Bayesian network is a statistical model representing the joint probability
distribution over a domain of interest (see, for example, [12]).

Definition 1 (Bayesian network) A Bayesian network consists of the following:

1. a set of variables V with finite sample space;
2. a Directed Acyclic Graph (DAG) G on V ;
3. for each variable in V , the probability distribution of the variable for each

possible configuration of its parents in G, called conditional probability table
(CPT).
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For each CPT, we denote the response variable as Y (sample space ΩY )
and the collection of its parent variables as X = {X1, . . . , Xn} (sample spaces
ΩX1

, . . . ,ΩXn). In the graphical representation of DAGs, each node will be la-
belled by the name of the variable it refers to. A generic realization of a variable
or a set of variables is written as lower case bold letter, e.g., x or x. A proba-
bility distribution is written within angle brackets, e.g., < 0.7, 0.2, 0.1 >. DAG
in Figure 1 represents a response variable with n parents by means of one plate
[1], a rectangle collecting the variables to be replicated as many times as shown
by the index in it. Squares indicate variables the response is conditioned on.
This representation holds for any node in the DAG and whatever the considered
response variable, provided that it is not a root node.

3. The Noisy-MAX parameterization

A CPT is defined by a number of parameters equal to (||ΩY ||−1)
∏n
i=1 ||ΩXi ||,

namely its dimension is exponential in the number of parent variables. The
Noisy-MAX parameterization [8] is a representation of a CPT through a num-
ber of parameters which is linear in the number of parent variables. In the
Noisy-MAX parameterization, the response is an ordinal variable, and both the
response and each parent variable admits a reference state, for instance the
absence of unfavourable conditions for the system under consideration (distin-
guished state [9], or neutral state [2]). States of a variable are labelled by con-
secutive integer numbers reflecting an eventual order, in particular the reference
state is labelled by value 0.

Definition 2 (Noisy-MAX parameterization) The Noisy-MAX parameteriza-
tion consists of the following:

1. the response Y is an ordinal variable with reference state labelled by value
0, minimal label equal to yL ≤ 0, and maximal label equal to yR ≥ 0;

2. parent variables X1, . . . , Xn admit a reference state, labelled by value 0;
3. auxiliary variables Λ1, . . . ,Λn are introduced as intermediary between each

parent variable and the response.
4. variable Λ0 is introduced as a parent of Y ;
5. the probability distribution of Λ0 is represented by parameter π0 =< π0,yL ,
. . . , π0,0, . . . , π0,yR >;

6. for i = 1, . . . , n, the probability distribution of Λi given Xi = j is rep-
resented by parameter πi,j =< πi,j,yL , . . . , πi,j,0, . . . , πi,j,yR >, ∀j ∈ ΩXi ,
where πi,0,0 = 1 (amechanistic property, [8]);

7. the value of Y is assigned by the maximum function of the values taken
by variables Λ0, . . . ,Λn:

Y = MAX(λ) , λ ∈ Ω n+1
Y

The graphical representation of the Noisy-MAX parameterization is shown
in Figure 1. The core assumption of the Noisy-MAX is the existence of latent
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causes Λ = {Λ0,Λ1, . . . ,Λn} determining the value of the response Y . Each
latent cause besides Λ0 is influenced by a single parent variable; latent cause Λ0

is jointly influenced by all unmodeled parents at one time. Each latent cause
‘votes’ for a state of the response, with the constraint that a latent cause cannot
vote for a non-reference state if the corresponding parent variable takes value
on its reference state. Finally, the response takes value on the higher-ordered
state among the voted ones. We refer to this property as strong dominance.
The special case where the response is a binary variable is widely known as
Noisy-OR.

In medical applications, strong dominance may depend on the physiological
mechanism underlying the generation of the datum, or on the criteria convened
by the study design to collect observations, as shown by the examples below.

Example 1 Consider a variable representing the occurrence of cough in a pa-
tient with states ‘absence of cough’, ‘dry cough’ and ‘productive cough’. Dry
cough is always manifested over no cough, because it represents an alteration of
the healthy condition of a patient. Productive cough is always manifested over
dry cough, since, in the presence of the former, the latter is prevented by the
mucus in the respiratory airways.

Example 2 Findings of left ventricle dyssynergia are often reduced to three
alternative categories, based on the isolate occurrence of dyskinesia, on the oc-
currence of akinesia disregarding dyskinesia, and on the occurrence of aneurysm
disregarding dyskinesia and akinesia. As such, the following strict order relation
holds: ‘absence of dyssynergia’, ‘dyskinesia’, ‘akinesia’, ‘aneurism’.

Parameters of the Noisy-MAX parameterization can be elicited from domain
experts by asking questions on the probability of causal mechanisms. For in-
stance, parameter πi,j,l can be elicited by asking a question of the type: ‘What
is the probability that the event represented by variable Xi taking value j causes
the event represented by variable Y taking value l?’.

The number of parameters required by the Noisy-MAX parameterization is
equal to (||ΩY || − 1) · (1 +

∑n
i=1(||ΩXi || − 1)), namely it is linear in the number

of parent variables. The CPT implied by the Noisy-MAX parameterization can
be computed by applying the following formula [2]:

Pr(Y ≤ y | x) =

 y∑
k=yL

π0,k

 · n∏
i=1

 y∑
k=yL

πi,j:Xi=j,k

 (1)

4. The SoftDom parameterization

In general, a response variable may be characterized by partial order, or even
no order, on its states so that strong dominance is not a natural assumption.
Also, at the level of detail captured by the model, uncertainty may still affect
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Figure 1: (a) Graphical representation of the Noisy-MAX parameterization (parameters are
shown besides pertaining edges).

the response variable even if the values taken by latent causes are known. In
this case, it seems natural to introduce a probability distribution on the states
receiving at least one vote from latent causes, no matter whether the response
is an ordinal variable or not. The SoftDom parameterization is built on this
intuition.

Definition 3 (SoftDom parameterization) The SoftDom parameterization con-
sists of the following:

1. the response Y and its parents X1, . . . , Xn admit a reference state labelled
by value 0. The minimal and the maximal label of Y are respectively equal
to yL ≤ 0 and yR ≥ 0;

2. auxiliary variables Λ1, . . . ,Λn are introduced as intermediary between each
parent variable and the response.

3. variable Λ0 is introduced as a parent of Y ;
4. the probability distribution of Λ0 is represented by parameter π0 =< π0,yL ,
. . . , π0,0, . . . , π0,yR >;

5. for i = 1, . . . , n, the probability distribution of Λi given Xi = j is rep-
resented by parameter πi,j =< πi,j,yL , . . . , πi,j,0, . . . , πi,j,yR >, ∀j ∈ ΩXi ,
where πi,0,0 = 1 (amechanistic property, [8]);

6. each variable in set Υ = {ΥyL , . . . ,ΥyR} is a deterministic function of the
values taken by variables Λ0, . . . ,Λn:

Υk(λ) = 1Λ0=k∨...∨Λn=k , λ ∈ Ω n+1
Y , k = yL, . . . , yR

where 1 is the indicator function.
7. the probability distribution of Y given Υ = υ is represented by parameter
ωυ =< ω

(yL)
υ , . . . , ω

(0)
υ , . . . , ω

(yR)
υ >, ∀υ ∈ {{0, 1}yR−yL+1 \ {0, . . . , 0}},

where:
Υk = 0 =⇒ ω(k)

υ = 0, ∀k = yL, . . . , yR

5



The graphical representation of the SoftDom parameterization is shown in
Figure 2. The soft dominance property generalizes strong dominance in the as-
signment of a value to the response. First, votes from latent causes are recorded
by variables in Υ by marking each state with value 0 if it receives no vote, or 1 if
it receives at least one vote. Second, the response variable takes value according
to a probability distribution on the states marked with value 1 by variables in
Υ. We refer to these probability distributions as ‘assigning distributions’.

Example 3 Chest pain is typically classified by assuming that a patient re-
ports only one among several type of chest pain, like chest pain increasing with
breathing movements, fixed chest pain, oppressive chest pain and stabbing chest
pain. If latent causes vote for only fixed chest pain and chest pain increasing
with breathing movements, the latter is manifested over the former. Instead,
no criteria are in use to anticipate which type of chest pain is manifested if
latent causes vote for only oppressive chest pain and stabbing chest pain, thus a
reasonable option is to assume an uniform assigning distribution.

Example 4 Consider a response variables made by a list of alternative diseases.
In this case, the value of the response may depend on a probability distribution
on the voted states. Such representation is often involved when the simultaneous
occurrence of diseases is very rare, like in the framework of similarity networks
[10]. A reasonable option is to assume uniform assigning distributions, in order
to reflect the lack of knowledge on the mechanism making diseases competing
each other.

The Noisy-MAX parameterization is obtained from the SoftDom parame-
terization if all assigning distributions degenerate into MAX functions. The
proposition below provides a formula to compute the CPT implied by the Soft-
Dom parameterization.

Proposition 1 The conditional probability distribution of a response variable
Y given parent configuration x under the SoftDom parameterization is:

Pr(Y = y | x) =
∑

{υ:υy=1}

ω(y)
υ

∑
{λ: {ΥyL (λ),...,Υ0(λ),...,ΥyR (λ)}=υ}

π0,λ0

n∏
i=1

πi,j:Xi=j,λi

(2)

Proof. The result follows by marginalizing variables in Λ and Υ out from the
joint probability distribution (see Figure 2):

Pr(Y = y ∧Λ = λ ∧Υ = υ |X = x) =

Pr(Y = y | Υ = υ) ·
yR∏
k=yL

Pr(Υk = υk | Λ = λ) ·Pr(Λ0 = λ0) ·
n∏
i=1

Pr(Λi = λi |X = x)

�
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Figure 2: The SoftDom parameterization (parameters are shown besides pertaining edges).

The SoftDom parameterization is defined by the same parameters defin-
ing the Noisy-MAX parameterization, plus a number of additional parameters
describing the assigning distributions. In practice, we expect that most of as-
signing distributions are MAX functions, uniform distributions, or probability
distributions degenerated into a single state, as shown by examples above, thus
requiring no significant effort to be elicited from medical experts. However,
in the worst case, the number of parameters defining assigning distributions
is equal to

∑yR−yL+1
k=2

(
yR−yL+1

k

)
− 1 = 2yR−yL+1 − yR + yL − 2, namely it is

exponential in the cardinality of ΩY (Table 1). We addressed this issue by
designing a special case of the SoftDom parameterization, describing assigning
distributions with a number of parameters which is linear in the cardinality of
ΩY .

Definition 4 (Noisy-SCORE) The Noisy-SCORE parameterization is a Soft-
Dom parameterization such that:

ωυ =

<
υyLφyL∑yR
k=yL

υk
, . . . ,

υyRφyR∑yR
k=yL

υk
> if

∑yR
k=yL

υk > 0

<
1υyL=0∑yR
k=yL

1υk=0
, . . . ,

1υyR=0∑yR
k=yL

1υk=0
> otherwise

∀υ ∈ {0, 1}yR−yL+1 \ {0, . . . , 0}, where φk ≥ 0, ∀k = yL, . . . , yR.

The Noisy-SCORE is a SoftDom parameterization where a positive score
is attached to each state of the response, and assigning distributions are such
that each state receiving at least one vote from latent causes has a probability
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Table 1: Number of assigning distributions to be specified for the SoftDom parameterization
as a function of the number of states of the response.

Cardinality # assigning distributions
of ΩY to be specified

2 1
3 4
4 11
5 26
6 57
7 120
8 247
9 502
10 1013

of selection proportional to its score. A state with null score can be selected
only if latent causes vote for no states with positive scores. The Noisy-SCORE
cannot degenerate into the Noisy-MAX, but can approximate it at the desired
level of precision, as shown by the proposition below.

Proposition 2 The Noisy-SCORE with φk = 10(τ+1)ka, ∀k = yL, . . . , yR, a >
0, approximates the Noisy-MAX at the first τ decimals.

Proof. The constraints φk = 10(τ+1)ka, a > 0, forces any state following another
to have a score higher by τ + 1 orders of magnitude. Thus ω(m)

υ = 1, with
m = MAX{k : υk = 1}, at the first τ decimals, ∀υ ∈ {0, 1}yR−yL+1 \{0, . . . , 0}.

�

Examples below illustrate the application of the Noisy-SCORE parameteri-
zation to real-world medical response variables.

Example 5 The Noisy-SCORE parameterization with null score on the ref-
erence state and uniform scores on non-reference states is equivalent to the
SoftDom parameterization proposed in Example 4.

Example 6 Consider a response variable qualifying the metabolic status of a
patient as ‘normal’, ‘hypoglicemic’, ‘ketoacidotic’ and ‘hyperosmolar’. Soft dom-
inance holds for such variable, because state ‘normal’ is lower-ordered than the
other states, but these cannot be ranked each other. The SoftDom parameteri-
zation would require up to 33 parameters to describe 11 assigning distributions,
instead, the Noisy-SCORE parameterization would require only 4 parameters.
For instance, with φ = {0.7, 7, 37.7, 54.6} the following assigning distribu-
tions are obtained:

ω{1,1,0,0} =< 0.1, 0.9, 0, 0 >, ω{1,0,1,0} =< 0.02, 0, 0.98, 0 >

ω{1,0,0,1} =< 0.01, 0, 0, 0.99 >, ω{0,1,1,0} =< 0, 0.16, 0.84, 0 >

ω{0,1,0,1} =< 0, 0.11, 0, 0.89 >, ω{0,0,1,1} =< 0, 0, 0.41, 0.59 >

ω{1,1,1,0} =< 0.02, 0.15, 0.83, 0 >, ω{1,1,0,1} =< 0.01, 0.11, 0, 0.88 >
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ω{1,0,1,1} =< 0.01, 0, 0.40, 0.59 >, ω{0,1,1,1} =< 0, 0.07, 0.38, 0.55 >

ω{1,1,1,1} =< 0.01, 0.07, 0.38, 0.55 >

5. Discussion

The Noisy-MAX parameterization [8] eases the elicitation of conditional
probability tables (CPTs) in Bayesian networks, because, due to the assumption
of independence of causal influences (ICI), the number of parameters required
to specify a CPT is linear in the number of parent variables, instead of expo-
nential. In the Noisy-MAX parameterization, a strict order relation holds on
the sample space of the response, so that it is possible to define the value taken
by the response as a deterministic function of the values taken by latent causes.
We referred to this property as strong dominance.

In medical applications of Bayesian networks, it is instead useful to deal
with soft dominance, that is the value of the response is selected according
to a probability distribution over the states receiving at least one vote from
latent causes. In general, soft dominance may characterize a medical response
variable no matter whether a strict order relation holds on its states. At this
purpose, we proposed the SoftDom parameterization as a generalization of the
Noisy-MAX parameterization, which is suited to a general biomedical response
variable influenced by independent causal determinants.

The SoftDom parametrization was motivated by the development of a Bayesian
network for the diagnosis of cardiopulmonary diseases [15], nevertheless other
fields of application may be envisioned. For example, since a cell’s activity
is organized as a network of interacting modules [18], independent activators
and repressors genes may be hypothesized to regulate the concentration of key
enzymes in the phosphorilation and metylation processes.

The SoftDom parameterization is defined by the same parameters defin-
ing the Noisy-MAX parameterization, plus a number of additional parameters,
whose number is exponential in the number of states of the response. Although
we expect that most of such parameters are extreme or uniform probability
values requiring no significant effort to be elicited from medical experts, we de-
veloped a specialization of the SoftDom parameterization, called Noisy-SCORE,
requiring a number of additional parameters which is linear in the number of
states of the response. The Noisy-SCORE is a very flexible conditional model
because it approximates strong dominance at the desired level of precision, and,
as shown by several numerical examples, it accurately represents soft domi-
nance if the probability of selection for each state is approximately proportional
all over the possible configuration of votes.
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