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1 Introduction

Dynamics in financial markets can be characterized by many indicators of trading activity
such as absolute returns, high-low range, number of trades in a certain interval (possi-
bly labeled as buys or sells), volume, ultra-high frequency based measures of volatility,
financial durations, spreads and so on.

Engle (2002) reckons that one striking regularity behind financial time series is that
persistence and clustering characterizes the evolution of such processes. As a result, the
dynamics of such variables can be specified as the product of a conditionally deterministic
scale factor, which evolves according to a GARCH-type equation, and an innovation term
which is iid with unit mean. Such models are labeled Multiplicative Error Models (MEM)
and can be seen as a generalization of the GARCH (Bollerslev (1986)) and ACD (Engle
and Russell (1998)) approaches. One of the advantages of such a model is to avoid the
need to resort to logs (not possible when zeros are present in the data) and to provide
conditional expectations of the variables of interest directly (rather than expectations of
the logs). Empirical results show a good performance of these types of models in capturing
the stylized facts of the observed series (e.g. for daily range, Chou (2005); for volatility,
volume and trading intensity Hautsch (2008)).

The model was specified by Engle and Gallo (2006) in a multivariate context (vector
MEM or vMEM) allowing just the lagged values of each variable of interest to affect
the conditional expectation of the other variables. Such a specification lends itself to
producing multi-step ahead forecasts: in Engle and Gallo (2006) three different measures
of volatility (absolute returns, daily range and realized volatility), influence each other
dynamically. Although such an equation—by—equation estimation ensures consistency of
the estimators in a quasi-maximum likelihood context, given the stationarity conditions
discussed by Engle (2002), correlation among the innovation terms is not taken into
account and leads to a loss in efficiency.

However, full interdependence is not allowed by an equation—by—equation approach
both in the form of past conditional expectations influencing the present and a contem-
poraneous correlations of the innovations. The specification of a multivariate distribution
of the innovations is far from trivial: a straightforward extension to a joint Gamma prob-
ability distribution is not available except in very special cases. In this paper, we want to
compare the features of a novel maximum likelihood estimation strategy adopting copula
functions to other parametric and semiparametric alternatives. Copula functions allow to
link together marginal probability density functions for individual innovations specified as
Gamma as in Engle and Gallo (2006) or as zero—augmented distributions (as in Hautsch
et al. (2013), distinguishing between the zero occurrences and the strictly positive realiza-
tions). Copula functions are used in a Multiplicative Error framework, but in a Dynamic
Conditional Correlation context by Bodnar and Hautsch (2016). Within a Maximum
Likelihood approach to the vector MEM, we want also to explore the performance of a
multivariate log—Normal specification for the joint distribution of the innovations and the
semiparametric approach presented in Cipollini et al. (2013) resulting in a GMM estima-
tor. The range of potential applications of a vector MEM is quite wide: dynamic inter-
actions among different values of volatility, volatility spillovers across markets (allowing
multivariate-multi-step ahead forecasts and impulse response functions, order execution
dynamics (Noss (2007)) specifies a MEM for execution depths).

This paper aims at discussing merits of each approach and their performance in fore-
casting realized volatility with augmented information derived from the dynamic inter-
action with other measures of market activity (namely, the volumes and the number of
trades). We want conditional expectations to depend just on past values (not also on



some contemporary information as in Manganelli (2005) and Hautsch (2008)).

What the reader should expect is the following: in Section 2 we lay out the spec-
ification of a vector Multiplicative Error Model, discussing the issues arising from the
adoption of several types of copula functions linking univariate Gamma marginal dis-
tributions. In Section 3 we describe the Maximum Likelihood procedure leading to the
inference on the parameters. In Section 4 we discuss the features of a parametric specifi-
cation with a log-Normal and of a semiparametric approach suggested by Cipollini et al.
(2013). In Section 5 we present the empirical application to three series of market trading
activity, namely realized kernel volatility, traded volumes and the number of trades. The
illustration is performed on the JNJ stock over a period between 2007 and 2013. What
we find is that specifying the joint distribution of the innovations allowing for contem-
poraneous correlation dramatically improves the log-likelihood over an independent (i.e.
equation—by—equation) approach. Richer specifications (where simultaneous estimation is
unavoidable) deliver a better fit, improved serial correlation diagnostics, and a better per-
formance in out—of-sample forecasting. The Student—T copula possesses better features
than the Normal copula. Overall, the indication is that we will have significantly superior
realized volatility forecasts when other trading activity indicators and contemporaneous
correlations are considered. Concluding remarks follow.

2 A Copula Approach to MEMs

Let x; be a K—dimensional process with non—negative components. A vector Multiplica-
tive Error Model (vVMEM) for @, is defined as
xy = py © g, = diag(p)es, (1)

where ® indicates the Hadamard (element—by—element) product and diag(-) indicates a
diagonal matrix with its vector argument on the main diagonal. Conditionally upon the
information set F;_1, a fairly general specification for p, is

He=w+arg+ ’73375:% + Bpi-1, (2)

where w is (K, 1) and a, v and B are (K, K). The vector 2! has a generic element Tt
multiplied by a function related to a signed variable, be it a positive or negative return
(0,1 values) or a signed trade (buy or sell 1, —1 values), as to capture asymmetric effects.
Let the parameters relevant for u; be collected in a vector 6.

Conditions for stationarity of p; are a simple generalization of those of the univariate
case (e.g. Bollerslev (1986); Hamilton (1994)): a vMEM(1,1) with p; defined as in equa-
tion (2) is stationary in mean if all characteristic roots of A = o + 3 + ~v/2 are smaller
than 1 in modulus. We can think of A as the impact matriz in the expression

E(xi|Fia) = Het1t—1 = @ + Al-’/t\t—l'

If more lags are considered, the model is

L
M= w + Z |:almt—l + 'nwiil) + Bt | (3)
=1

where L is the maximum lag occurring in the dynamics. It is often convenient to represent
the system (3) in its equivalent companion form

M:+L|t71 =w+ A*“;LLfl\t—h (4)
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where Kiirje—1 = (et Ljt—15 Bt L—1jt—15 - - -3 eg1je—1) 18 a KL x 1 vector obtained by stack-
ing its elements columnwise and

A*:<A1 A, A )

Iy Or(z-1),K

with Ay = oy + B +v/2, l=1,...,L, Ig—1yis a K(L—1) x K(L— 1) identity matrix
and Og(r—1),x is a K(L — 1) x K matrix of zeros. The same stationarity condition holds
in terms of eigenvalues of A*.

The innovation vector €; is a K—dimensional iid process with probability density func-
tion (pdf) defined over a [0, +00)® support, the unit vector 1 as expectation and a general
variance—covariance matrix X,

Et‘./t‘t_l ~ D+(]l, Z) (5)
The previous conditions guarantee that

E(wt‘ftfl) = M (6)
Vi(@:| Fio1) = pepy © X = diag(pe) X diag(per), (7)

where the latter is a positive definite matrix by construction.

The distribution of the error term &;|F;_; can be specified in different ways. We discuss
here a flexible approach using copula functions; different specifications are presented in
Section 4.

Using copulas (cf., among others, Joe (1997) and Nelsen (1999), Embrechts et al.
(2002), Cherubini et al. (2004), McNeil et al. (2005) and the review of Patton (2013) for
financial applications), the conditional pdf of &,|F;_; is given by

fe(ed) Fior) = c(uy; €) H filewi; &), (8)

where c(u; €) is the pdf of the copula, f;(er;; ¢;) and uy; = Fi(et4; ¢;) are the pdf and the
cdf, respectively, of the marginals, £ and ¢; are parameters. A copula approach, hence,
requires the specification of two objects: the distribution of the marginals and the copula
function.

In view of the flexible properties shown elsewhere (Engle and Gallo (2006)), for the first
we adopt Gamma pdf’s (but other choices are possible, such as Inverse-Gamma, Weibull,
log-Normal, and mixtures of them). This has the important feature of guaranteeing
an interpretation of a Quasi Maximum Likelihood Estimator even if the choice of the
distribution is not appropriate. For the second, we discuss some possible specifications
within the class of Elliptical copulas which provides an unified framework encompassing
the Normal, the Student-T and any other member of this family endowed with an explicit
pdf.

Elliptical copulas have interesting features and widespread applicability in Finance (for
details see McNeil et al. (2005), Frahm et al. (2003), Schmidt (2002)). They are copulas
generated by Elliptical distributions, exactly in the same way as the Normal copula and
the Student-T copula stem from the multivariate Normal and Student-T distributions,
respectively.!

'In some applications, especially involving returns, their elliptical symmetry may constitute a limit
(cf., for example, Patton (2006), Okimoto (2008), Cerrato et al. (2015) and reference therein). Copulas
in the Archimedean family (Clayton, Gumbel, Joe-Clayton, etc.) offer a way to bypass such a limitation
but suffer from other drawbacks and, in any case, seem to be less relevant for the variables of interest for
a VMEM (here, different indicators of trading activity). They will not be pursued in what follows.
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We consider a copula generated by an Elliptical distribution whose univariate ‘stan-
dardized’ marginals (intended here with location parameter 0 and dispersion parameter 1)
have an absolutely continuous symmetric distribution, centered at zero, with pdf g(.;v)
and cdf G(.;v) (v represents a vector of shape parameters). The density of the copula
can then be written as

ep(ws Rv) = K(v, K)|R|-/? LT E ‘av, K) 9
( ) (v, K)|R|™ 15, ool o) (9)

for suitable choices of K*(.,.), g1(.;.,.) and ga(.;.), where ¢ = (q1; - . . ; gk ), ¢ = G~ (us; v).
Two notable cases will be considered. The first is the Normal copula (McNeil et al.

(2005), Cherubini et al. (2004), Bouyé et al. (2000)); with no explicit shape parameter v,

we have K*(K) = 1, g1(z; K) = go(2) = exp(—2x/2). The pdf in Equation (9) becomes:

_ 1 _
cn(u; R) = |R|™?exp —5(dR'q—dq)|, (10)

where ¢ = (q1;...;qK), ¢ = ® *(u;) and ®(x) denotes the cdf of the standard Normal
distribution computed at x.

The Normal copula has many interesting properties: the ability to reproduce a broad
range of dependencies (the bivariate version, according to the value of the correlation
parameter, is capable of attaining the lower Fréchet bound, the product copula and the
upper Fréchet bound), the analytical tractability, the ease of simulation. When combined
with Gamma(g;, ¢;) marginals, the resulting multivariate distribution is a special case of
dispersion distribution generated from a Gaussian copula (Song (2000)). We note that
the conditional correlation matrix of €; has generic element approximately equal to R;;,
which can assume negative values too.

One of the limitations of the Normal copula is the asymptotic independence of its
tails. Empirically, tail dependence is a behavior observed frequently in financial time
series (see McNeil et al. (2005), among others). Elements of & (being different indicators
of the same asset or different assets) tend to be affected by the same extreme events.
For this reason, as an alternative, we consider the Student-T copula which allows for
asymptotically dependent tails. Differently from the Normal copula, when R = I we get
uncorrelated but not independent marginals (details in McNeil et al. (2005)). Thus, when
considering the Student-T copula in Equation (9), with a scalar v shape parameter, we

K—1
have K*(v; K) = F((l/+(f§)/2)f)‘(/l/2§2) C (v, K) = (14 2/v)~ 020 gy (v v) =

(14 2/v)~®*+D/2 and its explicit pdf is

Dl + K) 2T/ pyap (Lt @R /)0
I'((v+1)/2) [1, (1 + g2 v)-trb/
where ¢ = (q1;-..;9x), ¢ = T '(u;v) and T(z;v) denotes the cdf of the Student-

T distribution with v degrees of freedom computed at x. Further specifications of the
Student-T copula are in Demarta and McNeil (2005).

CT(U'; R? y) =

3 Maximum Likelihood Inference

In this section we discuss how to get full Maximum Likelihood (ML) inferences from the
vMEM with the parametric specification (3) for p; (dependent on a parameter vector )
and a copula-based formulation fe(e¢|F;—1) of the conditional distribution of the vector

>



error term (characterized by the parameter vector A). Inference on @ and A can be
discussed in turn, given that from the model assumptions the log-likelihood function [ is

T T N
| = Z;lnfm(mtp—';f—l) — Z;ln <f€(€t|]:t—1> Hﬂt_,il)
T

= Z In fe(&d| Fio1) — Zlnﬂt,i] . (12)

t=1

Considering a generic time t, it is useful to recall the sequence of calculations:
,Ut,i(ei) — $t,i/,ut,i =&t — E’(f‘?t,i; ¢z) = Ui — C(ut; 5) i=1,..., K (13)

where 6; is the parameter involved in the i-th element of the u, vector.

3.1 Parameters in the Conditional Mean

Irrespective of the specification chosen for f.(e;|F;—1), the structure of the vMEM allows
to express the portion of the score function corresponding to 0 as

T
Vol=> A, (14)
t=1
where
Ay = —Vop; diag(pe) . (15)
w, =g, O b, + 1, (16)

bt = Vst In f(et’thl)7

In order to have a zero expected score, we need E(w;|F;—1) = 0 or, equivalently, E(e; ®

bi|F;—1) = —1. As a consequence, the information matrix and the expected Hessian are
given by

E [AtI(g)AQ} (17)
and

E[AH®A], (18)

respectively, where the matrices
I(a) =F [(515 ® bt)(Et ® bt)/|ft,1] — ]1]1/
and
H = EVebj(ee)|Fia] -1

depend only on A but not on 6.

For a particular parametric choice of the conditional distribution of &;, we need to
plug the specific expression of In f¢(g;|F;_1) into b;. For instance, considering the generic
copula formulation (8), then

K
In fe(ei|Fior) = Inc(u) + > In filers) (19)
i=1
so that b; has elements
bt,i = fl (5t,i)Vum. In c(ut) -+ v€t,i In fi(gt,i>- (20)

In what follows we provide specific formulas for the elliptical copula formulation (9) and
its main sub-cases.



3.2 Parameters in the pdf of the Error Term

Under a copula approach, the portion of the score function corresponding to the term
ST In f(ey Fi1) (cf. Equation (12)) depends on a vector A = (&; ¢) (€ and ¢ are the

parameters of the copula function and of the marginals, respectively — cf. Section 2),

T T K
Vil = ZV)\ In f (e Fi-1) = ZVA In <C<ut;£> Hfi(gt’i; ¢Z>> '

t=1 1=1

Therefore,

T

Vel = Z Velne(uy).

t=1

and
T
Z €t i Ut r In C('U,t) -+ V¢7 In fi(gt,i)] .

As detailed before, beside a poss1ble shape parameter v, elliptical copulas are character-
ized by a correlation matrix R which, in view of its full ML estimation, can be expressed
(cf. McNeil et al. (2005, p. 235)) as

R = DceD, (21)

where c is an upper-triangular matrix with ones on the main diagonal and D is a diagonal
1/2

matrix with diagonal entries Dy = 1 and D; = < Z‘Z 11 sz) for j =2,...,K. By

so doing, the estimation of R is transformed into an unconstrained problem, since the

K(K —1)/2 free elements of ¢ can vary into R. We can then write & = (¢; v).
Let us introduce a compact notation as follows: C = ¢D, q; = (q1; .- -3 Grx), Qi =

G Husv), ¢ =C'q, qf = R 'q;, 21:; =q/ R 'q; = q,q;- We can then write
Ine(u) =In K* — ZlnD +In g1 (g, qt Zlng2 qm (22)
=2

where we used 3 In(|R|) = S, InD;.
In specific cases we get:

e Normal copula: In K* =0, Ingy(x) = Ings(x) = —z/2;

e Student-T copula: In K* = In [F((”Jrf()(glr)(/”;)z)ml , Ingy(z) = _viK (1—1—%),
go(z) = —“HIn (1+2).

Parameters entering the matrix ¢
The portion of the score relative to the free parameters of the ¢ matrix has elements

K T
~TY D, +Zlngl('q;)] Q< g (23)
=2 t=1

Using some algebra we can show that

K
Ve, Y In(D;) = —D;C;;
=2

\Y

Cij




and
Ve, ng1(q) = =2Vz (Ing1(¢,)) D;a; (@i — Cijaeg)-
By replacing them into (23), we obtain

T
Ve, =TD;Ci; +2D; Y q;;(Cijqu; — Gti)Vz (Ingi(q;))-
t=1

Parameters entering the vector v
The portion of the score relative to v is

Thh K* + Zlngl@vt) — ZZIHQQ(QEZ')]‘

t=1 t=1 i=1

Vul=V,

The derivative of In K* = In K*(v; K) can sometimes be computed analytically. For
instance, for the Student—T copula we have

V. In K*(v; K) = % {w (”J;K) (K — 1) (g) .y (”;r 1)] .

For the remaining quantities, we suggest numerical derivatives when, as in the Student—T
case, the quantile function G~!(z;v) cannot be computed analytically.

Parameters entering the vector ¢
The portion of the score relative to ¢ has elements

T

K K
Vol =V, Y [ln 91(@) = > _Ingalgr,) + Y _In fz‘(&z’)] -
=1 =1

t=1

After some algebra we obtain

[M] =

Ve l=> [V Fileri)dii + Vg, In fi(eri)], (24)

t=1

where '
di= 5 (2695, man@) ~ Vo, Ingalal)] 25
t, g(Qt,z) qt, q; (51 (Qt> Gt i gg(qt’ ) ( )

For instance, if a marginal has a distribution Gamma(¢;, ¢;) then
Vo fileri) = In(¢i) —(d) +In(ers) —eri + 1,
whereas V, Fi(g;) can be computed numerically.

Parameters entering the vector 6

By exploiting the notation introduced in this section, we can now detail the structure
of by entering into (16) and then into the portion of the score function relative to 8. From
(22), e, @ by + 1 (cf. 16) has elements

b +1 = evifi(eri)des +e0:Ve,, In fi(ers)) + 1 (26)

where d;; is given in (25). For our choice, f;(¢;;) is the pdf of a Gamma(¢;, ¢;) distribu-
tion, so that
€iVe, . In fi(ers) +1 = ¢ — 10 (27)



3.2.1 Expectation Targeting

Assuming weak-stationarity of the process, numerical stability and a reduction in the
number of parameters to be estimated can be achieved by expressing w in terms of the
unconditional mean of the process, say p, which can be easily estimated by the sample
mean (ezpectation targeting®). Since E(x;) = E(p;) = p is well defined and is equal to

-1

L
Y (w+B+T)| w (28)
=1
Equation (3) becomes
L L
Y (wt+B+7) | n+ Y (e +wa) + Bi). (29)
I=1 =1

In a GARCH framework, the consequences of this practice have been been investigated
by Kristensen and Linton (2004) and, more recently, by Francq et al. (2011) who show
its merits in terms of stability of estimation algorithms and accuracy in estimation of
both coefficients and long term volatility (cf. Appendix A for some details in the present
context).

From a technical point of view, a trivial replacement of g by the sample mean x7 fol-
lowed by a ML estimation of the remaining parameters, preserves consistency but leads to
wrong standard errors (Kristensen and Linton (2004)). The issue can be faced by identify-
ing the inference problem as involving a two-step estimator (Newey and McFadden (1994,
ch. 6)), namely by rearranging (6; A) as (u; ), where 9 collects all model parameters but
p. Under conditions able to guarantee consistency and asymptotic normality of (p; ) (in
particular, the existence of E(uu}): see Francq et al. (2011)), we can adapt the notation

of Newey and McFadden (1994) to write the asymptotic variance of /T (@T — 19) as

Qo9 g, TI
G\ I -G,M™! [ DA Do H _ ,]G‘l’ 30
9 [ 12 } Quﬂ/ QH,IJ/ —(GuM 1) 9 ( )
where
Gy = E(Vgoli)
Gu = E(Vﬂu’lt)
M = E(Vu/mt),
and

=3 (o

t=1

3
IIM’ﬂ

is the moment function giving the sample average 7 as an estimator of p. The € matrix
denotes the variance-covariance matrix of (Vgl;; m;) partitioned in the corresponding

blocks.

2This is equivalent to variance targeting in a GARCH context (Engle and Mezrich (1995)), where the
constant term of the conditional variance model is assumed to be a function of the sample unconditional
variance and of the other parameters. In this context, other than a preference for the term expectation
targeting since we are modeling a conditional mean, the main argument stays unchanged.




To give account of the necessary modifications to adopt with expectation targeting,
we provide sufficiently general and compact expressions for the parameters g (the un-
conditional mean) and @ (the remaining parameters) in the conditional mean expressed
by (29).

Gg = E (Veol) = E [A,H® A}
Vowl) = —E (AH" diag(p,) ') A

E(
M —TI
Qoo = E(Vol,Vel,) = E [AtI(a)A;}
Qo = E(Velym,) = E[A,[E (b, @ €,) )| Fit] + 11') diag(pss)] BA™Y
Q. =Emm))=A"(BX,B +C((Z,0%)C)A™"

where

A:I—lil(al-i-ﬁl-i-%)

L
B=I1-) B
=1
L

C= Z’Yz
=1

3, = E(pu) © X,

The expression for €,, ,, is obtained by using the technique in Horvéath et al. (2006) and
Francq et al. (2011). In this sense, we extend the cited works to a multivariate formulation
including asymmetric effects as well.

Some further simplification is also possible when the model is correctly specified since,
in such a case, H® = —Z©) and F (b, ® &,) &}|F;_1] = —11’ leading to Qg = 0 and
to

E [AtI@A;} B (Atz@ diag(pt)’1> 8,B'+C(3,0%,)CE (diag(ut)*ll(a)AQ

for what concerns the inner part of (30).

3.2.2 Concentrated Log-likelihood

Some further numerical estimation stability and reduction in the number of parameters
can be achieved — if needed — within the framework of elliptical copulas: we can use
current values of residuals to compute current estimates of R (Kendall correlations are
suggested by Lindskog et al. (2003)) and of the shape parameter v (tail dependence
indices are proposed by Kostadinov (2005)). This approach may be fruitful with other
copulas as well when sufficiently simple moment conditions can be exploited. A similar
strategy can be applied also to the parameters of the marginals. For instance, if they are
assumed Gamma(¢;, ¢;) distributed, the relationship V(e;;|Fi—1) = 1/¢; leads to very
simple estimator of ¢; from current values of residuals. By means of this approach, the
remaining parameters can be updated from a sort of pseudo-loglikelihood conditioned on
current estimates of the pre—estimated parameters.

In the case of a Normal copula a different strategy can be followed. The formula of the
(unconstrained) ML estimator of the R matrix (Cherubini et al. (2004, p. 155)), namely

Q_qq
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where ¢ = (q};...;¢}) is a T x K matrix, can be plugged into the log-likelihood in place
of R obtaining a sort of concentrated log-likelihood

S [ 01Ql = K + trace(@)] + 3° Y fleuil ) (31)

2
t=1 i=1

leading to a relatively simple structure of the score function. However, this estimator of R
is obtained without imposing any constraint relative to its nature as a correlation matrix
(diag(R) = 1 and positive definiteness). Computing directly the derivatives with respect
to the off-diagonal elements of R we obtain, after some algebra, that the constrained ML
estimator of R satisfies the following equations:

/

(R~ (R TR, =0

fori# j=1,...,K, where R; and R ; indicate, respectively, the i—th row and the j-th
column of the matrix R. Unfortunately, these equations do not have an explicit solution.?
An acceptable compromise which should increase efficiency, although formally it cannot
be interpreted as an ML estimator, is to normalize the estimator @ obtained above in
order to transform it to a correlation matrix:

~ _1 _1
R=D,*QD,?,

where D¢ = diag(Q11, - .., Q). This solution can be justified observing that the copula
contribution to the likelihood depends on R exactly as if it was the correlation matrix of
iid rv’s g; normally distributed with mean 0 and correlation matrix R (see also McNeil
et al. (2005, p. 235)). Using this constrained estimator of R, the concentrated log-
likelihood becomes

T K
. In|R| — trace(R™'Q + trace(Q)} + Z Z In fi(e¢4| Fiz1). (32)

2 ,
t=1 i=1

It is interesting to note that, as long as (31), Equation (32) too gives a relatively simple
structure of the score function. Using some tedious algebra, we can show that the com-
ponents of the score corresponding to @ and ¢ have exactly the same structure as above,
with the quantity d,; into (25) changed to

dyj = —— (33)

where the C' matrix is here given by
C=Q'DJ’QDJ*Q' — Q' +Ix — R™' + D' — D, diag(Q™'Dy*Q)

and ¢(.) indicates here the pdf of the standard normal computed at its argument. Of
course, also in this case the parameters of the marginals can be updated by means of
moment estimators computed from current residuals (instead that via ML) exactly as
explained above.

3Even when R is a (2,2) matrix, the value of Rj, has to satisfy the cubic equation:

o e 9192
Ry, | AL 22 ) B
+ Ii1o [ T -+ T :| T 0

2 7192

R3, — R?, 1=
12 12 T
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3.3 Asymptotic Variance-Covariance Matrix

As customary in ML inference, the asymptotic variance-covariance matrix of parameter
estimators can be expressed by using the Outer-Product of Gradients (OPG), the Hessian
matrix, or in the sandwich form, more robust toward error distribution misspecification.
The last option is what we use in the application of Section 5.

4 Alternative Specifications of the Distribution of
Errors

4.1 Multivariate Gamma

The generalization of the univariate gamma adopted by Engle and Gallo (2006) to a
multivariate counterpart is frustrated by the limitations of the multivariate Gamma dis-
tributions available in the literature (all references below come from Johnson et al. (2000,
chapter 48)): many of them are bivariate formulations, not sufficiently general for our pur-
poses; others are defined via the joint characteristic function, so that they require tedious
numerical inversion formulas to find their pdf’s. The formulation that is closest to our
needs (it provides all univariate marginal probability functions for €;; as Gamma(é;, ¢;)),
is a particular version of the multivariate Gamma’s by Cheriyan and Ramabhadran (hence-
forth GammaC R, which is equivalent to other versions by Kowalckzyk and Trycha and
by Mathai and Moschopoulos):

€t|E—1 ~ GammaC‘R(gbOa ¢a d)))

where ¢ = (¢1;...;0k) and 0 < ¢g < min(¢y, ..., dx) (Johnson et al. (2000, 454-470)).
The multivariate pdf is expressed in terms of a cumbersome integral and the conditional
correlations matrix of ; has generic element

P(gt,z‘;gt,ﬂ]:tq) = \/%7
iPj

which is restricted to be positive and is strictly related to the variances 1/¢; and 1/¢;.
Given these drawbacks, Multivariate Gamma’s will not be adopted here.

4.2 Multivariate Lognormal

A different specification is obtained assuming &, conditionally log—Normal,
gi|Fi—1 ~ LN(m, V) with  m = —0.5diag(V) (34)

where m and V' are, respectively, the mean vector and the variance-covariance matrix of
Ine;|F;—1 and the constraint in (34) is needed in order for E(e|F;—1) to be equal to 1
(cf. Equation (5)).

The log-likelihood function is obtained by replacing the expression of In f.(g;|F;_1)
coming from (34) into Equation (12), leading to

L& TK T 1 —
z:—Zmem—Tln(zn)—gln\w—52(1nst—m)/V*1(1nst—m). (35)

t=1 =1 t=1

Accordingly, the portion of the score related to the derivative of [ in @ (the parameters in
the conditional mean) is given by Equation (14), with A; defined as in (15) and

w; =V ' (lng, —m), (36)
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leading to
T

> Vou, diag(py) "'V~ (Ing, —m) = 0. (37)

t=1

A full application of the ML principle would require optimization of (35) also in the
elements of the matrix V. However, differently from the maximization with respect to the
same parameters of a Gaussian log-likelihood, this approach is tedious since the diagonal
elements of V' appear also in the term m, complicating the constraints to preserve its
positive definiteness.

A possible approach to bypass this issue would be to resort to a reparameterization of
V based on its Cholesky decomposition, as we did in Section 3 to represent the correlation
matrix R in the copula-based specifications. Here we adopted a simpler approach, based
on a method of moment estimator of the V' elements. The ensuing estimation algorithm
follows the sequence:

e We compute log-residuals Ing; (¢t = 1,...,T), according to the first two steps of
(13), at the current parameter estimates;

e We then estimate their variance-covariance matrix V;
e We estimate m = —0.5 diag(V);
e We use Equation (37) to update the estimate of 6,

iterating until convergence.
Following (Newey and McFadden (1994, ch. 6)) once again, the resulting asymptotic
variance-covariance matrix of @ can be expressed as

A Qoo Qo I
_ -V / 06 oA 1
avar(0) = Gog/ (I Ghg ) ( Q. O ) ( Gho )Gea/ (38)
where

r T
T -1 Z
Gog = Th_{I;oE Vo <T - gt)

T
— 1 -1
Gag = lim E |Vx (T ;g)

T
C— T ~1/2
Qppr = lim V| T E;g)

T
Qo = lim Cov (T—1/2 > g, T (X - ,\>>

t=1

o = i (1 (3-))

g: is the t-th addend in (37) and A = vech(V') is estimated with the corresponding portion
of the variance-covariance matrix of log-residuals In&; (¢t = 1,...,T). After some algebra
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we get

T
Goo = — Qo = — Tlggo 71 ; E (BtV—lBg)] (39)
1 T
Ghro = —3 Jim TltZ;VAdiag(V)VlE(Bt)
Qox =0 (40)
Qi {2 +(j—-1) (K - %) Jh+(k—1) (K - 5)} =ViiVhr — ViaVig (41)

i=1,...,Kij=i,... K

where By = Vg, diag(p;) ™! and Qan {u,v} indicates the (u,v)-th element of 2y .*
Because of (39) and (40), Equation (38) simplifies to

avar(é\) = Qggl/ + Q;;/G/AQ/QA)\/G)\O/Q(;;/

4.3 Semiparametric

As an alternative, we can use the semiparametric approach by Cipollini et al. (2013),
where the distribution of the error term e, is left unspecified. In this case the pseudo-
score equation corresponding to the @ parameter is again given by Equation (14), with
A; defined as in (15) and

w, =X (g, —1). (42)

leading to the equation

T

Z Vou, diag(p) "7 (e, — 1) = 0. (43)

t=1

The ensuing estimation algorithm works similarly to the log-Normal case iterating until
convergence the following sequence:

e We compute residuals &, (t = 1,...,T), according the first two steps of (13), at the
current parameter estimates;

e We estimate 3 as their variance-covariance matrix;

e We update the estimate of 8 using Equation (43).

The asymptotic variance-covariance matrix of 0 is given by
T

'Y E (Btz—lBg)” _1.

t=1

T—o0

avar(é) = [lim

the form of which looks very similar to €2, in Equation (39).

4(40) and (41) come from standard properties of the multivariate Normal distribution: the former is
implied by the fact that all centered odd moments of ln e, are zero; the latter is implied by the structure
of fourth centered moments of In &;.
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The (pseudo-)score Equations (37) and (43) look quite similar: beside a simpler ex-
pression of the GMM asymptotic variance-covariance matrix of 5, the essential difference
rests in the nature of the martingale difference (MD) w; ‘driving’ the equation. The GMM
w; relies on minimal model assumptions and does not require logs; as a consequence, it is
feasible also in case of zeros in the data. Apart from the need to take logs, the expression
of w, in the log—Normal case is a MD only if Ingy|F;,_; has —0.5diag(V') as its mean;
if this is not true, we would have a corresponding bias in estimating the w coefficient
appearing in the conditional mean p;.

5 Trading Activity and Volatility within a vMIEM

Trading activity produces a lot of indicators characterized by both simultaneous and dy-
namic interdependence. In this application, we concentrate on the joint dynamics of three
series stemming from such trading activity, namely volatility (measured as realized kernel
volatility, cf. Barndorff-Nielsen et al. (2011), and references therein), volume of shares
traded and number of shares per day. The relationship between volatility and volume as
relating to trading activity was documented, for example, in the early contribution by
Andersen (1996). Ever since, the evolution of the structure of financial markets, indus-
try innovation, the increasing participation of institutional investors and the adoption of
automated trading practices have strengthened such a relationship, and the number of
trades clearly reflects an important aspect of trading strategies. For the sake of parsimony,
we choose to focus on the realized volatility forecasts as the main product of interest from
the multivariate model exploiting the extra information in the other indicators, as well as
the contemporaneous correlation in the error terms.

The availability of ultra high frequency data allows us to construct daily series of the
variables exploiting the most recent development in the volatility measurement literature.

As a leading example, we consider Johnson & Johnson (JNJ) between January 3, 2007
to June 30, 2013 (1886 observations). Such a stock has desirable properties of liquidity
and a limited riskiness represented by a market beta generally smaller than 1. Raw
trade data from TAQ are cleaned according to the Brownlees and Gallo (2006) algorithm.
Subsequently, we build the daily series of realized kernel volatility, following Barndorff-
Nielsen et al. (2011), computing the value at day ¢ as

H n
h
kv = E k|l — = E i
rRU . (H) Th Th LjTj—|h|

j=Ih+1
where k(z) is the Parzen kernel

1 —62%+ 623 ifx €[0,1/2]
k(x) =14 2(1— z)3 if x e (1/2,1]
0 otherwise

0o 2/5
H =1351-n3° (M) :
Z?:l x?
x; is the j-th high frequency return computed according to Barndorff-Nielsen et al. (2009,
Section 2.2)) and 7; is the intradaily return of the j-th bin (equally spaced on 15 minute

intervals). For volumes (vol), that is the total number of shares traded during the day,
and the number of trades (nt) executed during the day (irrespective of their size), we
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Figure 1: Time series of the trading activity indices for JNJ (Jan. 3, 2007 — June 30, 2013).
Left: original data; Right: data after removing the low frequency component. Top:
realized kernel volatility (annualized percentage); Middle: volumes (millions); Bottom:
number of trades (thousands). The spike on June 13, 2012 corresponds to an important
acquisition and a buy back of some of its common stock by a subsidiary.
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simply aggregate the data (sum of intradaily volumes and count of the number of trades,
respectively).

According to Figure 1, the turmoil originating with the subprime mortgage crisis is
clearly affecting the profile of the series with an underlying low frequency component. For
volatility, the presence of a changing average level was analyzed by Gallo and Otranto
(2015) with a number of non-linear MEM’s. Without adopting their approach, in what
follows we implement a filter (separately for each indicator) in order to identify short
term interactions among series apart from lower frequency movements. The presence of
an upward slope in the first portion of the sample is apparent and is reminiscent of the
evidence produced by Andersen (1996) for volumes on an earlier period. Remarkably,
this upward movement is interrupted after the peak of the crisis in October 2008, with
a substantial and progressive reduction of the average level of the variables. To remove
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this pattern, we adopt a solution similar to Andersen (1996), that is, a flexible function
of time which smooths out the series. Extracting low frequency movements in a financial
market activity series with a spline is reminiscent of the stream of literature initiated by
Engle and Rangel (2008) with a spline-GARCH and carried out in Brownlees and Gallo
(2010) within a MEM context.

In detail, assuming that this component is multiplicative, we remove it in each indi-
cator as follows:

e we take the log of the original series;

e we fit on each log-series a spline based regression with additive errors, using time
t (a progressive counter from the first to the last observation in the sample) as an
independent variable;?

e the residuals of the previous regression are then exponentiated to get the adjusted
series.

When used to produce out-of-sample forecasts of the original quantities, the described
approach is applied assuming that the low frequency component remains constant at
the last in-sample estimate. This strategy is simple to implement and fairly reliable for
forecasting at moderate horizons.

Table 1 shows some similarities across original and adjusted series, with some expected
increase in the correlation between volumes and number of trades in the adjusted series
(due to a smaller correlation in the corresponding low frequency components). Although
still quite large overall, after adjustment, correlations are more spread apart: as men-
tioned, the value concerning volumes and the number of trades, above 0.9, is the highest
one; cor(rkv,vol) is about 0.6, whereas the cor(rkv,nt) is still above 0.7, all confirming
the intuition that the information contained in other variables related to trading activity
relevant.

Table 1: Correlations for JNJ (Jan. 3, 2007 — June 30, 2013). rkv = realized kernel

volatility; vol = volume; nt = number of trades.

Original Low Freq. Comp. Adjusted

vol nt vol nt vol nt
rkv | 0.646 0.778 | 0.800 0.847 0.609 0.743
vol 0.890 0.780 0.932

5.1 Modeling Results

In the application, we consider a vMEM on adjusted data, where the conditional expec-
tation p,; has the form (cf. Equation (3))

n=w+aix 1+ aexy o+ Weﬁj + Bipiq- (44)

In order to appreciate the contribution of the different model variables, we consider alter-
native specifications for the coefficient matrices ar; and 31 (o and -, are kept diagonal
in all specifications), and for the error term.

5 Alternative methods, such as a moving average of fixed length (centered or uncentered), can be used
but in practice they deliver very similar results and will not be discussed in detail here. The spline
regression is estimated with the gam() function in the R package mgcv by using default settings.
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As of the former, we consider specifications with both a;; and 3; diagonal (labeled D);
o full and B, diagonal (labeled A); a; diagonal and B full (labeled B); both a; and B
full (labeled AB). For the joint distribution of the errors, we adopt a Student—T, a Normal
and an Independent copula (T, N and I as respective labels), in all cases with Gamma
distributed marginals. As a comparison, the AB specification is also estimated by ML
with log-Normal (AB-LN) and with GMM in the semiparametric AB-S. The estimated
specifications are summarized in Table 2. When coupled with the conditional means in
the table, the specifications with the Independent copula can be estimated equation—by—
equation.

Table 2: Estimated specifications of the vMEM defined by (1) and (44), with error distri-
bution specified, alternatively, by (8), or (34), or (5). Notation: I for Independent copula
with Gamma marginals; N for Normal copula with Gamma marginals; 7" for Student-T
copula with Gamma marginals; LN for log-Normal; S for semiparametric.

Error Distribution
Conditional Mean (parameters) | [ N T LN S
D: oy, By, v, diagonal D-I
A: oy full; By, v, diagonal A-1 A-N AT
B: B4 full; ay, v, diagonal B-N B-T
AB: oy, (3 full; v, diagonal AB-N AB-T AB-LN AB-S

Estimation results are reported in Table 3, limiting ourselves to the equation for the
realized volatility.® Among copula-based specifications, the Student-T copula turns out to
be the favorite version, judging upon a significantly higher log—likelihood function value,
and lower information criteria;” the equation—by—equation approach (Independent copula)
is dominated in both respects.®

An estimation of the Diagonal model with the Normal/Student-T copula function (de-
tails not reported) shows log-likelihood values of 1947.91, respectively, 2034.07 (relative
to the base value of 205.53 in the first column), pointing to both a substantial improve-
ment coming from the contemporaneous correlation of the innovations and to the joint
significance of the other indicators when the A specification is adopted. The compari-
son of the A (e full; By and ~; diagonal) versus the B (3; full; @y and ~; diagonal)
formulations, seems to indicate a dominance of the former, at least judging upon the
overall log-likelihood values. It is also interesting to note that model residual autocorre-
lation is substantially reduced only in the case of richer parameterizations (AB), where
non—diagonality in both a; and B; captures possible interdependencies, with a sharp
improvement in the LB diagnostics (although only marginally satisfying).

In general, it seems that the more relevant contribution in determining realized volatil-
ity comes from the lagged number of trades, but only in the AB models (some collinearity

6All models are estimated using Expectation Targeting (Section 3.2.1). The Normal copula based
specifications are estimated resorting to the concentrated log-likelihood approach (Section 3.2.2). We
omit estimates of the constant term w.

"The estimated degrees of freedom are 8.53 (s.e. 1.16) and 8.18 (s.e. 1.05), respectively, in the A-T
and AB-T formulations. We also tried full ML estimation of the AB-N specification getting a value of
the log-likelihood equal to 2046.57, very close to the concentrated log-likelihood approach (Section 3.2.2)
used in Table 3.

8The stark improvement in the likelihood functions, coming from the explicit consideration of the
correlation structure, does not guarantee similar gains in the forecasting ability of the same variables.
This is similar to what happens in modeling returns, when the likelihood function of ARMA models is
improved by superimposing a GARCH structure on the conditional variances: no substantive change in
the fit of the conditional mean and no better predictive ability.
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effect, diminishing individual significance, is to be expected); the relevance of such infor-
mation is also highlighted by the Granger Causality tests, to check whether lagged model
components attributable to either vol or nt have joint significance. In detail, using three
indices where the first refers to the LHS variable, the second to the conditioning variable,
and the third the lag, we test Hy : oy ;1 = 0 (j = 2,3) in the A-based formulations;
Hy: (11 =0 (j = 2,3) in the B-based formulations; Hy : a1 ;1 = f1;1 =0 (j = 2,3) in
the AB-based formulations.

The own volatility coefficients at lag 2 are always significant (with negative signs);
surprisingly, the leverage effect related to the sign of the returns is not.

The Normal and the Student-T specifications appear to provide similar point esti-
mates, except for the non-diagonal [ coefficients: for the latter, once again, the picture
may be clouded by collinearity, since a formal log-likelihood test does indicate joint sig-
nificance.”

The overview of the estimation results is complete by examining the Table 4, where
we report the square root of the estimated elements on the main diagonal of X for all
specifications, showing substantial similarity:.

Table 3: Estimated coefficients of the realized volatility equation for different model for-
mulations (cf. Table 2) for JNJ (Jan. 3, 2007 — June 30, 2013). Robust t-stats in paren-
theses. An empty space indicates that the specification did not include the corresponding
coefficient. Rows labeled vol and nt report the p-values for causality tests (see the text for
details). Overall model diagnostics report Log-likelihood values, Akaike and Bayesian In-
formation Criteria, and p-values of a joint Ljung-Box test of no autocorrelation at various

lags. Last row reports the estimation time (in seconds).

D-I A1 AN AT B-N B-T ABN  AB-T ABLN AB-SS
o 04967 04575  0.4194 04165  0.4048 04019  0.3687  0.3724  0.3630  0.3777
L (58.10)  (51.94)  (48.57) (48.72) (45.25) (47.42) (39.13) (40.77) (50.76) (45.77)
vol —0.0300 —0.0339 —0.0265 —0.0230 —0.0337 —0.0318 —0.0298
- (—1.11) (=0.97) (—0.75) (=0.54) (—0.78) (—0.93) (—0.75)
- 0.0668  0.0726  0.0606 0.1897  0.1890  0.1691  0.1726
-1 (1.77)  (1.57)  (1.36) (2.83) (2.82) (3.95) (38.51)
. —0.2672 —0.2485 —0.1878 —0.1923 —0.1950 —0.2054 —0.1778 —0.1827 —0.1811 —0.1790
TP (=5.12) (—3.82) (—2.91) (=3.54) (—4.64) (=5.45) (=3.75) (—4.19) (=5.46) (—4.64)
() 00252 00266 00265 0.0308 00255 00297 00171  0.0223 00211  0.0222
TS g9y (0.79)  (0.83)  (1.00)  (0.94) (1.13) (0.41)  (0.53) (0.73)  (0.67)
ok 07223 07067 0.6793  0.6918  0.7235  0.7410  0.7588  0.7675  0.7626  0.7428
Mt (14.19)  (9.94)  (9.49) (11.41) (17.28) (20.73) (14.13) (16.46) (19.22) (15.50)
(vol) —0.0317 —0.0139 —0.1138 —0.0466 —0.0909 —0.0938
-1 (—0.68) (—0.32) (—0.96) (—0.44) (—0.95) (—0.86)
(nt) 0.0492  0.0297 —0.0984 —0.1568 —0.0867 —0.0839
T (0.99)  (0.66) (—0.76) (—1.26) (—0.87) (—0.73)
vol 0.2658  0.3296  0.4558  0.4970  0.7459  0.1705 02717  0.0853  0.1550
nt 00766  0.1153  0.1724  0.3202 05098  0.0051  0.0077  0.0001  0.0004
logLik 20553  239.75 201239 2086.31 1967.02 2048.80 204581 2125.12 2153.79
AIC  -375.07 -431.49 -3970.78 -4116.61 -3880.05 -4041.60 -4025.62 -4182.23 -4241.57
BIC  -258.11 -275.55 -3795.35 -3934.69 -3704.62 -3859.67 -3811.20 -3961.32 -4027.16
LB(12) 0.0000 0.0000 0.0001  0.0001  0.0000  0.0000 0.0388  0.0141  0.0450  0.0596
LB(22) 0.0000 0.0000  0.0000  0.0000 0.0000  0.0000 0.0178  0.0109  0.0229  0.0264
LB(32) 0.0000 0.0000  0.0003 0.0003 0.0000  0.0000 0.0192  0.0132  0.0291  0.0267
time  0.342  0.753 2628  15.044 2485 14707 2714 14859  0.155  0.132

Finally, the correlation coefficients implied by the various specifications are reported

9No attempt at pruning the structure of the model following the automated procedure suggested in
Cipollini and Gallo (2010) was performed.
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Table 4: Square root of the estimated elements on the main diagonal of 3 (cf. Equa-
tion (5))

D-1 Al A-N A-T B-N B-T AB-N AB-T AB-LN AB-S
op 0.209 0.208 0.207 0.212 0.209 0.214 0.206 0.210 0.204 0.226
oy 0.254 0.251 0.252 0.256 0.257 0.262 0.252 0.256  0.252  0.272
o3 0.227 0.227 0.229 0.236 0.232 0.240 0.228 0.235 0.228  0.242

in Table 5, showing that a strong correlation among innovations further supports the need
for taking simultaneity into account.

Table 5: Estimated correlation matrices of the copula functions (specifications -N and
-T), and of &; (specifications -LN and -S).

A-N A-T AB-N AB-T AB-LN AB-S
voly nt; voly nts voly nt; voly nt; voly nts voly nt;
rkv; 0483 0.610 0.505 0.626 0.485 0.612 0.505 0.628 0.469 0.596 0.481 0.605
vol; 0.902 0.917 0.903 0.918 0.902 0.906

The alternative log—Normal and Semiparametric formulations deliver parameter in-
ferences qualitatively similar to the corresponding versions based on copulas. The AIC
and BIC statistics of the log-Normal are better than the copula based formulations (for
the semiparametric they are not available); also its Ljung-Box diagnostics are marginally
better.

A comparison of the estimation times across specifications'® reveals some differences.
Student-T copula based formulations are the slowest; the Normal copula based estimated
with the concentrated likelihood approach takes about 1/6 of time; finally, the log—Normal
and the Semiparametric are a lot faster (about 1/20 of the Normal based). Differences
notwithstanding, the largest times involved are very low on an absolute scale.

Figure 2 shows a comparison between the estimated residuals against their theoretical
counterparts in the case of the Gamma and log-Normal distributions. In both cases, the
fit seems to break apart for the tail of the distribution, pointing to the need for some
care about the evolution of volatility of volatility (a mixture of distribution hypothesis is
contemplated in, say, De Luca and Gallo (2009) in a MEM model).

0

5.2 Forecasting

We left the period July 1 — December 31, 2013 (128 observations) for out—of-sample fore-
casting comparisons. We adopt a Diebold and Mariano (1995) test statistic for superior
predictive ability using the error measures

1 T T
ent = §(xt — )? eqt = 2 1—In (—t) ) (45)

10Calculations with our routines written in R were performed on an Intel i7-5500U 2.4Ghz processor.
We did not perform an extensive comparison of estimation times and we did not optimize performance by
removing tracing of intermediate results. Moreover, the copula-based and the alternative specifications are
optimized resorting to different algorithms: the first ones, more cumbersome to optimize, are estimated
toward a combination of NEWUOA (Powell (2006)) and Newton-Raphson; for the second ones we used
a dogleg algorithm (Nocedal and Wright (2006, ch. 4)).
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Figure 2: QQ-plot between theoretical and empirical residuals for the realized volatility
of JNJ. Comparison with Gamma and log—Normal distributions. Estimation period: Jan.
3, 2007 — June 30, 2013.
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where z; and p; denote here the observed and the predicted values, respectively. ey is
the squared error, and can be interpreted as the loss behind an x; Normally distributed
with mean p; similarly, eq; can be interpreted as the loss we can derive considering x;
as Gamma distributed with mean y; and variance proportional to u?. Comparisons are
performed on both Original and Adjusted (i.e. removing the low frequency component)
series.

Table 6 reports the values of the Diebold-Mariano test statistic of different model
formulations, against the AB-T specification (which has the lowest values of the informa-
tion criteria among copula-based specifications, cf. Table 3), considering one-step ahead
predictions.

Table 6: Diebold-Mariano test statistics for unidirectional comparisons, against the AB-T
specification, considering 1-step ahead forecasts (out—of-sample period July 1 — December
31, 2013). The error measures are defined as ex, = 0.5(z; — p;)* (Normal loss) and
egt = o/ — 1 — In(x/pe) (Gamma loss), where z; and p; denote the observed and
the predicted values, respectively (cf. Section 5.2 for the interpretation). Boldface (italic)
indicates 5% (10%) significant statistics.

ENt €Gt

Specification | Adjusted Original Adjusted Original
D-I -2.490 -2.107 -2.428 -2.132
A-1 -1.358 -1.200 -1.277 -1.173
A-N -0.668 -0.621 -0.563 -0.591
A-T -0.510 -0.449 -0.422 -0.431
B-N -0.553 -0.557 -0.449 -0.560
B-T -0.474 -0.479 -0.389 -0.490
AB-N -0.768 -0.757 -0.737 -0.708
AB-LN 0.868 0.720 0.980 0.742
AB-S -0.277 -0.230 -0.180 -0.164
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There are no substantial differences in performance between the results on the original
and the adjusted series.!’ We notice a definite improvement of the specification involving
simultaneous innovations over the equation—-by—equation specifications (first two rows).
The Student—T Copula improves upon the Normal formulation (marginally, line AB-N),
but is substantially equivalent to the AB-LN (slightly better) and the AB-S (slightly
worse).

6 Conclusions

The Multiplicative Error Model was originally introduced by Engle (2002) as a positive
valued product process between a scale factor following a GARCH type dynamics and a
unit mean innovation process. In this paper we have presented a general discussion of a
vector extension of such a model with a dynamically interdependent formulation for the
scale factors where lagged variables and conditional expectations may be both allowed to
impact each other’s conditional mean. Engle and Gallo (2006) estimate a vMEM where
the innovations are Gamma—distributed with a diagonal variance—covariance matrix (es-
timated equation—by-equation). The extension to a truly multivariate process requires a
complete treatment of the interdependence among the innovation terms. One possibility is
to avoid the specification of the distribution and adopt a semiparametric GMM approach
as in Cipollini et al. (2013). In this paper we have derived a maximum likelihood estimator
by framing the innovation vector as a copula function linking Gamma marginals; a para-
metric alternative with a multivariate log-Normal distribution is discussed, while we show
that the specification using a multivariate Gamma distribution has severe shortcomings.

We illustrate the procedure on three indicators related to market trading activity:
realized volatility, volumes, and number of trades. The empirical results are presented
in reference to daily data on the Johnson and Johnson (JNJ) stock. The data on the
three variables show a (slowly moving) time varying local average which was removed
before estimating the parameters. The three components are highly correlated with one
another, but interestingly, their removal does not have a substantial impact on the cor-
relation among the adjusted series. The specifications adopted start from a diagonal
structure where no dynamic interaction is allowed, and an Independent copula (de facto
an equation—by—equation specification). Refinements are obtained by inserting a Normal
copula and a Student—T copula (which dramatically improve the estimated log-likelihood
function values) and then allowing for the presence of dynamic interdependence in the
form of links either between lagged variables, or between lagged conditional means, or
both. Although hindered by the presence of some collinearity, the results clearly show a
significant improvement for the fit of the equation for realized volatility when volumes and
number of trades are considered. This is highlighted by significantly better model log—
likelihoods, lower overall information criteria and improved autocorrelation diagnostics.
The results of an out—of-sample forecasting exercise confirm the need for a simultane-
ous approach to model specification and estimation, with a substantial preference for
the Student-T copula results within the copula—based formulations. From a interpretive
point of view, the results show that the past realized volatility is not enough information
by itself to reconstruct the dynamics: its modeling and forecastability are clearly influ-
enced by other indicators of market trading activity, and simultaneous correlations in the
innovations must be accounted for.

Under equal models for conditional means, the copula approach is substantially equiv-

" One-step ahead predictions at time ¢ for the original series are computed multiplying the correspond-
ing forecast of the adjusted indicator by the value of the low frequency component at ¢t — 1.
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alent to other forms of specifications, be they parametric with a multivariate log-Normal
error, or semiparametric (with GMM estimation). The advantage of a slightly more ex-
pensive (from a computational point of view) procedure lies in gaining flexibility in the
tail dependence offered by the Student—T copula, which can be a plus when reconstructing
joint conditional distributions, or when reproducing more realistic behavior in simulation
is desirable.
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A Expectation Targeting

We show how to obtain the asymptotic distribution of the estimator of the parameters
of the vMEM when the constant w model is reparameterized, via expectation targeting
(Section 3.2.1), by exploiting the assumption of weak-stationarity of the process (Section
2). Under assumptions detailed in what follows, the distribution of 7 can be found by
extending the results in Francq et al. (2011) and Horvath et al. (2006) to a multivariate
framework and to asymmetric effects.
Framework

Let us assume a model defined by (1), (5) and (3) where the @\ )’s are associated with
negative returns on the basis of assumptions detailed in Section 2

Besides mean-stationarity, in order to get asymptotic normality also, we assume the
stronger condition that E(p.u}) exists (a similar condition on existence of the uncondi-
tional squared moment of the conditional variance is assumed in the cited papers).
Auxiliary results

In order to simplify the exposition we introduce two quantities employed in the fol-
lowing, namely the zero mean residual

Uy = Ty — MUt (46)

and
55t = wgf) — .’Bt/2 (47)

Since v; = p; © (e, — 1), and &, = py © &, © (I; — 1/2), we can easily check that

E(v;) =0

V(v) = E(pupy) ©E =3,
C(vs,v¢) =0 s#t

E(x;) =0

Viz,) =%,0%;
Clxs,x,) =0  s#t
C(vs, ) =0 s, t

We remark that 3, represents also the unconditional average of ;z;. By consequence,
the sample averages vy = T} Z; v; and xp = T71 23:1 T, are such that

a(5) G s8] R

The asymptotic distribution of T
By replacing (46) and (47) into equation (3) and arranging it we get

L L L
T - (az +06+ %) T =wtv— Y B+ Y )
=1 =1

=1

so that, averaging both sides,

()

=1

L
Tr=w + 6T+Z7l§T+Op(T_1)'
=1

L
I-> 5
=1
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Deriving T we get

I -1

L L
I—Z<a1+ﬁl+%> [(I—Z,@l>5T+Z’Yl§T
=1 =1 1=1

=p+ A" [BET + C%T] +0,(T™Y),

Tr = U+ +Op(T_1)

where p is given in (28).
By means of (48), the asymptotic distribution of Z7 follows immediately as

VT @ —p) 3 N[0,A"(BE,B' +C(%,0%,)C) A"
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