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Abstract

We characterise the mean and variance parameters that distributionally misspecified
maximum likelihood estimators can consistently estimate in multivariate conditionally het-
eroskedastic dynamic regression models. We also provide simple closed-form consistent esti-
mators for the rest. The inclusion of means and the explicit coverage of multivariate models
make our procedures useful not only for GARCH models but also in many empirically relevant
macro and finance applications involving VARs and multivariate regressions. We study the
statistical properties of our proposed consistent estimators, as well as their efficiency relative
to Gaussian pseudo maximum likelihood procedures. Finally, we provide finite sample results
through Monte Carlo simulations.
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1 Introduction

As is well known, the Gaussian pseudo-maximum likelihood (PML) estimators advocated by
Bollerslev and Wooldridge (1992) among many others remain root-7" consistent for the mean
and variance parameters of conditionally heteroskedastic dynamic regression models irrespective
of the degree of asymmetry and kurtosis of the conditional distribution of the observed variables,
so long as the first two moments are correctly specified and the fourth moments are bounded.

Nevertheless, many empirical researchers prefer to specify a non-Gaussian parametric distri-
bution for the standardised innovations, which they use to estimate the conditional mean and
variance parameters by maximum likelihood (ML). The dominant commercially available econo-
metric packages have responded to this demand by offering ML procedures that either jointly
estimate the parameters characterising the shape of the assumed distribution or allow the user
to fix them to some pre-specified values. In particular, EVIEWS and STATA support Student
t and Generalised Error distributions (GED) in univariate models (see the ARCH sections of
IHS Global Inc (2015) and StataCorp LP (2015)), while STATA additionally allows for Student
t innovations in multivariate ones (see the MARCH section of StataCorp LP (2015)).

However, while such ML estimators (and their Bayesian counterparts) will often yield asymp-
totically more efficient estimators than Gaussian PML if the assumed conditional distribution is
correct, they may end up sacrificing consistency when it is not, as shown by Newey and Steiger-
wald (1997) and Gouriéroux, Monfort and Zakotan (2016). Intuitively, the reason is that mean,
variances and covariances are natural location and scale measures for the multivariate normal
distribution but not for others, so one cannot generally expect to consistently estimate the mean
and covariance matrix of the standardised innovations under distributional misspecification.

For univariate GARCH models with zero conditional mean, Francq, Lepage and Zakoian
(2011) and Fan, Qi and Xiu (2014) have proposed modifications of parametric non-Gaussian
pseudo ML estimators which achieve consistency even when the assumed distribution is misspec-
ified. The purpose of this paper is to study in detail the statistical properties of the alternative
consistent estimators we proposed in Fiorentini and Sentana (2007), whose closed-form expres-
sions in terms of residuals readily generated by the commercial packages make them very easy
to code. As we mentioned in Fiorentini and Sentana (2014) and formally prove in Appendix
D, our estimators are asymptotically equivalent to the Fan, Qi and Xiu (2014) estimators for
the univariate GARCH model with no mean they considered, which in turn are asymptotically
equivalent to the Francq, Lepage and Zakoian (2011) ones.

Nevertheless, our estimators remain consistent in multivariate models with non-zero means.

The inclusion of means and the explicit coverage of multivariate contexts make our procedures



useful in many empirically relevant applications beyond ARCH models, which have been the
motivating example for most of the existing work. In particular, our results apply to dynamic
linear models such as VARs and multivariate regressions, which remain the workhorse in empirical
macroeconomics and asset pricing contexts.! In addition, our estimators are not affected by the
curse of dimensionality because they are effectively sample means of residuals, their squares and
cross-products. Obviously, they also apply in univariate contexts as well as in static ones.

Another important differentiating feature of our analysis is that we consider not only ML
estimators that fix the shape parameters but also procedures that jointly estimate them. In
both cases, we characterise the conditional mean and variance parameters that these procedures
can consistently estimate, providing closed-form estimators for the rest. In addition, we study
the relative efficiency of these modified procedures vis a vis Gaussian PML estimators.

The rest of the paper is organised as follows. In section 2, we introduce our proposed
estimators and study their asymptotic properties under misspecification, paying special attention
to their efficiency relative to the Gaussian PML estimators. Then, we evaluate their finite sample
properties by means of a Monte Carlo exercise in section 3. Finally we present our conclusions
and discuss avenues for further research in section 4. Proofs and auxiliary results are gathered

in appendices.

2 Distributional misspecification and parameter consistency

2.1 The estimated model

In a multivariate dynamic regression model with time-varying variances and covariances, the

vector of N observed variables, yy, is typically assumed to be generated as:

e = 1,(0) + =2 (0)et,
1 (0) = p(I;—1;0),
Zt(g) = E(It_l; 0),

where p() and vech [2()] are N x1 and N(N+1)/2x 1 vector functions describing the conditional
mean vector and covariance matrix known up to the p x 1 vector of parameters 6, I;_; denotes
the information set available at ¢ — 1, which contains past values of y; and possibly some
contemporaneous conditioning variables, and Ztl / 2(9) is some particular “square root” matrix
such that 2;/2(0)2%/2/(0) = 34(0). Throughout the paper, we maintain the assumption that
the conditional mean and variance are correctly specified, in the sense that there is a true value

of 6, say 0, such that
E(Yt“t—l) = Nt(ao) } ) (1)
V(yilli—1) = %¢(60)

'See Lanne, Meitz and Saikkonen (2017) and the references therein for recent examples of VAR models with
non-Gaussian innovations.




To complete the model, a researcher needs to specify the conditional distribution of ;. In
Appendix C we study the general case. In view of the options that the dominant commercially
available software companies offer to their clients, though, in the main text we study the situation
in which a researcher makes the assumption that, conditional on I;_;, the distribution of &}
is independent and identically distributed as some particular member of the spherical family
with a well defined density, or ef|l;_1;0,n ~ i.i.d. s(0,Iy,n) for short, where n denotes ¢
additional shape parameters (see appendix A.1 for a brief introduction to spherically symmetric
distributions). The most prominent example is the standard multivariate normal, which we
denote by n = 0 without loss of generality. Another important example is a standardised
multivariate Student ¢ with v degrees of freedom, or i.i.d. t(0, Iy, v) for short. As is well known,
the multivariate ¢ approaches the multivariate normal as v — oo, but has generally fatter tails.
For that reason, we define 7 as 1/v, which will always remain in the finite range [0, 1/2) under
our assumptions. Obviously, in the univariate case, any symmetric distribution, including the
GED (also known as the Generalised Gaussian distribution), is spherically symmetric too.>

For illustrative purposes, we consider the following two examples throughout the paper:

Univariate GARCH-M Let rj;; denote the excess returns to the market portfolio. Drost

and Klaessen (1997) proposed the following model for such a series:

Tt = py(0) + ot (0)er,
14(0) = 704(0), (2)
02(0) =w+ar3,, |+ Bo?_,(0).

The conditional mean and variance parameters are 8’ = (7, w, a, 3). Importantly, this model

nests the one considered by Fan, Qi and Xiu (2014) when 7 = 0.

Multivariate market model Let r; denote the excess returns on a vector of N assets traded

on the same market as r3/r. A very popular model is the so-called market model
ry=a+bry; + 91/2&??. (3)

The conditional mean and variance parameters are 6’ = (a’,b’,w’), where w = vech(2) and

O = 91/29’1/2‘

2.2 Asymptotic properties of the available pseudo maximum likelihood esti-
mators

Let Lp(¢) denote the pseudo log-likelihood function of a sample of size T' for the model

discussed in the section 2.1, where ¢ = (6’,n')" are the p + ¢ parameters of interest, which we

2See Gillier (2005) for a spherically symmetric multivariate version of the GED.



assume variation free. As we mentioned in the introduction, the most popular commercially
available software packages allow users to maximise Ly (¢) with respect to ¢. But they also
give them the option to fix the shape parameters to some admissible value 7. In what follows,
we will refer to a);p = (@:_p, f)’) as the joint (or unrestricted) maximum likelihood estimator and
to 9T(7_7) as the equality restricted one. An important special case arises when 77 = 0, in which
case O7(0) coincides with the Gaussian PML estimator 0.

As a benchmark, in Appendix A.3 we provide the asymptotic distribution of these estimators
under correct specification. In this section, though, we obtain their distribution under misspec-
ification. We consider several cases, in decreasing order of agreement with the true distribution.

We proceed as follows:

1. We transform the original set of conditional mean and variance parameters 6 into another
set w = (ml,m})" such that the inconsistencies resulting from misspecification affect the

elements of 7; but not the rest.

2. We simultaneously estimate both subsets of parameters by (pseudo) maximum likelihood,
which effectively allows the estimators of 7r; to mop up the biases that would otherwise
affect the estimators of m.. In this sense, it is important to emphasise that a restricted
PMLE of 7. obtained by fixing 7; to its true value would be generally inconsistent. The
same applies to GMM estimators that combine the non-Gaussian scores for 7. with the

Gaussian scores for 7;, unless the former do not depend on ;.

3. We discard the inconsistent pseudo-ML estimators of 7r;, replacing them by closed-form
consistent estimators that use the Gaussian scores with respect to m; evaluated at either
7t. or 7.(7) in a sequential GMM procedure. Given that our proposed estimators of those
parameters are effectively sample means of residuals, their squares and cross-products,
they are not affected by the curse of dimensionality. Importantly, we rely on standard
GMM theory to derive the joint asymptotic distribution of the original estimators and
the ones we propose by means of the usual sandwich formula, providing computationally
reliable expressions for the expected Jacobian and the asymptotic covariance matrix of the

influence functions.

4. We combine the consistent estimators of w. and 7; thus obtained to recover consistent
estimators of all the original parameters @, employing the delta method to derive their

asymptotic standard errors.

Throughout the paper, we use the high level regularity conditions in Bollerslev and Wooldridge

(1992) because we want to leave unspecified the conditional mean vector and covariance matrix



in order to maintain full generality. Primitive conditions for specific multivariate models can be

found for example in Ling and McAleer (2003).
2.2.1 When the true distribution is spherically symmetric

Let us first consider situations in which the true distribution is 4.i.d. spherical but different
from the parametric one assumed for estimation purposes, which will often be chosen for con-
venience or familiarity. Note that this covers situations in which the conditional distribution is
correctly specified, but we fix 1 to some 7 which does not coincide with the true value nj.

In this case, all the parameters but one can be consistently estimated. To make this statement

more precise, it is convenient to introduce the following reparametrisation:

Reparametrisation 1 A homeomorphic transformation rs(.) = [r,.(.),7%;(.)]" of the mean and

variance parameters 6 into an alternative set of parameters 9 = (9.,7,), where ¥; is a positive
scalar, and rs(0) is twice continuously differentiable with rank[Or!, (@) /00] = p in a neighbour-
hood of 8, such that

Nt(g) = Nt(ﬂ0)7
Ly @

Expression (4) simply requires that one can construct pseudo-standardised residuals
o 0—1/2 e}
g/ (9c) =%, (Fe)lye — pi (9e)]

which are i.i.d. s(0,9;1nx,m), where ¥J; is a global scale parameter, a condition satisfied by most
static and dynamic models.

Such a reparametrisation is not unique, since we can always multiply the overall scale pa-
rameter 1; by some scalar positive smooth function of 9., k(9.) say, and divide X7 (9.) by the
same function without violating (4) or redefining 9¥.. As we shall see in Proposition 2 below, a

convenient normalisation for the purposes of simplifying some of the expressions would guarantee
Elln|33(9¢)|¢o] = k- Ve ()

However, this is by no means essential since the estimators of 1. are numerically invariant to
the choice of scaling, so their asymptotic covariance matrix is unaffected.

For the examples in section 2.1, reparametrisation 1 is as follows:

Univariate GARCH-M We can write model (2) as

race = 1 (90) + 91205 (90)ef,
1(9.) = 505(9e), (6)
072(0) = 1+ 913, + Boi? (D).

The transformed conditional mean and variance parameters are 9., = (4,~, 3) and ¥;, whose

relationship with the original parametrisation is 7 = 9, 125 , =Yy and w = V.



Imposing (5) in this model would be tricky because we need to obtain

1 0o
E [ln (1—ﬁ +7 ijo Bjr%ﬁ_l_j)]

as a function of 9., which is probably best computed by numerically quadrature.

Multivariate market model We can write model (3) as
r, = a+ bryy + 9°Q°V2(w)el. (7)

The transformed conditional mean and variance parameters are 9. = (a’,b’,w’) and 9;,
where zo contains N(N + 1)/2 — 1 elements. Following Amengual and Sentana (2010), we can
achieve (5) by writing ¥; = |Q|Y/N and Q°(w) = Q/|Q|'/N so as to achieve |Q°(w)| = 1 V.

Appendix A.5 discusses explicit parametrisations of Q°(zo) that ensure this condition.

For simplicity, we shall define the pseudo-true values of ¥ and 1 as consistent roots of the
expectation of the spherical pseudo log-likelihood score, which under appropriate regularity
conditions will maximise the expected value of the pseudo log-likelihood function.

The next proposition extends the first part of Theorem 1 in Newey and Steigerwald (1997)
to multivariate dynamic models:

Proposition 1 If (4) holds, and €f|I;—1;py, is i.i.d. s(0,1y), where @ includes 9 and the
true shape parameters, but the spherical distribution assumed for estimation purposes does not

necessarily nest the true density, then the pseudo-true value of the joint ML estimator of ¢ =
(9.,94,m), doo, is such that V.o is equal to the true value 9ep.

This result confirms that a spherically-based PMLE can consistently estimate all the condi-

tional mean and variance parameters except the expected value of

E(0e) = [ye = m(9e)) 77 (9e) [y — by ()] = Dise (Vo). (8)

Figure 1 illustrates the extent of the inconsistency in estimating ¢; in a five-dimensional
version of model (7) estimated by pseudo maximum likelihood assuming a multivariate Student ¢
with unknown degrees of freedom when the true distribution is a discrete scale mixture of normals
as a function of the mixing probability and the ratio of the variances of the two components.
As can be seen from the depicted binding function, the relative bias ¥;~ /%9 can be substantial,
especially when the mixture is such that both components are equally likely but one has a much
larger variance than the other. Importantly, these relative biases are invariant to the true value
of ¥;. More importantly, while they depend on the cross-sectional dimension N, they do not

depend on the specification of the conditional mean vector or covariance matrix of the model.



-

In this context, in Fiorentini and Sentana (2007) we proposed to estimate ¥; by ¥;r(d.r),

where
T

Dir(9e) = 12 D 63 (00) )

t=1
The rationale for this estimator comes from the fact that the Gaussian pseudo score for ¥J;
is simply
1
21;

s9,¢(7,0) = [st(F) — N] (10)

whose expected value when evaluated at ¥ is 0 because the expected value of <7 (9.9) in (8) is
precisely Nv;9, and whose variance is proportional to the theoretical counterpart to Mardia’s

(1970) coefficient of multivariate excess kurtosis of &},
ko = B(<f)/[N(N +2)] - 1, (11)

where ¢; = €}’e} and the expectation is taken with respect to the true unconditional distribution
of the innovations.

If we regard (10) as an additional influence function, we can rely on standard GMM argu-
ments for just identified models to obtain the asymptotic variance of ﬁiT(@CT), as well as its
asymptotic covariances with the pseudo ML estimators 97 and ) by means of the usual sand-
wich formula C = A~'BA'"!, where A is the expected Jacobian and B the asymptotic covariance
matrix of the sample average of all the influence functions involved (see e.g. Newey and Mac-
Fadden (1994) for details). In doing so, though, we must carefully distinguish between ¥J;, which
is the parameter estimated with the misspecified log-likelihood function, and the parameter
estimated with the Gaussian score, which we shall refer to 9J; to avoid confusion. Specifically,
Proposition 2 If (4) holds, and €f|li—1; ¢y, is i.i.d. s(0,Ix) with kg < oo, where ¢ includes

¥ and the true shape parameters, but the spherical distribution assumed for estimation purposes
does not necessarily nest the true density, then

1.
Av.9. Ao, Aoy O
A <A¢¢ 0 >: o T
A{9i¢ “419,197; Iem o] "47]77 0
Ap,0, 0 Ay,
By.o. Bo.o. By By.g,
g — [ Bse Boi | _ | Bow Bow Bowm By,
B:f)’él B_'L_i Ien ¥in B”m Bn{% ’

with detailed expressions for all the elements in the proof.

2. If in addition (5) holds, then both A and B become block diagonal between 9. and (¥;,m, ;).



This proposition is very general, nesting several previous results in the literature. In partic-
ular, it generalises Proposition 5 in Amengual and Sentana (2010), who obtained expressions for
Agpgp and By in a multivariate regression model under exactly the same type of misspecification.
Obviously, it also applies under correct specification, in which case the information equality will
imply that Aggy = Bgge (see Proposition 8 in Appendix A.3).

Importantly, the above results also apply mutatis mutandi to restricted spherically-based
ML estimators of ¥ that fix 1 to some a priori chosen value 7. In that case, we would simply
need to replace ¥ by ¥i00(7) and eliminate the rows and columns corresponding to n from the
A and B matrices. In that way, we would also nest Proposition 1 in Bollerslev and Wooldridge
(1992), who focused on the Gaussian PML estimators (see Proposition 9 in Appendix A.4).

Finally, it is important to emphasise that reparametrisation 1 only plays an auxiliary role.
After obtaining consistent estimators of the transformed parameters 9. and 9; with the pro-
cedures we propose, it is straightforward to consistently estimate the original parameters € by
inverting the mapping rs(€). Moreover, the regularity of this mapping guarantees that we can

obtain asymptotic standard errors for these consistent estimators by means of the delta method.

2.2.2 When the true distribution is asymmetric

Although the assumption of spherical symmetry is widespread in theoretical and empirical
finance, its failure will invalidate the consistency results in Proposition 1. Fortunately, it is
possible to find analogous results in the asymmetric case too, but at the cost of restricting further
the set of parameters that can be consistently estimated under misspecification. Effectively, the
number of parameters that are inconsistently estimated goes from 1 to N(N + 3)/2, which
represents a minimal increase in the univariate case (from 1 to 2). To make this statement more

precise, it is convenient to introduce an alternative reparametrisation:

Reparametrisation 2 A homeomorphic transformation ry(.) = [ry.(.), ¥y (), r5:.()] of the
mean and variance parameters 0 into an alternative parameter set ¥ = (L, 1)), where ¥; =
(W, W) i is N x 1, 4b,. = vech(®,.), W,. is an unrestricted positive definite symmetric
matriz of order N and rq(0) is twice continuously differentiable in a neighbourhood of 6y with

rank[0r), (00) /06] = p, such that

1,(0) = p2 () + =2 ()i
,(8) = =2 () s gy [ (12)

This parametrisations simply requires the pseudo-standardised residuals

e (%) = 55 P )yt — 1i(3,)] (13)

to be 7.i.d. with mean vector 1,,, and covariance matrix ¥;,.



Again, (12) is not unique, since it continues to hold with the same 1), if we replace W;. by
K—Y2(4p,) W, K~V/¥(4p,) and 1p,,, by K~Y2(4p)1p;,, —1(3p,), and adjust pg(sh,) and X% (<p,)
accordingly, where 1(¢.) and K(v,) are a N x 1 vector and a N x N positive definite matrix
of smooth functions of 1, respectively. As we shall see in Proposition 4 below, a convenient

normalisation for the purposes of simplifying some of the expressions would be such that:

B | 0n'(%0) /0% - 02 (3p,) | o] = 0
E { dvec| S22 ()] /b, - [IN ® 5ol 2’(%)} ¢0} —0

(14)

However, this is by no means essential since the estimators of 1), are numerically invariant to
these location-scale normalisations, so their asymptotic covariance matrix is unaffected.

For the examples in section 2.1, reparametrisation 2 is as follows:

Univariate GARCH-M We can write model (2) as

rate = Diti§ () + 012 0F (4, )ed,
12 () = o3 (), (15)
op(P.) =1+ 77%41571 + ﬁ"ﬁl(ﬂc)-

.. . /
The new conditional mean and variance parameters are ¥, = (v, [3), ¥;,, and ,., whose

relationship with the original parametrisation is 7 = %—cl/ 2¢im, a =1,y and w = Y;,.

Multivariate market model We can write model (3) as

1/2 «
ry = Yy, +brag + ‘I’w/ -

The new conditional mean and variance parameters are ¥, = b, v;,, and ;. = vech(¥;.).

The next proposition provides the multivariate generalisation of Theorem 2 in Newey and

Steigerwald (1997):

Proposition 3 If (12) holds, and €f|I;—1; @, is i.i.d. (0,Ix), where ¢ includes ¥ and the true
shape parameters, but the distribution assumed for estimation purposes does not necessarily nest
the true density, then the pseudo-true value of the joint ML estimator of ¢ = (¥, ¥:,n), P,
s such that V. is equal to the true value ¢ .

If we further assume that the true conditional mean of y; is 0, and this restriction is imposed
in estimation, then 1,,, becomes unnecessary, thereby generalising the second part of Theorem
1 in Newey and Steigerwald (1997).

In simple terms, Proposition 3 says that in general, a parametric ML estimator based on a
spherically symmetric distribution cannot consistently estimate either the mean or the covariance
matrix of the i.i.d. pseudo-standardised residuals €§ (1) in (13) when the true distribution is

not spherically symmetric.



Figures 2A-B illustrate the extent of the inconsistency in estimating v,,,, and 9. in a univari-
ate model estimated by pseudo maximum likelihood assuming a Student ¢ with unknown degrees
of freedom when the true distribution is an admissible fourth-order Gram-Charlier expansion of
the standard normal as a function of the skewness and kurtosis coefficients.? As can be seen

1/2
ic0

from the depicted binding functions, the relative mean and scale biases (V00 — Yimo)/¥
and ¥, /®;q0, respectively, can be substantial when the skewness increases and especially the
kurtosis is large. Importantly, these relative biases are invariant to the true values of v;,, and
;.. More importantly, they do not depend on the specification of the rest of the conditional
mean or variance of the model.

In this context, in Fiorentini and Sentana (2007) we proposed to estimate 1p,,, and ;.

as Y1 (Yor) and Y0 (,r), respectively, where

1 T

¢imT(¢c) = TZ€§(¢C)7 (16)

T
’(/"icT(Q:bc) = wvech {11‘! Z [Sf(’lbc) - ’l:bimT(wc)] [ej;('lpc) - ¢imT(¢C)]/} : (17)

t=1
Once again, the rationale for these estimators arises from the fact the Gaussian pseudo scores

for v,,, and 1, are simply:

1 - *
S0t (,0) = S e (),

1 _ _
s0,0(,0) = SDN(EL @ W vee (€] ()ei () - In}

where Dy is the duplication matrix (see Magnus and Neudecker, 1988), whose expected values

at 1, are 0 because the expected value of

1 (oo ) = Wi (im0 — i) + P e
is 0 and the expected value of &} (¥, ¥;)er (P, ¥;) is In when 1, = 1;.

If we regard sy, (%, 0) and sy, (1, 0) as additional influence functions, we can again rely
on standard GMM arguments for just identified models to obtain the asymptotic covariance
matrix of ,, 7 (P.r) and ¥, (P,7), as well their asymptotic covariances with the pseudo ML
estimators {pT and 7)7 by means of the usual sandwich formula. Nevertheless, we must carefully
distinguish between 1);, which are the parameters estimated with the misspecified log-likelihood
function, and the namesake parameters estimated with the Gaussian score, which we shall refer

to as 1p; to avoid confusion. Specifically,

3Since the magnitudes of the biases do not depend on the sign of the skewness coefficient, we only show the
positive side of the admissible region. See Jondeau and Rockinger (2003) for a characterisation of the set of
skewness and kurtosis values that give rise to a non-negative density for the fourth-order expansion.
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Proposition 4 If (12) holds, and €;|I;—1;¢q is i.i.d. (0,Ix) with bounded fourth moments,
where @ includes ¥ and the true shape parameters p, but the distribution assumed for estimation
purposes does not necessarily nest the true density, then:

1.
Apop.  App,, Ay, Apn 0 0
;{:c'zbim Awimwim ‘Ad’imwic Awimn 0 0
A:( "4¢¢ 0 >: Afl/}c"pic A{lpi'm"pic Awie"/’ic "4’!,1’1677 0 0
Ai?)itﬁ A"Z’i"_pi A;bcn A;#icn A;Iamn A 0 0
Ag e 0 0 0 Ad i O

Agp. 0 0 0 0 A,

By, By, By Buwan Byg, Byp.
wetbin Bimtbim B Bwium By, 4. By, @
B:< Bso gwi >: g&pcwic Bémm«mc Byt gwim gwiﬂim gw?z‘pm
o, ", Yen Pim Vi nm NP, NP
b
PP,

’:pim’l_pim B}pzcwzm B’/r],l_pl'rn B'/J’zm{bzm B{sz'a’w

B 'l/’ic/l?;i'm B’lpzcﬂ)u Bn{bu, B{bimﬂ’ic B’J)icﬂ)ic

B

with detailed expressions for all the elements in the proof.

2. If in addition (14) holds, then both A and B become block diagonal between b, and
(Ipwnaﬂ)z)

As in section 2.2.1, the above results also apply mutatis mutandi to restricted spherically-
based ML estimators of v that fix 17 to some a priori chosen value 7). In that case, we would
simply need to replace ¥;,,., and ;.o by ¥;,o0(71) and ;... (1), respectively, and eliminate
the rows and columns corresponding to 1 from the A and B matrices.

Once again, we should emphasise that reparametrisation 2 only plays an auxiliary role. After
obtaining consistent estimators of the transformed parameters 1, and 1; with the procedures
that we propose, it is straightforward to consistently estimate the original parameters 6 by
inverting the mapping r,(@). Moreover, the regularity of this mapping guarantees that we can

obtain asymptotic standard errors for these consistent estimators by means of the delta method.

2.2.3 When the shape parameters are inequality restricted

So far, we have maintained the assumption that the shape parameters 1 are freely estimated.
In several important cases, though, they will be estimated subject to inequality constraints. In
the Student t case, for example, the reciprocal of the degrees of freedom 7 cannot be negative.
This means that what we have called the unrestricted estimator 7 will in fact be characterised
by Kuhn-Tucker (KT) conditions instead of the usual first-order ones. Somewhat surprisingly,
such inequality constraints may imply that the whole of 8 will be consistently estimated despite

distributional misspecification. The following proposition illustrates our claim:

11



Proposition 5 1. Let ¢, denote the pseudo-true values of the parameters 6 and n implied
by a multivariate Student t log-likelihood function. If the true coefficient of multivariate
excess kurtosis of €f, ko, is not positive, then 8. = 0y and 1., = 0.

2. If ko is strictly negative, then \/Tip = 0p(1) and VT(87 — 07) = 0,(1).

3. If ko 1s exactly 0, then VT will have an asymptotic normal distribution censored from
below at 0, and O will be identical to O with probability approaching 1/2. If in addition

Agy(@ooi po) = E[IN + 2 — 1(00)|{e}’ (Bo) |vec'[e} (Bo)e}’ (00)]} 231 (B0) 0] = 0, (18)
then T (87 — 1) = 0,(1) the rest of the time.

Intuitively, the reason is that the score with respect to the reciprocal degrees of freedom
parameter 71 evaluated under normality is proportional to the second generalised Laguerre poly-

nomial
$3(0)/4— (N +2),(0)/2 + N(N +2)/4 (19)

in the multivariate Student ¢ case (see Fiorentini, Sentana and Calzolari (2003)). In fact, as far
as Op is concerned, Proposition 5 is valid not only for the Student ¢, but also for any pseudo ML
estimator based on a symmetric generalised hyperbolic distribution (see Mencia and Sentana
(2012) for details). In addition, it is also true for ML estimators based on fourth-order spherically
symmetric expansions of the multivariate normal density, as well as on discrete scale mixtures of
normals in which the odds ratio of the components is given (see Amengual and Sentana (2011)).
More generally, it will be true for any leptokurtic spherical distribution that nests the normal as
a limiting case, and which is such that the scores with respect to the shape parameters evaluated
under Gaussianity are proportional to (19). In all those cases 67 = 67 whenever f)7 = 0, which
will occur when the sample coefficient of excess kurtosis of the innovations evaluated at the

Gaussian PMLE is non-positive.

2.3 Efficiency comparisons

As explained by Fan, Qi and Xiu (2014), the equality restricted estimators '(Ach(ﬁ) are not
necessarily more efficient than the Gaussian PML estimators under misspecification, the obvious
counterexample being an estimator that fixes 1 to a non-zero value when the true distribution
is in fact Gaussian. If we knew the true distribution of e, but still decided to use the wrong
log-likelihood function, we could minimise the asymptotic variance of {pCT(ﬁ) with respect to
7. In practice, we could estimate the required expressions by means of sample analogues, with
the unknown innovations replaced by estimated ones, and then choose 17 as the minimiser of
the estimated asymptotic variance, along the lines of Francq, Lepage and Zakoian (2011). The
comparison between the asymptotic covariance matrix of the resulting “optimised” estimator of

1 and the Gaussian PMLE deserves further investigation.
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Given existing software, though, practitioners are more likely to simultaneously estimate n by
maximum likelihood. In the next two subsections, we will make use of Proposition 2 above and
Proposition 12 in Appendix C, which generalises Proposition 4 to non-spherical log-likelihoods,
to compare the Gaussian and non-Gaussian PMLEs in detail for the univariate GARCH-M model

(2) and the multivariate regression (3).

Univariate GARCH-M In Fiorentini and Sentana (2014), we investigated whether the
joint and restricted estimators of 1, are more efficient than the Gaussian PML estimators in
the univariate GARCH model with no mean considered by Fan, Qi and Xiu (2014) when the
distribution used for estimation purposes is a Student ¢ but the true distribution is a GED. Our
results indicated that the Gaussian PMLE is always worse than the unrestricted ML estimator
that simultaneously estimates n. Those results are in line with the local power comparisons in
Fiorentini and Sentana (2010), whose focus is testing for mean and variance predictability in
univariate models using non-Gaussian-based classical ML tests. The next proposition extends
those results to the univariate GARCH-M model (15) without imposing any symmetry assump-
tion on the distribution used for estimating purposes or the true one, a fact that we emphasise

by denoting the shape parameters by .4

Proposition 6 1. Under standard regularity conditions, the asymptotic covariance matriz of
the Pseudo ML estimator of 1. in model (15) for fixed values of @ is given by S(Poo; o) -

V! (e0; o), where

S(ore) - [152 M(930) + 2L MO (0:.0) + MO (& so)L 0
[w’ZZ::(n) i (@:0) + 2= DM (5 ) + MU (@ «p)}
Vi, (Yo 0) = [20221( o) 60221;?0) 90} : (21)
_E{82 In fler[the0, Yoo (0)]; €] [ 1 ttbeo, Yicol€)] H%}
Dede €t[the0; Yioo(0)] €[V, Yino(0)]

[ Milds0) MiL(bio) ] _ g
‘[M?gw;«p) Mlﬁéw;so)]‘Mdd(‘b"”) (22)

and

Oln flei[th o0, Vico(0)]; 0]/ 02
4 { ( 1 + Et[’lﬂco, 1[Jioo(g)]31nf[€t[¢co7 ’(pzoo(g)]v Q]/aE > ‘ LPO}
Of( 4. O( 4.
- [ Vo) VG D) | miuse =)

*An analogous proposition applies when both the assumed distribution and the true one are symmetric. The
main difference is that 1,,, becomes consistent, so only 1, needs to be replaced. Furthermore, some expressions
simplify because Mg(qb, @) = M1 (¢p; ) = ¢ = 0 under symmetry. We discuss this case in detail at the end of
the proof of Proposition 6.
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2. In turn, the asymptotic covariance matrix of our consistent estimator of 1; is

. 32
[% Y0 LS p0e (i) (oW ooi OV 3 s @OW s i 00 (24)

SUAE (52— 12y

where ¢ and > are the coefficients of skewness and kurtosis, respectively, of the true stan-
dardised innovations, c(v;) = (¥;, 2¥;. ) and

1 00f*(¥.)
209%(¢,) O,

Wy (Yp) =FE

cp} . (25)
3. When o is jointly estimated, exactly the same expressions apply if we replace @ by 0.

Somewhat surprisingly, (24) provides an additive decomposition of the asymptotic covari-
ance matrix of our consistent estimators of t;, ¥,p(.r). The first term corresponds to the
asymptotic covariance matrix of our estimators of v, and v, in (16) and (17) if we knew ).,
while the second term reflects the additional sampling uncertainty resulting from the estimation
of .. Interestingly, though, this second term has rank 1 only.

Importantly, Proposition 6 also gives us the asymptotic covariance matrix of the correspond-
ing Gaussian pseudo-ML estimators by setting ¢ = 0. Thus, we can compare the efficiency of
the two estimators of 1, by simply comparing the scalars (20). For the Gaussian pseudo-ML
estimators, the relevant scalar simplifies to

2
(ﬁimo + 2w1i7§0¢ + o — ]_)

ic0 Yito

2 2

icO

S(to,0;0) = (26)
regardless of the true distribution. In contrast, we will usually have to resort to numerical
quadrature to compute (20) in the general case.

Figure 3 displays the ratio of (20) to (26) for all admissible fourth-order Gram-Charlier

expansions of the Gaussian density for a GARCH(1,1)-M model in which ;,,,o/ ¢3C/02 = .05 when
the pseudo log-likelihood is based on the Student ¢, a design we will revisit in the Monte Carlo
section. Although it is not clear a priori how the scaling factor S(¢.; ) vary with g, the
results clearly show that g, systematically leads to more efficient estimators than g = 0, at
least for the parametric configuration we have chosen.

Similarly, if we subtract (24) from the asymptotic covariance matrix of the Gaussian PMLE

of 1;, we are left with

C(¢io)cl(¢io)wipc(¢co§ <P0)V1?,i(".bco§ ©0)Way_(P0; o) [S(0; 09) — S(1; 00)] -

Therefore, our proposed estimator of 1, will be more efficient than its Gaussian PMLE coun-

terpart if and only if the Pseudo ML estimator of 1. is more efficient than the corresponding
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Gaussian PMLE. As a result, the evidence presented in Figure 3 implies that our consistent
estimators of ¢,,, and 1,. will also be more efficient than the Gaussian PMLEs when the true
distribution is a Gram-Charlier expansion of the Gaussian density.

These efficiency gains in estimating 1. and 1, will be inherited by our estimators of the
original parameters, whose distribution we can obtain as a straightforward application of the

—-1/2
ic

delta method.” Specifically, the estimators of T = v, /"4, o = 1,y and w = 1),, obtained
by combining the non-Gaussian PMLE of v with our consistent estimators of ,,, and v, will
be more efficient that both their Gaussian PML counterparts and “mix and match” estimators
that combine the non-Gaussian PMLE of v with the Gaussian PMLEs of ;,,, and ;..

Finally, we have also assessed whether the consistent estimators of 1; in (16) and (17) entail
any efficiency loss when the distribution assumed for estimation purposes is correct, in which
case the MLE of these parameters is fully efficient. Figure 4 displays the asymptotic variances
of the MLEs and Gaussian PMLEs of ,,, and 9, relative to the asymptotic variance of our
consistent estimators for the case in which the true and estimated distribution is a Student ¢
with unknown degrees of freedom. Given that the fourth moment of this distribution diverges to
infinity as the number of degrees of freedom converges to 4 from above, the asymptotic efficiency
loss of the Gaussian PMLEs of 1, can be made arbitrarily large, and the same is true of our
consistent estimator of ;.. But even in those circumstances, our proposed estimator of this
parameter is substantially more efficient than the Gaussian one. In addition, the efficiency loss
of (16) and (17) is much smaller for larger, more empirically realistic values of the degrees of

freedom, and their advantages over the Gaussian PMLEs persists for longer. Those efficiency

losses are not the same for the two parameters, though, being more pronounced for v¢,. than

1/}im .

Multivariate regression In the context of the multivariate market model that we have
used as our second illustrative example, Amengual and Sentana (2010) compared the efficiency
of the non-Gaussian pseudo ML estimator of the conditional mean parameters a and b with the

Gaussian estimator when the true conditional distribution is spherical and leptokurtic. Specifi-

®For example, in the case of a simple ARrcCH(1) model, the original parametrisation is
U? =1 (1+ wcx?_l) =+ 0633?—1,

so that we need to find the asymptotic distribution of a(v¢.,%,.) = 9,;.1.. But since the Jacobian of the trans-
formation is

[ 0a(Ye, ¥ic) /0%, O, 1,.) /0% | = ( i Y. ),

the asymptotic variance of ar = ﬁ}cwm(@c) can be easily obtained as a quadratic form in the joint asymptotic
covariance of ¥ and ¥,1(¢.r).
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cally, their corollary 1 states that the former is more efficient that the latter if and only if

Vico (M) Mﬁ(¢oo§ ®o)
Dio M (¢oo; 00)]”

They found that when true distribution is a two-component scale mixture of normals but the

< 1. (27)

distribution used for estimation purposes is a Student ¢, the pseudo ML estimator that jointly
estimates 1 is always strictly more efficient than the Gaussian-based one. Figure 5A illustrates
their results. However, they did not compare the efficiency of the estimators of the residual
variance parameters, which are also of interest in empirical applications.

Let us parametrise ©° in terms of the Cholesky decomposition ©27Q%€Q", with € unit

lower triangular and Qf, diagonal. For convenience, we partition o into wo; = vecl(2r)
and wp = (wp1,...,wpn-1)", which contains the N — 1 free parameters that we use to en-
sure that |Q%,(wp)| = 1, as explained in Appendix A.5. Further, we can partition zo;, into
w1, .-, WLN-1, of dimension N — 1, N — 2,...,1 respectively, which contain the strict

lower triangular elements in each of the columns of the matrix €2;. We can then prove that:

Proposition 7 1. Under standard regularity conditions, the asymptotic covariance matrix
of the Pseudo ML estimator of wo in model (15) is given by

I\/Ige((ﬁoo;so())
2
ME(Boos #0)]
times the inverse of a (AN? + AN — 1) x (AN? + LN — 1) block diagonal matriz with

respect to @wp, w1, @r2 - - ., WLN—1Which only depends on ©w, whose detailed expression
we provide in the proof.

(28)

2. The asymptotic variance of our consistent estimator of ¥; is given by

N[(N + 2)ko + 2]
N2

9% (29)
3. When n is jointly estimated, the same expression apply if we replace N by 1.

Given that this result applies to a Gaussian log-likelihood function too, in which case
M (90,0;09) = 1+ k and M (9g,0;¢,) = 1, the first part of the proposition immediately
implies that the non-Gaussian pseudo ML estimator of the variance parameters zo will be more
efficient than the Gaussian estimator if and only if (28) is less than 1 + k.

Figure 5B shows the ratio of (28) to (1 + x) for all possible two-component scale mixture of
normals when the assumed distribution is a Student ¢ and 7 is simultaneously estimated. As
can be seen, the Gaussian estimator is systematically dominated, except when the mixture is
such that there is a small probability of drawing from a component with very small variance,

i.e. the so-called inlier case in Amengual and Sentana (2011).
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On the other hand, the second part of the proposition says that our proposed consistent
estimator of the overall scale parameter is as asymptotically as efficient as the Gaussian PMLE.
The difference with Proposition 6 is that the asymptotic covariance matrices are block diagonal
between 9. and ¥; in this model.

Finally, it is also of some interest to assess the efficiency loss in re-estimating ¢¥; when the
true distribution is indeed a Student ¢ with unknown degrees of freedom. As in the univariate
case, we can make this loss arbitrarily large by choosing the number of degrees of freedom
arbitrarily close to 4. However, Figure 6 shows that the efficiency loss is more reasonable for
more realistic values. Therefore, it seems to us that this loss is probably worth paying to ensure

the consistency of the entire parameter vector.

3 Monte Carlo evidence

In this section, we assess the finite sample performance of the different estimators and testing

procedures discussed above by means of some extensive Monte Carlo exercises.

Univariate GARCH-M In our first simulation exercise we consider the univariate GARCH-
M model (2). As we saw before, this model can be easily written in terms of reparametrisation
2 with v, = (8,7)’, ¥;,, and 1,., while in terms of reparametrisation 1 we have 9. = (3,7,9)’
and v;.

We generate random draws of ¢f from four different distributions: a standard normal, a
standardised Student ¢ with v = 10 degrees of freedom, a standardised symmetric fourth-order
Gram-Charlier expansion with an excess kurtosis of 3.2, and another standardised Gram-Charlier
expansion with skewness and excess kurtosis coefficients equal to -0.9 and 3.2, respectively. For
a given distribution, random draws are obtained with the NAG library GO5DDF and GO5FFF
functions, as detailed in Amengual, Fiorentini and Sentana (2013). In all four cases, we generate
10,000 samples of length 1,000 (plus another 100 for initialisation) with 8 = 0.85, a = 0.1,
7 = 0.05 and w = 1, which implies that 6 = 1;,, = 0.05, v = 0.1 and ¥; = 9,, = 1. These
parameter values ensure strict stationarity of the generating process.

We estimate the model parameters twice: first by Gaussian PML and then by maximising the
log-likelihood function of the Student ¢ distribution. In both cases, we initialise the conditional

variance processes by setting 0% = (1 +~r%)/(1 — ), where r? = 1 S T2, which corresponds

1/2 1n addition, we compute our closed-

to an estimate of the unconditional variance of r;/w
form consistent estimators both assuming symmetry of the true distribution, and also allowing

for asymmetries. The Gaussian and Student ¢ log-likelihood functions are maximised with a
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quasi-Newton algorithm implemented by means of the NAG library EO4LBF routine with the
analytical expressions for the score vector and conditional information matrix in Fiorentini,
Sentana and Calzolari (2003).

We report the Monte Carlo medians and interquartile ranges of the estimators in Table 1.
We also report results for the estimators of aand 7 in the canonical parametrisation of the model
in equation (2). Under normality, the four estimators perform equally well in terms of small
sample bias and sampling variability. When the innovations follow a Student ¢ with 10 degrees
of freedom, the ML estimators outperform the Gaussian PML estimators, as expected. On the
other hand, our consistent estimators are very similar to the MLEs. Under the symmetric GC
distribution, our consistent symmetric estimator is the best. In contrast, the Student t-based
ML estimator of w is remarkably biased with a Monte Carlo median equal to 1.4512, in broad
agreement with the results displayed in Figure 2B. Of course, this bias is carried forward to the
estimators of « and 7 in the original parametrisation. Nevertheless, the Student ¢-based ML
estimators of the consistently estimated parameters 3, v and § are considerably more efficient
than the Gaussian PMLE, as expected from Figure 3. Finally, when we draw the innovations
from the skewed GC distribution, the Student ¢-based ML estimator of & also shows large
biases, in agreement with Figure 2A. This time our consistent asymmetric estimator is the best.
Somewhat surprisingly, though, the estimator of w that assumes symmetry does not seem to be
much biased, probably because w is large relative to §. Once again, the Student t-based ML
estimators of the consistently estimated parameters 5 and + are more efficient than the Gaussian
PMLEs. Overall, the univariate simulation exercise confirms the asymptotic results displayed

in Figures 2A, 2B, 3 and 4.5

Multivariate market model In our second exercise, we consider the multivariate market
model (3). Again, we consider several standardised multivariate distributions for &} including
a multivariate Gaussian and a Student ¢ with 8 degrees of freedom, a discrete scale mixture of
two normals (DSMN) with mixing probability equal to 0.2 and variance ratio equal to 10, and
an asymmetric Student ¢ distribution with ¥ = 8 and § = —1000 (see Amengual and Sentana
(2010) for further details). For each distribution we generate 1,000 samples of dimension N =5
and length T = 500 with a = .112¢5, b = {5 and @ = DY/2RD'/2 with D = 3.136 I5 and the
off diagonal terms of the correlation matrix R equal to 0.3, where £5 is a vector of fives ones.
Finally, we generate the strongly exogenous regressor 7,5 in each replication as an ¢.i.d. normal

with an annual mean return of 7% and an annual standard deviation of 16%.

®The medians of the estimators of the shape parameter 1 in the four designs are .0010, .0961, .3592 and .3856,
respectively. Those values compare favourably with the corresponding (pseudo) true values: 0, .1, .3615 and
.3875. Further, they are precisely estimated, with interquartile ranges .0119, .0389, .0375 and .0386.
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The Gaussian PML estimators of a, b are very easy to obtain using equation by equation
OLS. Similarly, the estimated covariance matrix of the OLS residuals yields the closed-form
Gaussian PML estimator of €2. The Student ¢-based ML estimator is computationally more
demanding because we need to numerically maximise the criterion function with respect to
2N + N(N +1)/2 + 1 = 26 parameters. For that reason, it is convenient to find very good
initial values to start up the numerical maximisation of the joint log-likelihood function. In
that regard, we first compute the method of moments estimator of the reciprocal of the degrees
of freedom parameter n suggested by Fiorentini, Sentana and Calzolari (2003), which is based
on the sample version of the coefficient of multivariate excess kurtosis (11). Next, we obtain a
sequential ML estimator by maximising the Student likelihood function with respect to n keeping
the other parameters fixed at their Gaussian PML estimates, as in Amengual, Fiorentini and
Sentana (2013). Finally, we jointly maximise the Student likelihood function with a quasi-
Newton method. Our numerical procedure is fast and reliable.

We report the results of the Monte Carlo experiment in Table 2 for several groups of parame-
ters. Specifically, we exploit the exchangeability of our design to report medians and interquartile
ranges of representative elements of the vectors of intercepts a and slopes b, the global scale

parameter 9; = |Q|/N

, and representative elements of the vectors vecd(€2°), vecl(€2°), vecd(S2)
and vecl(€2). Under normality all estimators perform comparably, as expected from Proposition
5. Similarly, when the true distribution of the innovations is a Student ¢, the ML estimator is
the best performer. Nevertheless, our proposed consistent estimator of the global scale para-
meter ¥; fares remarkably well, somewhat better than the corresponding Gaussian PMLE. On
the other hand, when the innovations follow a DSMN distribution, the Student ¢-based PML
estimators of 1; and the covariance matrix of the original parametrisation {2 are upward biased,
confirming the theoretical results in Figure 1. In those circumstances, though, both the sym-
metric and asymmetric versions of our estimators perform very well, with the former moderately
better than the latter, as expected. As already observed in the univariate simulation experi-
ments, the Student t-based PML estimators of a, b, £2° are substantially more efficient than
the Gaussian PML counterparts in those circumstances. Finally, when the innovations follow
an asymmetric Student ¢ distribution, the symmetric Student ¢-based MLEs of the intercepts
are noticeably biased. In contrast, the version of our estimator consistent under asymmetries
and the Gaussian PMLE are the best. Once more, though, the Student ¢-based MLE of the
slopes are not only consistent but they also dominate the Gaussian PMLEs. As expected, both
the t-based MLE and our consistent under symmetry estimator of €2 are biased. Overall, the

multivariate simulation exercise confirms the asymptotic results displayed in Figures 1, 5A, 5B
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and 6.7

4 Conclusions

We characterise the subset of conditional mean and variance parameters that distributionally
misspecified non-Gaussian maximum likelihood estimators can consistently estimate in multi-
variate conditionally heteroskedastic dynamic regression models. We consider not only ML esti-
mators that fix the parameters characterising the shape of the distribution but also procedures
that jointly estimate them.

We then exploit the Gaussian scores of the parameters that are inconsistently estimated by
the misspecified log-likelihood to derive simple closed-form consistent estimators for the rest.
Our proposed estimators are in effect first and second sample moments of residuals readily
generated by most software packages, which make them immune to the curse of dimensionality.

In addition, we show that when the true conditional distribution is either platykurtic or
mesokurtic, in the sense that the coefficient of multivariate excess kurtosis is either negative or
zero, pseudo ML estimators based on certain leptokurtic spherical distributions, including the
multivariate Student ¢ and indeed any symmetric generalised hyperbolic distribution, as well
as some discrete scale mixtures and polynomial expansions of the multivariate normal, provide
consistent estimators of all the parameters irrespective of the ellipticity of the true distribution
because they converge to the Gaussian PML estimators.

It is important to emphasise that the reparametrisations that we consider only play an
auxiliary role. After obtaining consistent estimators of all the transformed mean and variance
parameters with the procedures that we propose, it is straightforward to consistently estimate
the original parameters and to obtain their asymptotic standard errors by means of the delta
method.

The inclusion of means and the explicit coverage of multivariate models make our procedures
useful in many empirically relevant applications beyond ARCH models, which have been the
motivating example for most of the existing work. In particular, our results apply to dynamic
linear models such as VARs and multivariate regressions, which remain the workhorse in empirical
macroeconomics and asset pricing contexts.

We study the statistical properties of our proposed consistent estimators. We also assess
their efficiency relative to Gaussian pseudo maximum likelihood for two empirically relevant

examples: a univariate GARCH-M and a multivariate market model. In accordance with earlier

"The medians of the estimators of the shape parameter 1 in the four designs are 0, .1240, .3344 and .2023,
respectively. Those values compare favourably with the corresponding (pseudo) true values: 0, .125, .3344 and
.2014. Further, they are precisely estimated, with interquartile ranges .0043, .0233, .0297 and .0322.
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results in Amengual and Sentana (2010) and Fiorentini and Sentana (2010, 2014), it seems
that our modified estimators are usually more efficient than their Gaussian PML counterparts,
at least when the pseudo log-likelihood function is based on a Student ¢ distribution whose
shape parameter is simultaneously estimated. Those efficiency gains should translate into more
precise estimators of transformations of the model parameters of empirical interest, such as
impulse response functions in VAR contexts or Sharpe ratios and optimal mean variance weights
in portfolio allocation ones, as well as more powerful tests.

In a detailed Monte Carlo experiment we confirm that the ML estimators of the transformed
parameters we single out in our theoretical analysis are biased when the true distribution does
not coincide with the one assumed for estimation purposes. Nevertheless, our simulation results
also indicate that our proposed methods yield consistent estimators for all the parameters, and
with lower Monte Carlo dispersion than their Gaussian counterparts.

It is difficult to find empirically relevant examples of models for which reparametrisation 1
does not hold, so our spherically symmetric results can be directly applied to most static and
dynamic models. Our first example also shows that reparametrisation 2 applies seamlessly to
univariate GARCH-M models, including sophisticated asymmetric alternatives such as the one
in Sun and Stengos (2006). In turn, our second example confirms that this reparametrisation
can also be readily applied to multivariate regression models. Unfortunately, the same is not
generally true in multivariate GARCH models when the true distribution is asymmetric even if the
conditional mean is 0. The constant conditional correlation (CCC) model of Bollerslev (1990),
which assumes that 3;(v¢,,1,.) = S¢(¢¥.)RS:(¥.), where S; is a positive diagonal matrix,
;. = vecl(R) and R a correlation matrix, provides an important exception.® In most other
models, though, we may need to artificially augment the original parametrisation with 1,. and
,,, even though we know that 1,,,0 = 0 and ¥, = vech(Iy), which might lead to a substantial
efficiency cost. Furthermore, in doing so, we must guarantee that the parameters 1, remain
identified (see Newey and Steigerwald (1997) and Gouriéroux, Monfort and Zakotan (2016) for a
detailed discussion of these issues in univariate and multivariate models, respectively). Assessing
the efficiency costs of estimating those overparametrised models relative to using Gaussian PML
estimators in the original model would constitute a valuable addition.

In a univariate context with bounded fourth moments, Meddahi and Renault (1998) proposed
optimal GMM estimators that combine the Gaussian scores with an optimal weighting matrix,
which generally differs from the one implicit in the Gaussian PMLE. It would also be interesting

to study the efficiency properties of our procedures relative to a multivariate generalisation of

8Ling and McAleer’s (2003) generalisation of the CCC model and example 1 in Hafner and Rombouts’ (2007)
are other examples of multivariate models that can also be directly written using analogous reparametrisations.
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theirs.

When the true innovations have unbounded fourth moments, the variance of the Gaussian
scores for scale will be unbounded too, and the asymptotic distribution of our consistent esti-
mators will be non-standard, a property shared with the Gaussian PMLE and the Meddahi and
Renault (1998) procedures (see Hall and Yao (2003)). Alternative “robust” consistent estimators
such as multivariate versions of the ones mentioned by Andrews (2014), Francq and Zakoian
(2014) and Ling and Zhu (2014) would prove useful in those circumstances.

A comparison of the sequential estimators of the shape parameters discussed in Amengual,
Fiorentini and Sentana (2013), which keep 6@ fixed at the Gaussian PMLEs, with an analogous
sequential procedure which instead keeps them fixed at the consistent estimators we have studied
in this paper would be worthwhile too.

Finally, one of the reasons why practitioners prefer to use non-Gaussian distributions for
estimating GARCH models is that they are often not only interested in the conditional variance
of the process, but also in other features of the conditional distribution. For example, they
might be interested in its quantiles, which are required for the computation of commonly used
risk management measures such as V@R, or the probability of the joint occurrence of several
negative events, which is relevant for systemic risk measures. In contrast, the existing literature,
including our paper, focuses mostly on parameter estimation. An evaluation of the consequences
that the different estimation procedures which we consider have for such empirically relevant

functionals of the conditional distribution constitutes another fruitful avenue for future research.
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Appendices

A Auxiliary results

A.1 Some useful distribution results

A spherically symmetric random vector of dimension IV, €f, is fully characterised in Theorem
2.5 (iii) of Fang, Kotz and Ng (1990) as ey = e;u;, where u; is uniformly distributed on the
unit sphere surface in RY, and e; is a non-negative random variable independent of u;, whose
distribution determines the distribution of €7. The variables e; and u; are referred to as the
generating variate and the uniform base of the spherical distribution. Assuming that E(e?) < oo,
we can standardise &} by setting F(e?) = N, so that F(ef) = 0, V() = Iy. Specifically, if &7
is distributed as a standardised multivariate Student ¢ random vector of dimension N with v
degrees of freedom, then e; = \/m, where (; is a chi-square random variable with N
degrees of freedom, and &, is an independent Gamma variate with mean vy > 2 and variance
2vg. If we further assume that F (ef) < oo, then the coefficient of multivariate excess kurtosis
ko, which is given by E(e})/[N(N +2)] — 1, will also be bounded. For instance, kg = 2/(vo — 4)
in the Student t case with vy > 4, and kg = 0 under normality. In this respect, note that since
E(e}) > E?(e?) = N? by the Cauchy-Schwarz inequality, with equality if and only if e; = vV N
so that &7 is proportional to u, then k9 > —2/(N + 2), the minimum value being achieved in
the uniformly distributed case.

Then, it is easy to combine the representation of spherical distributions above with the higher
order moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the

third and fourth moments of a spherically symmetric distribution with V(e7) = Iy are given by
E(ejey ® €f) =0, (A1)
E(efe} @efel’) = Evec(ejef )ved (e5ef)] = (ko+1)[(Iny2 + Knn) +vec (In) ved (In)], (A2)

where K,,,;, is the commutation matrix of orders m and n (see e.g. Magnus and Neudecker

(1987)).

A.2 Likelihood, score and Hessian for spherically symmetric distributions

Let exp[c(n) + g(st,m)] denote the assumed conditional density of ef given I;_; and the
shape parameters, where ¢(n) corresponds to the constant of integration, g(s;,n) to its kernel
and ¢; = e}’e}. Ignoring initial conditions, the log-likelihood function of a sample of size T' for
those values of @ for which () has full rank will take the form Ly(¢) = S 7, l;(#), where
l($) = dy(8) +c(n) + g [<:(0),m], di(0) = In |, /%(8)| is the Jacobian and ¢,(8) = e (0)e} (6).
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Let s;(¢) denote the score function 0l;(¢)/0¢, and partition it into two blocks, sg:(¢) and
snt(¢), whose dimensions conform to those of @ and m, respectively. If p,(0), 3(0), c(n) and
g[st(0),m] are differentiable, then

snt(@) = 0c(n) /0n + Dg [<(6), 1] /00 = en(@), (A3)
while
sar(9) = 97 + CLELORIIND) _ 710) z0)] | 1) | = Zul)eate). (A1)
where
0di(0)/00 = —Zg(0)vec(ly),
061(0)/00 = —2{Z;;(0)e;(0) + Zs(0)vec [e;;(a)e;;’(a)]}, (Ab)
Zu(0) = Ouy(0)/00- 5,7 (0),
Zu(0) — Soved (S.(0)] /003, 0)0, 7 0)]
eu(0.m) = 0<t(6),n] €i(0), (A6)
eu(0,m) = vec{d[c,(8).n] € (0)e}'(0)-1n}, (A7)
and
6[st(0),m] = —209[s:(0),m]/0s (A8)

is a damping factor that reflects the tail-thickness of the distribution assumed for estimation
purposes. Importantly, while both Z4(0) and eg(¢) depend on the specific choice of square
root matrix Ei/2(0), sg:(¢) does not, a property that inherits from I;(¢). As we shall see in
Appendix C, this result is not generally true for non-spherical distributions.

Obviously, sg:(0, 0) reduces to the multivariate normal expression in Bollerslev and Wooldridge

(1992), in which case:

eq(6,0) = { sii((z’,g; } :{ vec [e}‘(;i?’)(a)—IN] }

Assuming further twice differentiability of the different functions involved, we will have that

the Hessian function hy(¢) = 9s;(¢p)/0¢’ = 0%1;(¢p)/dpd¢’ will be

9?di(8) | 9%g[s:(8),n] Ds1(6) Ds4(8) | g [s:(8),n] 9*:()
Boo: () 2000 ()2 06 08 ' o 0006
hop: () 951(6)/00 - 8% [s+(8),m] /s, (A10)

hyne(¢p) = 9%c(n)/0mom’ + 0%g[<(6),m] /omon,

(A9)
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where

0%d,(0) /aoaa':2zst(0)z;t(0)-% {ved [£;1(0)] ® I,,} dvec {Ovec [£4(0)] /00} /06', (All)
261(0)/0000" = 2Z,,(0)Z},(0) + 8Zx1(0)[In © £f(0)e’(8))Z,(8) + 4Zy(0) (e} (6) @ IN]Z:,(6)
+4Z(0)[€7(0) @ In]Z;,(8) — 2[e7'(0) %, /7 (8) @ L, dvecldpu;(8) /06)06'
—{ved [2;2(0)e; (0)er (0)S, /7 (0)] @ I, }vec{dvec [E4()] 100} /96’

Note that dc,(0)/00, 0*d,(0)/0006" and 5%s,(0)/0006’ depend on the dynamic model specifica-
tion, while 9%g(s,n)/(9s)?, 9%g(s,n)/0sOn’ and dg(s,n)/Ondn’ depend on the specific spherical
distribution assumed for estimation purposes (see Fiorentini, Sentana and Calzolari (2003) for
expressions for d(s¢,m), ¢(n), g(st,n) and its derivatives in the multivariate Student ¢ case,
Amengual and Sentana (2010) for the Kotz distribution (see Kotz (1975)) and discrete scale

mixture of normals, and Amengual, Fiorentini and Sentana (2013) for polynomial expansions).
A.3 Asymptotic distribution under correct specification

Given correct specification, the results in Crowder (1976) imply that e;(¢) = [e,(¢), e (P)]
evaluated at ¢, follows a vector martingale difference, and therefore, the same is true of the score
vector sy(¢). His results also imply that, under suitable regularity conditions, the asymptotic

distribution of the joint ML estimator will be VT (¢ — ¢pg) — N [0,Z71(¢py)], where Z(¢g) =
E[Zi(¢ho) b,

() = V[st(fb)lltfl;(ﬁ]=Zt(0)M(¢)Z2(9) —E ()11 8],
Z,(6) = (ng(e) I(l )—(Z”éa Zut(0) q) (A12)

and M(¢) =V [ei(¢)|¢]. In particular, Crowder (1976) requires: (i) ¢y is locally identified and
belongs to the interior of the admissible parameter space, which is a compact subset of RP*9; (ii)
the Hessian matrix is non-singular and continuous throughout some neighbourhood of ¢y; (iii)
there is uniform convergence to the integrals involved in the computation of the mean vector
and covariance matrix of s;(¢); and (iv) —E~' [-T71 3, ()| T >, hy (@) 2 1,4, where
E~Y[-T713Y", hy(9)] is positive definite on a neighbourhood of ¢y.

As for éT(ﬁ), assuming that 7 coincides with the true value of this parameter vector, the
same arguments imply that /T[07(7) — 0g] — N [0,Z,4 (¢)], where Zgg(¢py) is the relevant
block of the information matrix.

Proposition 1 in Fiorentini and Sentana (2007), which generalises Propositions 3 in Lange,
Little and Taylor (1989), 1 in Fiorentini, Sentana and Calzolari (2003) and 5.2 in Hafner and
Rombouts (2007), provides detailed expressions for M(¢). We reproduce it here to facilitate its

comparison to Proposition 2:
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Proposition 8 If ef|I;_1;¢ is i.i.d. s(0,Ix,n) with density exp[e(n) + g(s¢,n)], then

./\/lu(n) 0 0
M(n) = 0 My(n) Mg |, (A13)
0 M,(n) My(n)
Mu(n) = Mu(n)In, (Al4)
Mss(m) = Mgs(n) Tz + Kyn) + Mss(n) — Hvee(Iy)ved (Iy), (A15)
MST(TI) = UeC(IN>Msr("7)7 (A16)
My(n) =E [52(97?7)& n} =F [285(5;’17); + 5(%?7)‘ n] :

i = g {1 v [em ol = s [ ()] 1.

Mgr (1) = E{ [5(9,?7)% - 1} eit(¢)‘ ¢} =-E m&sg;,m' } :

Fiorentini, Sentana and Calzolari (2003) provide the relevant expressions for the multivariate
standardised Student ¢, while the expressions for the Kotz distribution and the DSMN are
given in Amengual and Sentana (2010) (The expression for Mys(x) for the Kotz distribution in

Amengual and Sentana (2010) contains a typo. The correct value is (N + 2)/[(N + 2)k + 2]).
A.4 Gaussian pseudo maximum likelihood estimators

Let 07 = argmaxg L1(0,0) denote the Gaussian PML estimator of 6. As we mentioned
in the introduction, 7 remains root-T' consistent for 6y under correct specification of w.(0)
and X;(0) even though the true conditional distribution of €f|I;_1; ¢ is neither Gaussian nor
spherical, provided that it has bounded fourth moments. The proof is based on the fact that
in those circumstances, the pseudo log-likelihood score, sg:(0,0), is also a vector martingale
difference sequence when evaluated at 8, a property that inherits from ey (6, 0). This property
is preserved even when the standardised innovations, €}, are not stochastically independent
of I;_1. The asymptotic distribution of the PML estimator of @ is stated in the following
result, which specialises Proposition 1 in Bollerslev and Wooldridge (1992) to models with i.7.d.

innovations with shape parameters p:

Proposition 9 Assume that the reqularity conditions A.1 in Bollerslev and Wooldridge (1992)
are satisfied.

1. Ifef|I,_1;p isii.d. D(0, Iy, p) with tr[K(p)]<oc, where @ = (0', p')', then VT (87—6p) —
N [0,Coo(60, 0; )] with

Con(8,0;p) = Agy (6, 0;¢0)Bag(8,0; p) Agy (6, 0; ),
Ago(0,0; ) = —E [hget(0,0)|] = E[Age:(0,0; 0)|¢] ,
Ago:(0,0; p) = —E[hgg:(0;0)| I;—1; ] = Z4:(0)K(0)Z,(6),
Boo(6,0; ) =V [s6:(6,0)|] = E [Boot(6,0; p)|ep]
Boot(0,0; ) = V[se:(0;0)| I_1; 0] = Zg(0)K(p)Ziy,(0),
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and

K(p)=V{ew(6,0)| I_1: ] = [ Ly 2(p) ] , (A17)

where
®(p) = Elejvec (e7e}’)| 4]
Y(p) = Elvec(eie;’ — In)vec (eief’ — In)| @]

depend on the multivariate third and fourth order cumulants of €, so that ®(0) = 0 and
Y(0) = (In2 +Knn) if we use p=0 to denote normality.

2. If ef|i—1; ¢ is i.1.d. s(0,In, pg) with kg < oo, then (A17) reduces to

k() = | ¥ 0

0 (k+1)(In2+Kny)+rvec(Iy)ved(Iy) |’ (A18)

which only depends on the true distribution through the population coefficient of multivari-
ate excess kurtosis kg.

A.5 Explicit parametrisation of the residual covariance matrix

Let us start with the simplest possible example in which €2 is assumed diagonal. In that
case, we can easily achieve |Q27,(w)| = 1 by writing w;; = ¥;exp(wp;) for j =1,...,N —1 and

wyN = U exp (— Z;VZEI ij>. Thus, the Jacobian of vecd(€2) with respect to ¥; will be

vecd(2p) = [exp(wpi), ..., exp(wpn—1),exp <_ Zj\f:—ll ij>]/

while the one with respect to wp = (w1, ...,wy_1) will be 9J; times

dvecd(£25) _ [ diaglexp(wpi), . . .,exp(@pn-1)] ] 7 (A19)

o), —exp (= 205 @) -y

where {y_1 denotes a vector of N — 1 ones and diag(wp) a square diagonal matrix with the
elements of the vector zop along the main diagonal. Obviously, in the special case of €2 scalar,
then Q%, = Iy and wp drops out.

Let us now move to the case in which, other than being positive (semi)definite, € is com-
pletely unrestricted. Let © = Q7,Qp€; denote the Cholesky factorisation of the matrix €, with
Qp diagonal and Q7 unit lower triangular. Given that |Qr| = 1, we will have that || = |Qp|
so we can ensure |Q°(zo)| = 1 by parametrising Qp as in the diagonal case above.

Using the product rule for differentials, we get that
dQ =dQr - QpQ) +Qp - dQp - Q) + QLQp - dQ,
whence

dvec(Q) = (2p2p @ Iy)dvec(Qr) + (Qp @ Qp)dvec(2p) + (Iy @ QLQ2p)dvec(2})
= [(QLQD & IN) =+ (IN X QLQD)KNN]dvec(QL) + (QL X QL)dvec(QD)

= (INn+Kyn)(Qr2p @ In)dvec(Qr) + (R @ Qr)dvec(2p).

30



Let Sy the unique 3N (N — 1) x N? matrix which transforms vecl(21) into vec(Qy, — Iy)
as vec(Q, — Iy) = Slyvecl(Q), where vecl(Q) is the $N(N — 1) x 1 vector that contains the
elements in the strict lower triangle of €2, stacked by columns (see Magnus (1988)). Given that

dvec(Qp) = dvec(Q, — In) = Slydvecl(2), we can finally write
dveC(Q) = (IN + KNN)(QLQD ® IN)S/NdUGCl(QL) + (QL X QL)EINd’UGCd(QD),

where Epy is the unique diagonalisation matrix which transforms vecd(2p) into vec(Qp) as

vec(Qp) = Elyvecd(Qp) (see again Magnus (1988)). Using this expression we can trivially

prove that
0 Q
el — (I + Ky (202 9 TS, (A20)
Ovec(2

Then, we can obtain the Jacobian of vec(€2) with respect to ¥; and wop from the expressions
for the Jacobian of vecd(€2%,) in the diagonal case.

Finally, let us study the fairly common situation in which €2 is estimated subject to the exact
single factor structure cc’ + Y, where c is an N x 1 vector and Y a diagonal matrix. Assuming

that Y is positive definite, we can always parametrise 2 as
T1/2(C* */ _l_IN)—rl/Q (A22)

where ¢* = Y~1/2¢c. Given that the eigenvalues of c*c* + Iy are 1 +c*c* (once) and 1 (N — 1

times), then || = |Y|- (1 +c*c*). As a result, if we write v;; = 9;(1+c*'c*) "N exp(wp;) for
j=1,...,N—land vyy = 9(1+c*c*) /N exp (— Z;V;ll ij>, we will ensure that || = 9V
as required.

As for the Jacobian matrices, it follows from (A22) that
dQ=dY Y2 (c ' +IN) Y2 1 X2 de* " P2 4 Y2 de X2 L YV (cte +Iy)-dYX 2,
whence
dvec(Q) = [Y12(c* ¢ + Iy) @ In]dvec(XY?) + (XV2c* @ Y1/?)dc*
+H(XV2 @ X2 de” + Iy @ T2 (c*e” + Iy)]dvec(Y/?)
= [(YY2c* & YV2) + (YV2 @ YV/2c)de
Pl 1 Ty) @ T + [y @ X2 e + Ty)] By X dvecd(X),

where we have exploited the fact that

dvec(YV?) = Elydvecd(Y'/?) = BN Y~ 2dvecd ().
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The derivatives of ~;; with respect to to ¥; and wpy, are simply (1 + c*’c*)*l/N times the
corresponding derivatives in the diagonal case we discussed above. Thus, the only remaining

derivatives will be
(%jj N 2192‘Ujj %
ac; N(1+c*’c*)(N+1)/ch'

B Proofs

Proposition 1

We can directly work in terms of the ¥ parameters thanks to our assumptions on the mapping
rs(.). Let us initially keep n fixed to some admissible value so as to focus on the spherically
symmetric score vector for ¥ in (A4). Given that the conditional covariance matrix of y; is of

the form ;3¢ (9.), it is straightforward to show that

Zs () Zo.11(0) Zo.st(9) } _ { 92 [0ps(9,) /09, =0 (9,)

0 Zﬁi st (79) 0

Hoved [53(90)] /003377 (90) © 377 (9.)] } - (B23)

29 ved (Iy)

Thus, the conditional mean and variance parameter scores will be

— a 4 ,'9C o— *
So.0(0,m) = 07 2 0) o112 )51, 9), me ()

1 Ol Zi ) o129 ) @ 530712 (9 wee (516 (9), m] - 1 (D) (9) Ty} (B24)

2 09,
and
soe(0,m) = 5 {315(9). mlse(9)-N}. (525)
But since
& (90, 9:) = V1/0:S; 200yt — i (Ve0)] = /io/Vie} = AV2e],
so that

st(0e0, ;) = (Vio/Vi)st = ANy,

we will have that

et (9e0,0i,m) = SN Lo, M)AV 2ef = 5(A gy, TI))\_I/Z\/aut, (B26)
est(Vco, Vi m)=vee [N s, mA~ tefer’ —In] =vee [§(A e, mA T — In] . (B27)

Then, it follows that Elej (90, %, n)|[li—1; 9] = O regardless of ¥; and m because of the

serial and mutual independence of ¢; and ¢, and the fact that E(u;) = 0. Similarly,
Elest(Vc0, D5, m)|Ii—15 p9] = E[6(A'st,m)A™ (s¢/N) — 1] o] - vee(Ly)
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because of the serial and mutual independence of ¢; and uy, and the fact that E(uu}) = N~ 11y.

If we define ¥;0(n7) > 0 as the value of ¥; that satisfies the moment condition

E [6I0 (st mAS () (st/N) — 1] o] = 0, (B28)
with
Aso(1) = Vico (1) /0, (B29)

then it is straightforward to show that

E{s9:[V9c0,Vioo(n), M) L1-1; 9} = O, (B30)

which confirms that ¥, and ¥;o(n) will be the pseudo-true values of the parameters corre-
sponding to a restricted PML estimator that keeps 7 fixed. Thus, we can understand A () in
(B29) as the “relative asymptotic bias” in estimating ¥;.

If we define 1, as the value of ) that satisfies the moment condition

E{Sﬂt[ﬁcoﬂﬁioo(noo)vnoo”‘ro(]} =0, (B?)l)

which we assume lies in the interior of the admissible parameter space, then it is clear that
90, Yico = Pico(My) and m., will be the pseudo-true values of the parameters corresponding to
the unrestricted PMLE that jointly estimates 17, and Moo = ¥ino /%0 the corresponding “relative

asymptotic bias”.
Proposition 2

To obtain the asymptotic distribution of the unrestricted pseudo ML estimators 91 and N7,
we need the asymptotic covariance matrix of the average scores as well as the expected value
of the average Hessian matrix evaluated at the pseudo true values ¢, = (9., ¥ioo, M) Given

that sy¢(¢,,) only depends on (90, Vino), Which is i.i.d. over time, it follows that

Elsni(doo) | It-1; po] = 0, (B32)

which in conjunction with (B30) proves the martingale difference nature of the misspecified
spherical score evaluated at the pseudo-true values. As a result, we only need the contempo-

raneous covariance matrix of the component of the score corresponding to the

observation,
which in turn depends on the contemporaneous covariance matrix of eg(¢..) and e,4(d.).

If we re-write e (@) as in (B26) and (B27), it immediately follows that

E[elt(qboo)e;t((z)oo)] = E{52()‘golgtanoo)>‘;olgtutu;}
= B 6100 AL st/ V)T = M7 (e p0) I
Blen(9a)elu(bc)] = B {30t )AL 2 Vi - ved [ st o) A som) ~ Ty ] | = 0
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by virtue of (A1), and

Eles(¢o)ey(¢o)] = E {vee [§(AL st o) (A st/ N) Nuguy — Iy ]
xvec [0(Axdst: Moo) Ag'st/N)Nupuy — Iy}
= B 50 st 1) Al /N)]? NJXQ
—2F [6(Asst, Moo) Ao st/N) ] wee (In) ved (In) + vee (In) ved' (In)
= (N]Ym)E DO st M) A se/N)]” (T2 + Kvw)
+ {(NNH)E S er o) Aee/N)]? — 1} vee (Iy) ved (In)]

= M (Poo; P0) (In2 + Kvw) + MO (dooi o) — Lvee(In)ved (1)

(T2 + Kyn) + vee (Iy)ved (Iy)]

by virtue of (A2) and (B28).
Moreover, it is clear from (A3) that e,:(¢.,) will be a function of ¢; but not of u;, which

immediately implies that Fley (¢, )er (¢ )] = 0 and

E[eSt((:boo)e;ﬂt((ﬁoo)] =K {Uec [5(Agolgt7 noo)Agolgt : utu;ﬁ - IN] e;"t((bw)}
= vec(In)E { [(As!st: Moo) Ao 5t/N) — 1] €]y (o) } = vec(In)MG (doo; 0)-

some algebraic manipulations we obtain

M (P p oph(9:0) o
Bo.o. (i 90) = Blso. (o) () o] = 1L\ 23 20) py [ O Di0) o
MUt p0) [ e[ (De0)] dueeS (D)
2 99, o9’
M (b o) —1 - [Oved [29 (I o o dvec[X5 (9,
( . 0) E|: [856( 0>]’U€C[Et 1(1900)]U€C/[Et 1('1900)] [algi(: 0)]

If we combine these expressions with (B23) and apply the law of iterated expectations, after
Oy (Vo)
00"

y
o

el (B3

(277 (9e0) ® B (9e0))]

_l’_

Ol . _
By.o;(doci P0) = El89.4(Poc)s0,t(Poo)lp0] = MSS(QbOO’(PQO;(-N taE

N[(N + 2)MZ(¢o0i P0) — N]
407

‘A/-'@C (1960; LPO)?

Bﬁiﬁz‘(d)oo;soO) = E[S%lt((:booﬂsoﬂ]:

)

Bon(Pooi P0) = El89.4($0)Shi(¢o0) 0] = W, (9co; 00)MG (Do P0),

Bﬁiﬂ(d)oo;CPO) = E[Sﬂit(¢oo)sg7t(¢oo)‘900}: Mg"(¢oo;900)7

N
2¥i00
where

W (903 p) = Za(D0)[0', vec (Iy)]" = E[Zar(D0)|4p0] (0", vec (Ty))'

_ g { 1 dvec’ [E4(F0)] Ody ()

5 59 vec[S; ()] 800} = E[Wyi(9o)|pg] = —E [ 59 ‘cpo] . (B34)
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ME (¢ @) = E{6°[c:(9),m] - [s:(9)/N]| 0}
M5 ) = N(N +2) 7" [1 4V {6[c(9),m] - [s¢(9)/N]| ¢},
MG (@5 0) = E [{0[c(9),m] - [st(9)/N] — 1} ()] ] ,

and
Byn(@oo; Po) = Elsni(Poo)s nt(¢oo)|‘Po] = My ((75007%00)

To obtain the expected value of the Hessian, it is convenient to write hyg: (@) in (A9) as

~4Z51(900)[IN @ {0(Aodst: Moo ) A Erer — INHZL (90)

/21 dvec [Op) (Vo)
e, Z7 2 (0.0) 0,15 | 200

+= {est(qboo)[ 1/2(1900) ® 2;1/2(19 & p}aav;/c {avec’[;;(ﬂoo)] }

—2Z1(9o0) €14 (Do) ® IN]Zy (V) — 2Zist (Do) €1t (o) ® IN]Ziy (V)
—5()\;3%, noo)zlt(ﬂw)zgt(ﬂm) - 2Zst(1900)Z/st(1900)

-1
B 286()\05?, Moo) {Z11(90)e} (Vo0)EF (Vo0) Zi (V)

+Z11 (Vo0 )€} (Vo0 )vec [€7 (F00) €} (Vo0 )| 2t (Vo) + Zist(Foo)veclef (Yoo )€t (Doo )€} (Do) Ziy (P10

+ Zit (Voo Jvecle} (Voo €7 (Foo)Jvec[€7 (Foo )} (Fo0)] Ziy (90) | -

Clearly, the first four lines have zero conditional expectation, and the same is true of the

sixth line by virtue of (A1). As for the remaining terms, we can write them as

—6( A2t Moo) Zit(Voo) Ziy (V0) — 206(A50 61 M) /05 + Zip (V00) A St} Ziy (950
—2Z5t(900) Ll (Vo) — 200(A 1, Ms0) /0 - (A 51)* Zist (Vo0 Jvec(upuy)ved (upuy) Zly (90,

whose conditional expectation will be

~ B8\ 6t Moo) + 200 t/N) - 06(AL 6t M100) /06 + Zit(950) Ziy (V) — 2Zist(90) Ziy (V)

—1 2 —1
R st O ) B 09,0y 0 K) + veey e (I 2 (01)

= M (Poo; 0)Z1:(V0) L1 (Vo)

~Zst(9o0) {MEL(boo; P0) (Ivz + Kivw) + ML (Doos o) — vee(In)ved (In) } Ziy (Fco),

where

Mi} (; @) = E{206[c:(9),m] /s - [s¢(9)/N] + 8[s(9), m]| 0},
12 (i) = N(N +2) 7 E{206[c4(9),m]/0s - <} (9)/[N(N +2)]| ¢} + 1.
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As for hypy(¢,,), it follows from (A10) and (A5) that we can write it as

{Z11(9o0)€F (Vo0) + Zist (Vo) vec [€] (Fs0)ef (90)] } - O5( AL 1,00 /ON
— [th(ﬂoo)ut)\;olﬂ\/a + Zst(ﬁoo)vec(utug))\golgt . 6(5()@}9, Noo)/ 0N,

whose conditional expected value will be
Zst(9oo)vec(In) E[(A s/ N) - 95(A 51, M00) /1] = = Zst (90 )vec(In ML (Pog; 0)

with
ME (5 0) = —E {[s4(9)/N] - 86[s1(9), m] /Om|}

Replacing once again Zj; (¥ ) and Zs(9) by the relevant expressions in (B23) and applying

.

the law of iterated expectations, we obtain

1\/151((;')00; ‘PO)E 8[.1;2(’[900)20_1(,0 )8“t(’l960)
t c

A9.9.(Doo; P0) = —E[hy,9.t(Pso) 0] =

Dine 99, o0’
ML (oo Oved [L2 (9 o o Ovec[X? (9.
#MaslOtn) | Qe BBl 21 9) o 37 00 2L P
M (ooi po)—1 . [Oved [S3 (D o o dvec[X2 (9,
el Oosio) A p [O0eCBRO] o g0 (37 0.0 O ) ()
M (ooi o) (N +2) = N
A0, (Di00) = —Elbogi(dollpo] = 2= EITID =Ny, (5,000,
N[N + 2 (b5 00) — N
s, (ssisp0) = —Blho,aa(@uo)lig] = 1Pl Pt o)
Aon(doi o) = —Ehyni(ds)|eo] :Wﬂc(ﬂCO;SOO)Mg(qboo;soﬂ)v
, N
Aﬂm(¢oo3 o) = _E[hﬁmt(d)oo)snt(d)oo)lsod = WMg"(d)ooS $o);
and

Ann(Poo; o) = —Elhnni (o) pg] = Mv{{r(ff’ooﬂpo)-

Let us now turn to our consistent estimator of 9; in (9). The fact that the Gaussian pseudo
score for this parameter is an influence function that only depends on ¥, and ¥; trivially implies

that

asﬂit(ﬂca 1917 0) -0 and 83197;t(1967 1927 O)

9, on =0

For analogous reasons,

aSﬂct(ﬂfaﬂﬁn) -0 85191-15("907191';77) — 0 and 857775(196719%77)
09; ’

a0, a0, =0
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We will also have that

681’ 9.,94;0 1 8;,(,' Ie) o .
ﬂt(a,lg) =hy ,1(9,0) = ~ i 51(9 >z:t V209,)er(9)
1 Oved [X9(9:)] o o . .
—219,6[,1;()][& V2(9,) @ 52V (8, vee [ (9)er (9)]
8s9,1(0c, U;; 0) 1 N
— g9, [wwat(9,0)= 1_9—?[9(19) — N - 2

But &,(9¥) = e; because we are evaluating these two expressions at consistent estimators of

both 9. and ;, whence we can prove that

1
Ag.5.(00,0;00) = Ag9,(90,0;00) = Wy, (F0; 900)77,07
N
20

Finally, we need to find out the asymptotic variance of the sample average of sy,:(99,0) as
well as its asymptotic covariance with the sample averages of sg.+(@y.), 59,t(Ps) and sy (P, ),
which coincide with contemporaneous variance and covariances of these influence functions be-
cause they are all martingale difference sequences.

The definition of the coefficient of multivariate excess kurtosis in (11) immediately implies

that
N[(N 4+ 2)ro + 2]

Bj.5,(0) = Els},4(0,0)leo] = : (B37)

46%
Tedious algebraic manipulations also show that
N 0
By.o,(Pi o) = Els9.4(dso)s0,t(F0,0)]pg] = mwﬁc(ﬂco; P )M 5(Pooi o)
N? o

N
By 5, (¢ o) = E[Snt(¢oo)319it<19070)‘300]ZMM%(QZ)O&CPO)

with

w0 = £ | {ats).m ) <1} (55 =1)| o]
MO (s ) = E [ert(ﬁb) (gﬁ - 1) ‘ 800} :

Finally, it follows from the above expressions that the condition for block-diagonality of A

and B between 9. and (9;,1,7;) is Wy_(9c0; o) = 0 regardless of the values of ¥;o and 1
because Wy (9.0, ¥ico) does not depend of those parameters in view of (B23). O
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Proposition 3

We can directly work in terms of the 1 parameters thanks to our assumptions on the mapping
ry(.). Let us initially keep n fixed to some admissible value. It immediately follows from

reparametrisation 2 that

Oy () /0P, = g () /0L + (W, @ Iny)Dvec[Sy > (3,)] /0L,
O () /O, = E77(w,),
O, () /0, = 0,

and
Duec[Su()] /oY, = (Lyz + Kyw)[Z;? () Wic @ Iy]dvee[S; ()] /0L,
dvec[S ()] /O, = 0,
duec[Si ()] /o, = (27 (,) © = (w,)]Dy.
Hence,
o) | oved [P (,)] o1/ 1y
Zzﬁclt(d)) - 877[’0 + 8¢c (’(pzm@IN)E (¢c)‘I’zc ’
Zy, n(Y) = v M
Zy. () = 0,
and
dved [ 2(4,)] 1/2 o—1/21 1/
Z'L/Jcst('l:b) = 8;/) [\I’ ®2 (wc)‘:[lc )(IN2+KNN)
Z¢i7rz'5t(¢) = 0’
Zop () = Diy(¥; 7 0w ).
As a result,
opg' () | dvec (57 YNy
sulipy) = | L) Qe el iy oty 2 w1 | i)l i )
1r0l/2
J QellB Wl 112 o 5101/ e (Sl (ap),m] - €F ()< () T )

0.
1 _
St (Wm) = SDN (B © B yvee {sli(),m] - &7 (e} (%) ~In}

0,0 (0.m) = SO0l (). ] - €7 ().
Let ¥,,00(Mm) and ¥, (n) = vech[¥;co0(n)], with ¥,.00(n) p.d., denote the solution to the
implicit system of N(N + 3)/2 equations
E[S’lﬁimt('wco’ wima wim 77)|900] =0 } ) (B38)
E[S¢ict (¢c07 ¢im7 ¢i07 77) |900] =0
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The time-invariance of Zy (1) and Zy,_ j:(1p) implies that v, (n) and ;. (n) will also
solve the alternative system of N(N + 3)/2 equations

E{é[gt(d)cOa '(pimv 'd)im 77)) 77] : Ezt (¢007 'lnbim’ ¢ica 77)|‘P0} =0 }
E{U€Ch {5[%(1:0007 wima 'lnbim n)a 77] : E;fk (¢CO7 wimv 'lpica 77)5?’(7%0: 'lnbirm d)ica "7)—IN} |900} =0 ‘

Given that
er(y) = U, S P () lye — () — S0 )] = O PlEd (W) — Wi, (B39)

with e7(1.) defined in (13), so that
1/2_«
¢ (Ye0) = Yimo + ‘Ilic/O €15

we can immediately see that the pseudo standardised residuals €7 (1) will be i.i.d.(v;,,,, ¥ic)
conditional on [;_;. Moreover, instantaneous transformations of €§ (%) such as
. ~1/2 ~1/24,1/2 _«
&1 (Yoo Vi Yie) = 3> (Wirno — i) + ¥, 20 e,
§t(¢c0» Yims Yic) = E;fk,("»bCOa Yims Vic)e ('lzchv Yims Vic)s

€eit( Yooy Vims Yie, M) and ese (¥, Vi, Vie,m) will also be i.i.d. As a result, the law of iterated

expectations implies that

E{S¢ct[¢007 ’l:bimoo (77)7 wicoo (77)7 77] ‘It—l; 900} =0, (B40)

which confirms that ¥.9, Ve (1) and ¥, (1) will indeed be the pseudo-true values corre-
sponding to a restricted PML estimator that keeps 0 fixed.

If we define i, as the solution to the ¢ equations

E{Snt [’lpcO? '(rbzmoo ("7), qvbicoo(n)v TI] |LPO} =0

which we assume lies in the interior of the admissible parameter space, then it is clear that

Ye0s Yimoo = Pimoo(Moo)s Yicoo = Picoo(Moo) and my, will be the pseudo-true values of the

parameters corresponding to an unrestricted non-Gaussian PMLE that also estimates 7. g
Proposition 4

This proposition is a special case of Proposition 12, so we omit its proof.
Proposition 5

The consistency of the Gaussian PML derives from the fact that E[sg.(00,0)|lt—1; ] = 0.
Thus, if the pseudo-true value of n, 1, say, is 0, then the Student ¢ based pseudo-true values of

the conditional mean and variance parameters, 0., say, will coincide with their true values 6
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by the law of iterated expectations. But since 7 is estimated subject to the inequality constraint

1 > 0, the population KT conditions that define 1., will be
Elspt(0c0; Noo)|P0] + Unoo = 05 1o > 05 Voo 2> 05 1)+ Voo = 0,

where v, is the pseudo-true value of the KT multiplier, and the expectation is taken with
respect to the true unconditional distribution of the observations (see Calzolari, Fiorentini and
Sentana (2004)). Hence, 1., = 0 if and only if E[s;(0¢,0)|¢] < 0.

Fiorentini, Sentana and Calzolari (2003) show that in the multivariate Student ¢ case s,;(8,0)
it is proportional to the second generalised Laguerre polynomial (19). Given that ¢;(0y) = &}’e},

we can write

N(N+2) N+2 1

sy1(00,0) = 1 5 51(80)+ 757 (60)

®) LK) 2
_ N(JV;LJr 2) []\E?;Vsj‘)2) - 1] + #[(e:’sb - N].

But since we have normalised the innovations so that E(efe}’|I;_1; o) = Iy, then
N =tr(Iy) = tr[E(eie; [Ti-1500)] = Eltr(eie;’) [ Ii-1: o] = E(et'e; | Ii-15 00)

by the linearity of the expectation and trace operators. Therefore, it immediately follows that

N(]\;+2)/€0}

Unoo = min{0, —E[s,:(00,0)|¢y]} = min {O, —
in view of the definition of kg in (11). Therefore, ., = 0 if and only if ko < 0.

To prove the second and third parts, we can use Propositions 1 and 2 in Calzolari, Fiorentini
and Sentana (2004) if we regard the Student ¢ based estimator &T as the “inequality restricted”
PML estimator of ¢, and the Gaussian-based estimator g~bT = (éT, 0) as its “equality restricted”
counterpart, both of which share not only the pseudo-true values (6o,0,vy) When ko < 0,
but also the modified pseudo-score my(8o,0,Vy00) = 5¢¢(00,0) + €41 - Uyoo, Where e,41 is the
(p + 1)" column of I,;1, as well as the expected value of the average Hessian A(poo;@o) =

—E[B¢¢T(¢0)’S"0]-
Specifically, Proposition 1 in Calzolari, Fiorentini and Sentana (2004) implies here that

Unoo * \/TﬁT = op(1),
while their Proposition 2 implies that

[ Aoo(Pooi P0)  Avn(Dooi o) | VT ( b — 6o >+ep+1ﬁ(@n:r — Upoo)

/Bn(¢007 900) Aﬂn(gboo; ‘PO) i ’f’T

*\/TﬁlT(OO’ 07 UT]OO) :Op(l),

[ Ago(doo; P0) Aon(Dooi Po) T ( éT — 6 ) o
/977((1)007900) A”W(¢oo;(100) | \/T 0 +ep+1ﬁ(UnT UT]OO)

—\/TITIT(OO, O) Unoo) :Op(1)7
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where 0,7 and U,r are the sample versions of the KT and Lagrange multipliers associated to

the constraint n = 0. As a consequence,

A00(¢Oo; (PO) “49 (¢ooa SOO) 9T — éT N 5 B
/07](¢oo7 (PO) An;]((f)oo, (‘00) :| \/T < f]T > + eerl\/T(UnT - UnT) = Op(].).

Part 2 immediately follows from the fact that v,. > 0 when kg < 0. Similarly, the first
statement of Part 3 follows from the fact that v, = 0 when kg = 0. As for the condition (18),
which derives directly from the expression for hg, (¢) in Fiorentini, Sentana and Calzolari (2003)
evaluated at (69,0), its role is to guarantee that Ag,(¢,.;pg) = 0. In this sense, it is worth
mentioning that condition (18) will be satisfied for instance if €} |l;_1; ¢, is i.5.d. s(0,In, )

with kg = 0 irrespective of whether or not it is Gaussian because in that case
E{IN +2 —1(00)]e; (80)[1:-1; 00, m0] = EI(N +2 — ¢1)/<rui[mg] = 0
by the serial and mutual independence of ¢; and u;, and the fact that F(u;) = 0, while

E{[N +2 — c¢(60)]e (00);"(80)|1i-1, b} = E[(N + 2 — g¢)seupuy|ny)

= NT'E[(N +2 = c)se|molIy = 0
by the definition of x¢ and the fact that E(u,u}) = N ~'1y. O

Proposition 6

The proof essentially applies the results in the proof of Proposition 12 to model (15). Specif-
ically, expressions (C64) and (C66) become

im0t ($.)905(4h,) /O Vit " W, 1(3h.)
o ) 1 27 tmYt c t c c m T ic c c
Zi(yp) = a0V o7 (,) - v
wic U?('Inbc) wic Uto('ltbc) 0 0
80% (1/))/81/) 1 ¢¢c30§2 (%)/5% cht(¢c§ ‘P)
Zooy(1h) = - 0 - 0
t(¢) 2%@0?2(1/%) QwicU;fﬁ('lpc) U§Q(¢c) %wz_cl
and

_ Oln fle(v); Pl
Oe ’

calth,0) =~ {1+ a(p TLGRAY

elt(¢7 Q) =

respectively, where

) = CO)—Vim _m Yim T Vim0 (be)
il e (N B s R i aer 1 (T

(B41)
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and

1 9o (¢,)
20%(¢.) O,
Then, a direct application of (C65) yields

suld) = | Zu(w) Zu(w) ]| 00O | | WITWO | | enbea ]

W’l,bct (’(pc) =

where

() = (Y 1)

~1/2
A(Ye) = ( %6 11/?—1 ) :
2 tic

Let us now define ¥;(0) = [¥imoo(0), Vicoo (@)] as the values of 1;,, and ;. that simultane-

and

ously solve the equations

{mnf{et[tbcg;wm )];p}‘%] o, (B44)
z2l1+ et[%o,%oo(g)]aln f{Et[tbcg;wm(e)]; p} (PO] _o (B45)

In what follows, we shall refer to the ratio
Ao (@) = Vi (0)/Vico (B46)

as the “relative scale bias” in estimating v,.y, and to

wimoo (Q) — wimO

poo(@) = (B47)
iz (e)
as the “relative mean bias” in estimating v,,,q, so that
<>('(pc()) wzmoo(g)
€ [%bc 7¢zmoo(g)7¢zcoo(g)] = “ -
o vikle) vl
wzcﬂ wzmoo(g) — wimO 1/2
= B48
T i erle B

We will also make extensive use of Wy, (V.;50) = E[Wy (¥.)|p] and Vy (Y.;0) =
VI[Wy ¢(¥,.)|e], which are defined in (25) and (21), respectively, which we will shorten to W
and V for the sake of brevity.

Given (C83), the expected Hessian is

Al = Elbawba o) alnd = { 3 GT00 WUTGTD }
W t 100 Y]
H V. wmﬂ’ g (0)] }Mgfj(qﬁ;cp){ r[9i00 ()| Wiy () Althieo(0)] } ‘Po]

E
wzcoo Mdd d)a ) ['(pzoo( )}W, A[wzcoo(g)]Mé{l(d)a SD)AWJZCOO(QH ’
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and

D(d;p) = r'[thin(0)IM(d; )10 (0)]

= |Gl N EO 12 (0)

We can then exploit the block structure of expression (B49) together with the partitioned

M) + M (5 0)| -

inverse formula to obtain A;ip Specifically, the upper left block of A;ipv A¥¥e say, will be

given by the inverse of

D(¢; ) (V + WW') — Wr'[3h; ()] My (¢ ) Althic(0)]
x { Al (@I M6 @) A (0)]} T Al @MU P)r[tinc (@)W = D(es ) V. (B50)

Similarly, the bottom left block of “417:11; will be given by

AP Ve = — [ Al (@IME (¢ 0) Ali(0)]} Alye(@)] MUy (5 @)1 [0 (@) W'V TID ™Y (¢ 0)
i p)e[Win (@)W VT, (B51)
where we have exploited that c(1p;) = A~ (y;.)r(v,).
Finally, the bottom right block of .Aww will be

-1

AV = LA ()] M (03 0) Al ()]} + { Al (@M 0) Al ()]}
X Al (@) M) (d; P[00 (@) )WV D™ (5 0)

X W' [1h0(0)] My ) Al (0)] { Alhic(@)IM (5 0) Alt)i(0)]}

e (@)IM (5 0) AT i (0)] + DTN )b ()] [thin0 (@) (W'VTIW). (B52)

-1

In turn, (C82) implies that the variance of the scores will be

B ; By, (Poo;
B¢¢(¢ooa 900) = V{Swt[wc&’(/)ioo(g)u QHQOO} = { B}pcwcgiz; :zg; Bzcz1éiooa :3; }

[P [t w00 200 |
[

:{ N(g50)(V + WW) Wr’wm@wfim P)ADenc (0 >]} (B53)
[wzcoo(gﬂ c?d(d)a )[wzoo( )}Wl A[¢zcoo<9)]MdOd(¢7 ) [¢icoo(9)} ’

where

N(#i9) = r'[Win(0)IMGi(¢5 0)r[9hi0(0)]

biwole) U EO T

Given that the expression for By, in (B53) is entirely analogous to the expression for Ay

M (5 0) + M (5 0) | -

n (B49), except for the matrix /\/ldod replacing the matrix Mé{l, it turns out that Cyy =
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A;#B¢¢Aq_ﬁp can be substantially simplified. Specifically,

B B! At
o = ( AVbe At < vve By, )( | >
wove = ) By, By, ) \ AV

= A¢C¢CB¢C¢CA¢C¢C + A’lpﬂpL,B’lbl'l/)cA’lpc’lpL + A’lpL’lpLB'llpzwcAlpzwc + sz’lpc,BwZ’lplszlpc‘

Given the expressions for By, y_ in (B53) and the inverse of A%<%c in (B50), the first term,
ie. AVe¥eBy, , A¥ebe will be

S(eipg) V' (V+ WW)V,

In turn, the second and third terms, A‘PWC/B%%A%% and A’PC'#CBipw A¥i%c | respectively,

will be given by

—D 7N )V IWC [1h00(0)] A Y000 (0)] MGs (3 )1 3300 ()] W'V LD (5 0)

= —S(¢; )V IWW'VL
Finally, the fourth term, i.e. A¢i¢c’3¢i¢i_,4¢i¢c, will be

DY @)V W [1h;00 (0)] Ath000 (0) I MG (5 0) Al (0)][thin (@) ]W'VID ™ (55 0)
= S(¢; o)V IWW' VL

If we add up all these four terms together, we end up with the expression in the first part of
the proposition.

Let us now move to the second part, which deals with the asymptotic covariance matrix
of our consistent, closed-form estimators (16) and (17). Proposition 12 implies that the only
additional non-zero elements of the expected Jacobian of the moment conditions augmented

with 4, are
A"_bi"l’c = _A(¢ZCO)M51(¢7 0; Qo)r(in)W,? A’lz’l'lj)z = _A(wzCO)Mgl(ﬂa 0; @)A(@chO)a (B54)

where vecd[ML(9,0; )] = (1,2)". Thus, if we make use of the partitioned inverse formula once

again, we get that the last diagonal element of the inverse of the expected Jacobian will be
Ags. A, N 0N]
P, = N - 0 Yebe Yebi = A-L = AL,
A [A¢i¢i ( Awid’c ) ( ‘Ai.b,ﬂbi A ap, 0 ATPﬂ/f‘i AT (¥i)-
As for the 1y block, it will trivially coincide with A;b}, while the 2p1p; block will be 0.
Finally, the 1,4 block will be given by

. Ap g, Ay
AV = Az A AL = AL ( Az O ) ( Veve i )
Pip T by \ T Apip. Ay,

_ -1 - cYe :l_ - 1rb7l1pc, — -1 - 1¥c
- ( Aﬂ’z{quwlwcAw v Ad’qd’zAwlwcA ) - _‘A{pi{piAd’iwc ( Avcve A"»b P! ) .
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As for the asymptotic covariances of the sample averages of the non-Gaussian scores for
Y, Spt(WPeg, Yino(0), 0), and the Gaussian scores for 1p;, S{pithOﬂbz’o: 0), the same proposition

implies that

B&iﬂ,i = A(¢icO)MdQJ(¢;SO)A(wiCO)’ (B55)

Biy, = Aio)Mgz($: @)rlihine(@)] W’ (B56)
and

B{bizpi = A(wico)Mgg(ﬁbS ) AYieso(0)]- (B57)

where the elements of M;(¢; ¢) are defined in the proof of Proposition 12 and vec[M%;(¢; )] =

UeC[M (¢70 90)] ( 7¢7K‘_ )
Therefore, the asymptotic variance of 1;(¢,7) will be given by

B'l/) ") B/ B- — A¥cve A/_
bibe! o five A
By, sz-az:i Bwi«m 1
B B! Avee
= A-L [,4 Avcwe AV < Yoo P, ) < , >A’— ]A— i
o [ Ao ( ) By, By, ) \ AVVe )7 0ive| T
B
-1 - e ;. -
_A'%ﬂn [A'l/’i"pc( Aveve A% ) < B;—W_ )]szp

A= 4 By, B e VAL | A Al By o Al
— A, «mwc( Db, z/wi) A ) Ao | Ao T e, 50840,

Let us look at each of these terms in turn. The first term will be given by

U VRN
= [AW;c0) M0, 0 0) A(1h00)] T A(1h00) M (0, 0; ) (30;0) W'V 1S (0, 0)

X W' (1;0) ML (W, 0; ) A (10) [A (1h;00) ML (1, 0; ) A (00)]
= 5(0,0) - c(¥;0)c (i) (W'VIW).

1 _
A’l,_bl'IZJ,LAJ’z"pLCd}Cw(‘AI A

To obtain the second term, as well as the transpose of the third one, we need

Avete By )+ Awiwc,lgij,i,pi = D70, 0)V "W [ (@) MZ7(¢0: ) A (i)
_Dil(g; pO)Vilwc/[wzoo(Q)]A[wzcoo(g)]Mdoé(q')a ¢)A(¢100) =0.

Finally,
Ad, b, sz P, ¢ 1/, =[A (¢icO)Mé{cl(¢7 0; @)A(wico)]_1A(¢z’c0)Mng(¢; ®)
¥ Uity
XA (V100) [A (500) MG (1, 0; ) A(h;00)] T = 1592 .,

ity (e = V)i
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The sum of the four terms confirms the second part of the proposition.
Let us now move to the last part of the proposition, in which g is jointly estimated. Assuming

no inequality constraints are binding, we can define its pseudo-true value g, from the equation

E{sgt[¢c07¢ioo(g)7 Qoo”‘PO} - F |:alnf{et[wcmwimoo(aggoo)a’(bicoo(goo)];poo} ’ ‘100:| = 0. (B58)

A direct application of Proposition 12 implies that

__ [ W@ | g
A¢Q - |: A(T/ch) :| Mdr(¢a (p)a (B59)

and

_ | Wy(¥)r [¢ise(0)] ,
B«pg——[ Y A ¢ ]Mdo,«(g,p),

with the elements of M (¢;¢) and M. (¢; ) defined in the proof of that proposition.

Now, to invert Agg, we need to compute

— A{lpcwc A¢i¢c/ A
‘AQQ - ;#QA?#L’A"Z’Q = 'AQQ B ( {‘PCQ 2/’2‘9 ) < A¢i¢c A¢i'¢i ) < _A:ici >

= Agp — (A;bchwcwcA%Q + AipigA%wcchg + Aipchwﬂbc/A%g + A;piQAwiwiAw)
But
Ay gAYV Ay o = D7 (0, @) (W'VT'WIME (¢ )10 (0)I [0 (@) | ML (5 ),

Ay oAV Ay o = =D (2, @) (W'VT WM (: 0)r[th00 (@11 [thine (@) M (5 0)
= A{I,ZJ(.QAwaC,Aw»LQ

and finally

Ay AV Ay, o = M (6 0) AW {AT ic (@) MEa(65 )] AT (o)
+D 7103 po)c[Wine (0)]€ [Wine (@))(W'VTIW) LA () M (¢ )
= M (¢: 0)[Mia(¢5 9)]~ My (85 )
+D" (0, 0)(W'VIW)MG! (é; 0)r [t (0)1 [0 (@) M1 (6 ),
where we have exploited the expressions for Ay, in (B59), A%<¥< in (B50), A¥i%< in (B51) and
A¥i¥i in (B52).
Hence
A = (Agp = AypAyuAue) ™t = {MIL(d;0) — MU (d; ) MUy 0)] " ML (i)}
= M (pi),

which does not depend at all on the dynamic specification of the model.

46



Similarly, the 1o block will be given by the matrix

) ) L AVt qBBS N\ [ A
ALY = — Ay Ao(Age — Ao Ay Ave) ™ = — ( Abibe A, ) ( .
A¢C¢CA¢ + A’lpzwc/A . rr
= (ol e ) M i)

) i)

. 0
B { AT 000 ()M (@05 0)] T M (@05 0) [MT (05 0)]™" }
because
AV Ay o+ AV Ay o = D7 (0, 0) V"W [th,0, (@) ML (05 )

~D7Y(e, 0)V W' [t (0)] M (d; ) = 0

and

AP Ve Ay g+ AP V1 Ay o = —D7 (@, 0)c[thing (@)]W'V I W[99, (@)l M1 (65 )
+ {A_l(wzcoo)[Mfl{d((pv 30)]_1A_1(¢icoo) + c[wioo(g)]clhbioo(g)](WlV_lW)D_l(Qa Q)}
XA (Vi) Mg (950) = A7 (i000) [Mia(#3 )]~ Mip (5 0).-

Finally, the ¥4 block will be given by the matrix

. 3 _ r _ A#’Jﬁc A¢i¢c,
AP = A+ Ay ApeMTT (. 0) Aty g A, = < Aive At >

0
+{ AT (Pie00) [Mia(d: 0)| I M (¢ 0) [IMT (¢ 0) ™ }
x{ 0 MG/ (o) My @)] AT (Whie) |-

As a result, the first row/column of the inverse of this augmented expected Hessian matrix

App, A?% say, will be equal to
( A Jibed  Jbotbe! ) = ((AVYe A¥s Q)

which coincides with the inverse of Ay plus some 0’s. But since the asymptotic variance of
the pseudo ML estimators is given by Cgg = A;;B¢¢Agé) and the By, block is unchanged,
the expression for the asymptotic variance of the pseudo ML estimator of 4, in (D96) remains
valid, except that it will be evaluated at o.

As for our consistent estimators, Proposition 12 implies that the additional terms of the

expected Jacobian are 0 while
Boy, = AT (i00) M5 ). (B60)

If we follow the same steps as before we get that

-1 ~1
(«4¢¢ 0 > _ [ fee O
Age Apb, AV AL
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where the different components of ‘A<_¢><1b can be found above. Similarly, the 1,¢ block will be
given by
ch'wc Awi"pc/ 0

bip _ _ g1 - -1 _ _ g-1 - Y1, Y, P,/
AP = A5 (A, 00 ) A= AGly (g, 00 ) [ AV av 4o
0 Aev:  pee

— -1 - c¥ec — iPe!
= A5l (g AV Mgy APV 0,

because A¥e¥<’ is 0. Thus, the asymptotic covariance matrix of ¥, and ¢,(9.p) will be the
same whether or not we estimate p. ]

When the true distribution is symmetric and the researcher imposes this restriction in esti-
mation, the non-Gaussian PLME of v;,, will also be consistent, in which case we only propose
to replace 1,.. At the same time, v,,, effectively becomes part of the consistent parameter set.
As a result, the Jacobian of the Gaussian score for ;. with respect to 1, will no longer be
0. In fact, it will coincide with the Jacobian of this score with respect to v;,,. However, the
expected Jacobian continues to be 0, which means that the asymptotic variance of wiCT({bCT)
which appears in the (2,2) element of (24) remains valid. In this context, we can also show that

the asymptotic variance of the non-Gaussian PMLE of v, will be given by

MO (¢: , _
W{%l((m + V505 (0 0) (Wi (%05 00) Vi (%05 P0) W, (%05 #0);

where we have exploited the fact that M (¢p;p) = M (¢;¢) = ¢ = 0 under symmetry.

wicoo (9)

Further, this asymptotic variance will continue to be valid when we simultaneously estimate o

because MP(¢; @) = M (¢h; ) = 0 too.
Proposition 7

We are going to exploit the results in Proposition 2 together with the fact that the parametri-
sations in Appendix A.5 guarantee that |Q2°(w0)| = 1 and consequently, that Wy_(9.0; ¢y) = 0.

The only new elements we need are the Jacobian matrices:
O (9e)
oa’, b, @’ , @)
Ovec[E7 (V)]
oa’, b, =@’ , @)

with dvecd(29,)/0w’, in (A19).

= (In Inrme O 0),

!
0w’y

- [o 0 (In +Knw) (508 © Iy)S)y (QE®QOL)E,NM]7

Given the block diagonality of the Jacobian between the conditional mean parameters v =
(a’,b’) and the conditional variance parameters ©o, it is clear that both Ay g, (¢ ; ¥o) and

By.9.(¢Ps; o) will also be block-diagonal, with

H .
Ary(Gucispy) = MG EL (L1 b, ) g e

2 2
M Ot My

48



and
M7 (Pooip0) (1
B . _ U \Poor F0 Hor el
"/"/(¢oo:900) 19100 Y U%/[ 4 IU’?M ® )
where iy, = E(rae) and 0%, = V(raz), so that
JiooMf) (Pooi #0) ( (Lt uie/o%s)  —par/oty > —
M7 (ooi o)) —tar /0%y 1/o%,

Since this expression applies to the Gaussian PMLE estimator too, we have that the efficiency

C‘W(Q%O; ¥g) =

ratio for the conditional mean parameters is given by

Ml(l)((poo; 900) . 79100
2 .
[I\AZPZI(¢OO; SOO)] 1910

which agrees with expression (16) in Amengual and Sentana (2010).

Let us now look at the conditional variance parameters. It follows from (B33) and (B35)

that both Bew(@s; ¥o) and Amw(@s; ¥o) require the computation of the following two terms:

Sn(23,Q, @In)(In +Knyn) o o
8vech’(§§D)E (ﬂ/ ®QI) (Q ! ® Q 1)
owp N L L
x [ (In + Kyn)(Q005 @ Iy)Sy (2L © QL)EQV%S‘;D) (B61)

and

SN(Q}’DIQ/L @In)(In +Knn)
Ovecd (QD)EN<Q/L ® QIL)

awD

vec(Q° Hved (Q°71)

x [ (Iy + Kyn)(QQp @ Iy)Syy  (Qp @ Qp)E), 2ecdSo) | (B62)

ow’,
However, the rank-1 matrix (B62) is identically zero. Specifically, 2°~! = Qzl'ﬂ%_lﬂzl, SO

ved (V051 In + Kyn) (0% @ Iy)Syy
=ved (751 N2 @ In) + (Iv @ Q.9%) K]Sy

= [ved (") + ved (. HK NSy = 2ved (Q;V)Sy = 2vecl' (")

by virtue of theorem 6.7 of Magnus (1988). But £, is unit upper triangular so vecl(2; ) = 0.

Similarly, we have

, Ovecd(Qp)

vee! (9512, (R ) By —vec (@ By 20lUD) gzt FreedE2n)

0wl dw' ow,
by virtue of theorem 7.3 in Magnus (1988). But

dvecd(Q2p)
0w’

diaglexp(wpi), .. .,exp(@wpn—1)]

TR e R

veed (2% 1) = vecd' ([exp(—w@p1), - - -, exp(—wpN_1), exp (Z;V:_ll wj>]
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Therefore, the asymptotic covariance matrix of the pseudo ML estimators of zo will be given
by (B61) times (28).
In turn, the worwo, block of (B61) will be proportional to

SN @ In)(In + Kyn) (270510 2 QY0510 Iy + Ky ) (2,97 @ Iy)Sy
= SN[(p0] ® Iv) + Ky (Iv © Q5,00))(Q; 025 12, 0 9,705 10, )
x[(2L92p @ In) + (In ® Q.25)Kyn]Sy
= SN(QpQL @ In)(Q. 705 ' @ Q705 10,1 (Q.0) ® Iy)SYy
+Sn(Qp07 © Iy) (V0510 © QY59 (v © Q.95 ) K Sy
+SvKnn (Iv ® Qp07) (270510 @ Q15 Q) (2095 © Iv)S)y
+SnvKyn(Iy © Qp07) (70510 © Q710597 (Iv © 2095 KyyS)y
=Sn(2p 2 Q"5 Sy + Sn(Q @ Q. Y)KanSy
+SNKan (27 @ NSy + SvKyn (279510, @ Q) Kyn Sy

= 28x{(2h © Q1052 + (2, © Q) Kan}S)y

by virtue of theorems 3.1 and 3.5 in Magnus (1988). Note that premultiplying by Sy effectively
selects the rows corresponding to the elements in the strict lower triangle of €27, while postmulti-
plying by S’y does the same for the columns. But since 2%, ® QzllﬂoD*lQZl is a block diagonal
matrix with blocks w%ﬂo_l and (le ® QZlI)KNN is symmetric, we can tediously prove that
the matrix above is block diagonal with respect to wpi,@rs...,@LN_1, Which implies that
the estimators of the elements in different columns of £2; are asymptotically independent.

Similarly, the o pzop block will be proportional to

Ovecd () Ovecd()
vec ( D)EN( /L® QIL)(QZUQ};IQZI ® QEI/QODflﬂEl)(QL ® QL)E{N VEC (/ D)
O0wp 0w’
dvecd (Qp) 1 1 dvecd(Qp)  Ovecd (p) , o _ 1, Ovecd(Q2p)
= v ' EN(NC Q° E’ — Q° 1 QP 1\ vvecaisap)
Jwp N2 ® Q) )Ey 0w’ Jwp (2" 00,7 ow’,

by virtue of theorem 7.7 of Magnus (1988)), where ® denotes the element by element Hadamard

product. But since 7, is diagonal, QOD*I ® Q;l = QODflﬂ‘zjl, SO

dvecd (p) , o1 _1,Ovecd(Q2p) In_1 ,
———=(Q7 Q) ——-— = Iny_1 —Un_ = (In_— _
dw (Qp 0Q57) e, (Ino1 —ln-1) 0 (In—1+Cn-1ly_1)
because
diaglexp(wp1); - - ., exp(@pn-1)]
, N-1_
b)) (51 =) | M R T

()
—by_
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Finally, the oy p block will be proportional to

Ovecd(Qp)

ow’,
Sn[(2p9] ®Iy) + Kyn(In @ QpQ))](Q,VQ% ' @ Q. V0% ')
Ovecd(Qp)

ow',
Ovecd(Q2p) 1revo1 , Ovecd(Qp)
W + SNKNN(QL QD X IN)ENW
Ovecd(Qp)

ow’,

SN(Q59) @ In)Ix + Kyy)(2°7 @ Q71 (Q @ Q1)El

X(QL X QL)ES\Z
= Sn(Iy®Q;VQ5 HE)y
= 2Sn(Iy @ Q;YQ5 HEYN

by virtue of theorem 7.4 in Magnus (1988). Once again, premultiplying by Sy selects the rows
corresponding to the elements in the strict lower triangle of 7, while postmultiplying by E'y
does the same for the columns corresponding to its diagonal elements. But since lel is upper
triangular and %' diagonal, which in turn implies that (Iy ® Q; Q%) is a block diagonal
matrix with identical upper triangular diagonal blocks, it is possible to tediously prove that
Sy(Iy® Qzl'ﬂ‘z)fl)E’N will be identically 0. As a result, the estimators of o, and wop will be
asymptotically orthogonal too.

Given the diagonality of the Jacobian matrices, the asymptotic variance of our consistent
estimator of 1J; will coincide with the asymptotic variance of its Gaussian version, which is given
by expression (29) because of (B36) and (B37) coupled with Ay _g.(90,0; ¥g) = By_p,(Poo; Po) =
0.

Finally, the estimation of i is irrelevant because both the A and B matrices are block diagonal

between 9, = (a’,b’, @’ , w’,)" and (¥;,7')’ since Wy, (905 @) = 0 in this case. O

C The general case of non-spherical pseudo likelihoods

C.1 Likelihood, score and Hessian for non-spherical distributions

Let f(e*; o) denote the assumed conditional density of e given I;_; and some shape para-
meters g. Let also ¢ = (0, 0) denote the p + q parameters of interest, which once again we
assume variation free. Ignoring initial conditions, the log-likelihood function of a sample of size
T for those values of @ for which 3(8) has full rank will take the form Lr(¢) = ST, l«(¢),
where Iy(¢) = dy(8) + In f [€}(0), o], d¢(0) = In|=;%(0)], £1(8) = =;/2(0)e4(0), and ,(0) =
vt — H(0).

The most common choices of square root matrices are the Cholesky decomposition, which
leads to a lower triangular matrix for a given ordering of y;, or the spectral decomposition, which
yields a symmetric matrix. The choice of square root matrix is non-trivial because Z‘% / 2(0) affects

the value of the log-likelihood function and its score in multivariate non-spherical contexts. In
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what follows, we rely mostly on the Cholesky decomposition because it is much faster to compute
than the sprectral one, especially when 33;(8) is time-varying. Nevertheless, we also discuss some
modifications required for the spectral decomposition later on.

Let s;(¢) denote the score function 0l;(¢)/0¢, and partition it into two blocks, sg:(¢) and
sot(¢), whose dimensions conform to those of @ and g, respectively. Assuming that p,(0),

Etl /2 () and In f(e*, p) are differentiable, it trivially follows that

ddy(6) N del* () Oln fle; () : o]

s0i0.0) = g+ g e
But since 5U€C/[21/2(9)]
9d,(0)/06 = —a—évec[z;l/”(e)] = —Zy(8)vec(Iy)
and
De1(0) 12 Om(0) _1/2, 0, Ovec[S, 2 (0)]
20 () g € (0) @ X, T O) ——5——
= —{Z,(0) + [e7'(0) @ IN|Z,(0)}, (C63)
where - / 1/
Z,,(0) = 0py(0)/00 - ;7 (0) (C64)
Z.(0) = dvec[21/2(0)]/00- [Ty @ ;% (0)] [
it follows that
@) = 12u(0).240)] | &9 | = 2u(O)es(0) (©69)
set() = Oln fle; (0);0]/00 = ent(d),
with
_ | eu(®) | _ | —0ln f[e;(6); 0l/0e™,
cul®) = [ e.t(9) } B [ —vee {Iy + 0 fl=1(0); ol /0" <o) |- (O50)

Similarly, let hs(¢) denote the Hessian function 9s;(¢)/0¢’ = 021;(¢p)/0pO¢’. Assuming

twice differentiability of the different functions involved, expression (C63) implies that

06’ Oe*de*! 06’ Je*de*!
because
dey (8, @) = —d{01n f[e;(0); 0] /0™ }. (C68)
In turn,

deyy(6, 0) = —dvec [W - s:'(B)}

— —[;(6)  1nd {‘%W} - {IN ® (%W} dei®)  (C69)
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implies that

deu(d) _ Deu(b0) _ 6 1n f[e(0); o] 9< (6) oln fle;(6): 0]\ ¢ (0)
o0 = ag  — @)W e _{IN® e } T

0?1 ¥(0); 0l
i (@)ony T Okl OTEOR 7 0) 4 e )1z 0)). (CT0)
Oe*0e Oe
Finally, (C68) and (C69) trivially imply that
0%en(0,0) _  0°In[lef(8); o]
0000’ Oe*0g ’
a2est<07 Q) _ * 9? lnf[sf (0)7 Q]
T@g’ = —[Et (0) ® Iy] 9 00 .
Using these results, we can easily obtained the required expressions for
oey (¢ Oegt(d
hoo(¢) = Zu(0) alté/ ) Z:(0) 81;9(’ )
ovec|Zy: (0 Ovec|Z (0
+leh(o) o1, 2LON 1o (g 1) ALl o

hogi(d) = Zi(0)0es(¢)/00" + Zs1(0)0est(h) /00, (C72)
hoot(¢) = 01 flef (6);0]/000¢.

Importantly, while Zy(0), Zs(0), Ovec|Z;(0)]/00" and Ovec|Zs(0)]/00" depend on the dy-
namic model specification, the first and second derivatives of In f(e*; ) depend on the specific
distribution assumed for estimation purposes.

For the standard (i.e. lower triangular) Cholesky decomposition of 34(0), we will have that
dvec(Z;) = [(%; /g Iv)+(In® Ei/Q)KNN]dvec(Ez/z).

Unfortunately, this transformation is singular, which means that we must find an analogous
transformation between the corresponding dvech’s. In this sense, we can write the previous

expression as
dvech(Sy) = [Ly (512 @ Iy)Ly + Ly(Iy ® 3Ky yLiyldvech(SH?), (C73)

where Ly is the elimination matrix (see Magnus, 1988). We can then use the results in chapter
5 of Magnus (1988) to show that the above mapping will be lower triangular of full rank as long
as 2, /2 has full rank, which means that we can readily obtain the Jacobian matrix of vech(Zl/ 2)
from the Jacobian matrix of vech(X;).

In the case of the symmetric square root matrix, the analogous transformation would be
dvech(y) = [DL(E}? @ Iy)Dy + D (Iy ® E}/%)D y]dvech(S)/?),

where DX, = (D’yDy) 1D/ is the Moore-Penrose inverse of the duplication matrix (see Magnus

and Neudecker, 1988).

53



From a numerical point of view, the calculation of both L]\/(Ztl/2 ® Iy)LYy and Ly(Iy ®
2%/ 2)K ~nLy is straightforward. Specifically, given that Lyvec(A) = vech(A) for any square
matrix A, the effect of premultiplying by the %N (N+1)x N2 matrix Ly is to eliminate rows N+1,
2N+1 and 2N+2, 3N+1, 3N+2 and 3N+3, etc. Similarly, given that LyKyyvec(A) = vech(A'),
the effect of postmultiplying by KxnL’y is to delete all columns but those in positions 1, N+1,
IN+1,... . N+2, 2N+2,..., N+3, 2N+3,. .., N2

Let F; denote the transpose of the inverse of LN(Z,}/2 Q@ IN)Ly +Ly(Iy ® Etl/2)KNNL’ ,
which will be upper triangular. The fastest way to compute

dvec [21/%(0)]
96

_ 1 Ovech’ [%4(6)]

—1/2
Ty @ 5,17%()] = 57

FLy(Iy @ X%
is as follows:

1. From the expression for dvec [3:(0)] /00 we can readily obtain dvech’ [X:(0)] /06 by

simply avoiding the computation of the duplicated columns
2. Then we postmultiply the resulting matrix by F;

3. Next, we construct the matrix

> o .. o0
—1/2
Ly(ly @ 5%) = Ly . L
0 0o - 2;1/2

by eliminating the first row from the second block, the first two rows from the third block,

..., and all the rows but the last one from the last block
4. Finally, we premultiply the resulting matrix by dvech’ [¥:(6)] /00 - Fy.

C.2 Asymptotic distribution
C.2.1 Under correct specification

Proposition 10 If ef|; ¢ isi.i.d. D(0,Iy, @) with density f(e*,0), then

() = LOMZO)
_(2a0) 0\ _( Zul0) Z4(0) ©
w0 = (P75 )= (7 5 1),

en]

and

Maa(o)

M
M@:[ (0 M.r(0)
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with
(0) = Vleu(9)|#] = E [0°In f(e]; 0)/0*0e™| o] ,
(o) = Elew(¢p)est(d)'|¢] = E [8In f(ef; 0)/9e* 0™ - (e @ In)] ] ,
ss(0) = Vlew(9)|#] = E [(ef @ Iy) - 8*In f(e]; 0)/9e*0e™ - (¢} @ In) @] — Knn,
(o) = Eleu(¢)ely(#)|¢] = —E [0°In f(e}; 0)/ 0" 90| 0] ,

(0) = Eles(®)er(#)|¢] = —E [(ef ® In)0” In f(ef; 0) /0" €| o] ,
and

M. (0) = Vien(¢)|p) = —E [0*1n f(e}; 0)/0000'|¢] -

C.2.2 Under misspecification

Proposition 11 If (12) holds, and €} |I;—1; ¢q is i.i.d. (0,In), where ¢ includes ¥ and the true
shape parameters p, but the distribution assumed for estimation purposes does not necessarily
nest the true density, then the pseudo-true value of the feasible parametric ML estimator of

¢ = (YL Pl Vi, 0), G, 18 such that .., is equal to the true value .
Proof. We can directly work in terms of the 1 parameters thanks to our assumptions on
the mapping ry(.). Let us initially keep o fixed to some admissible value. The parametric
score vector for the remaining parameters will then be given by (C65), with Z, ;(¢) = 0 and
Zd’imst(w) =0.

Since we are systematically working with lower triangular square root decompositions, we
can write

Zop, () = Ovech'[S52(9,)]) 0, - L[, @ 2777 ()0, V7],

Zop,,o($) = Ovech'(%,[%) /0%, LIy ;).

Given that \Ile C/ is upper triangular, ¥, 125 f 1/2 (v,) is lower triangular and Iy is diagonal,

Theorem 5.7.i in Magnus (1988) implies that

@, @ w PET gLy = Ly 9" @ w1 Pe Py, Ly,

(Iv @ ¥,y = LyLy(Iy© ¥, )Ly,

whence
8’[)€Ch/[ Ol/z(wc)] 1/2 o—1/21 —1/21 1+
Zy (V) = o Ly[¥,” ® X%, () ¥, 2Ly Ly,
o (¥ 1/2 B
Zy,s(¥) = %LN(IN®‘IQCI/2/)L’NLN.
As a result,
_ Quech' (¥ 1/2 dln flef(y);
Sy, (¥,0) = &é)L (In® ¥, 1/2) yvech {IN—l—rlﬁa;EMe;"(qp)}
—1/2.01n flef(¢);
S, 1 (P 0) = _\I:icl/Q’JW
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and

of 11501/2
Syt (Y, 0) = {8“5121/)0) 4 Jvec [za]:p (%) (Yim ® IN)} 2 (4 )sy, 1(, 0)

©1/2

SOl el m o  hyveen {1y + 2 )

since vech(A) = Lyvec(A) for any N x N square matrix A regardless of its structure.

Let ;,,00(0) and ;... (o) denote the solution to the implicit system of N + N(N + 1)/2
equations (B38), which we assume is such that W;.(@) is p.d. Given the expression for
€7 () in (B39), we can immediately see that €} (1.9, Yim, ¥ic) Will be i.i.d.[\Il;l/Q('L/)imo -

Yim), ‘I’;cl/Q\I’icO‘I’;;l/Z] conditional on I;_;. This, together with the full rank of \Il;cl/m im-

plies that

B aln f[szk [wCOa wzmoo(g)a "choo(Q)L Q]
Oe*

In addition, we know from Theorem 5.6 in Magnus (1988) that the matrix

]t—1§900:| =0.

Ly(Iy © %, /"Ly

will be upper triangular of full rank. Similarly, given that we have defined ,, = vech(¥;.),

the matrix (%ech'(\IfV2

")/ 0, would also be of full rank in view of the discussion that follows

expression (C73).

As a result, we will also have that

vech {E |:IN + alnf[gtk [wc()v ¢zg;(g)? d)icoo(g)]; Q]

EZ‘/ [¢c07 ’lnbimoo(g)a "pzcoo(g)]

Itl?‘PO]} =0.

E{S’l/’t [wco’ 'lvbzmoo(g)v ¢icoo(g)7 Q] ’It—l; QDO} =0, (074)

Consequently,

which confirms that 1., ¥;,00(0) and ¥,...(0) will be the pseudo-true values corresponding
to a restricted PML estimator that keeps g fixed.

If we define g, as the solution to the ¢ equations

E{Sgt hbc[)’ wzmoo(g)a 1rbicoo(g)7 Q]|‘Po} =0,

which we assume lies in the interior of the admissible parameter space, then it is clear that ),
Vimoo = Cimoo(0o0)s Yicoo = Wicoo(0os0) and 0, will be the pseudo-true values of the parameters
corresponding to an unrestricted PMLE that also estimates o. ]

If we further assume that the true conditional mean of y; is 0, and this restriction is imposed
in estimation, then ,,, becomes unnecessary, thereby generalising the second part of Theorem

1 in Newey and Steigerwald (1997).
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The next result, which extends propositions 2 and 4, contains the ingredients necessary
to compute the joint asymptotic covariance matrix of the consistent estimators 1;,(¢.7) and
.. (.r) defined in (16) and (17), respectively, and ¢
Proposition 12 If (12) holds, and €} |I;_1; py is i.i.d. (0,1x), where @ includes ¥ and the true

shape parameters, but the distribution assumed for estimation purposes does not necessarily nest
the true density, then:

1.
Apop. Ay, Apy, Ay 0 0
fwcwim 'A'lpi'mwim A¢i77z¢ia A"PicQ 0 0
A:< Ags 0 )z Appe A At Avie 0 0
A’J’i¢ A%ﬂu A{‘PCQ A{l»bimg ;»bicg 'AQQ 0 0
Bomto. O 0 0 A{bimwm 0

Agw. 0 0 0 0 A

By By, Buw. By Byg, Byg,
B'/‘l’cil’im Blbimeim BTﬁmﬂPic Bwim’? B"Pimﬂ’im Bﬂ’im’J’iC
B:< B,¢¢ B¢1_Pi ) _ Bipcqj;ic E/’mﬂ/’z‘c B;‘/’icwic B¢ic" B"pic'J)im B"/’icﬂ’ic
o0, Ba.o, bon g;pmn g;m g;m gm‘pm gm‘mc ’
PP B}/’im_"/’im B}pic"f)im Bmf’im I_pim'l_pim quimjbic
P, PicWim YicPic NYic PimWic YicPic

with detailed expressions for all the elements in the proof.

2. If in addition (14_) holds, then both A and B become block diagonal between . and
('lﬁim, wic’ o, ¢ima ’l,bw) .

Proof.

To obtain the asymptotic distribution of the unrestricted pseudo ML estimators {pT and pr,
we need the asymptotic covariance matrix of the average scores as well as the expected value of
the average Hessian matrix evaluated at the pseudo true values @L, = (V¥lg, ¥hio0s Wheoos Ono)-
Given that sy (¢.,) only depends on €5 (¥, Yimoo» Yizoo), Which is i.i.d. over time, it follows
that

Elsot(Poo) 1115 0] = 0, (C75)

which in conjunction with (B30) proves the martingale difference nature of the spherical score
evaluated at the pseudo-true values. As a result, we only need the contemporaneous covariance
matrix of the component of the score corresponding to the ¢ observation, which in turn depends

on the contemporaneous covariance matrix of ej(¢.,) and e;¢(¢,,). Given the expression for
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eit(Po) in (C66), it immediately follows that
€1 (Poo); 0o0] 010 flef (Yoo); 00|

Elen($oo)ely(o0) 0] = E {mnf | o} M (i 00). (CT6)

Oe* Oe* !
Bleu()ey(9oc)] = £ { ST Vsl ]
wcvee {1y + S LEE SN el ) oy b = M2(0ci ). ()

Blew(duc)elu(.0)] = £ {vee {1y + TRLEL TN Erl ey}

cve {1y + S LEEY N el i Al o) - G 0ucii) (1)
Similarly,
1 : ; 1 : ;
Blou(Bo)elu( ool = { - L= ex OnTlET W) il o} pipig i
(C79)
Blewt(Guc)elu(@s)] = E{ vee {1y 4 L E )] DTS Woc)ien] |
x[e'($o0) ©In])] 90} = MG (Soci #0) (C80)
and
1 H ; 1 H ;
Eler(Gc)el(se)]) = £ { T Vo) @l ORIET Woc) el L 009,50
Q Q
(C81)
Hence, we will have that Bggy = E[Bgpet(Poo; Po)], where
B¢¢t(¢oo; SOO) = V[St(¢m)|It—l; ‘PO] = Zt(¢m)MO(¢wv SOO)Zt(r‘vboo)v (082)
and M (¢;¢) = Vier(¢)lg]-
Tedious algebra shows that Agey = E[Ai(@se; Po)], Where
At(Bo0; o) = —Ehe(do) [ l1-1:P0] = Zi($hoo) M (o0 00) Zt (), (C83)

and M (¢.;p,) contains the following elements

M (boo; o) = E{0*In fle] (¥0); 000) /0™ 0™ | } , (C84)
ML (d;9) = E{0°In fle] (¥); 0]/ 0e* 0™ - [e] () @ IN])| ¢}, (C85)
ML) = E{[e; () @ In] - *In f[e] (¢); 0]/ 0e* 0™ - [e} () @ In]|p} —Knn  (C86)
M (@5 p) = —E [0°In [} (4); 0] /002 |¢p] , (C87)

M (p;¢) = —E [[e] () © In]0° In f[e} (3); 0] /0™ 0€ |} , (C88)

and

ML (d;0) = —E {0 In fle] (v); 0]/ 0000 |} - (C89)
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Let us now turn to our consistent estimators of 4;, and %;,,. The fact that the Gaussian
pseudo score for these parameters are influence functions that only depend on 4, and 1, trivially

implies that _ _
8S¢it(1rbcv /lzbzv 0) — 0 and 8s’¢'it(¢ca wza 0)

—0.
o ¢’

For analogous reasons,

8S¢ct(¢c>¢ia Q) -0 as'l/)it(,lpc”(»biv Q) -0 aSQt('l,bC, wiv Q) -0
0%, | o |

0P, 0;
We will also have that

8S{¢pit(¢ca '(_#7,5 0)
Np,

and _
asflpit(djm ¢7,7 0)
0P,

But since we are evaluating these expressions at consistent estimators of v, we will have that

- h/1/’¢"/’it(¢’ 0).

e} (1) = €f, whence we can obtain the remaining elements of A. In particular, given that (B39)
implies that for a fixed value of 1. we could understand the Gaussian log-likelihood function
of y; as a Gaussian log-likelihood for the pseudo-standardised residuals ey (v.) with mean 1,
and covariance matrix W;., it immediately follows that A{#imﬂ’ig =0.

Next, we need to find out the asymptotic covariance matrix of the sample averages of
Sy..t(P0;0) and sy 1(10;0), as well as their asymptotic covariances with the sample aver-
ages of Syi(P.) and sy (P, ), which coincide with contemporaneous variance and covariances of
these influence functions because they are martingale difference sequences. In turn, they depend
on the covariance matrix of e (1), 0), which is given by (A17), as well as on the covariances of

this vector with eg(¢.) and e;+(¢,). Specifically, the required additional elements are

Blen()eh(o,0) = £ { P E L i) )~ M@6i). (o0
Blewt(@uc)el1h0,0) = B { vee {1y + ST el i )b i)y | = MG0ci),

(Co1)

Blert(duc)elth0,0) = £ { P HEE e el ey | = MGonivn). (0
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and

Oln flef (Vo) 0co)

Elen($oo)ely (40.0)] = E { ved [} (o)l (o) — In] \ <P0} — M2(bs; 00),

Oe*
(C93)
Blea(@uc)ely(wo.0)] = B {uec {1y + SRS Wxli el ) |
xvec [ef (¥o)ei’ (o) — In]| ¢} = MG(; @), (C94)
Blen(9uc)elaltpo, 0] = B { ) 8ol e )ei ) - 1] 0| = M6,
(C95)

Finally, we can tediously show that the conditions for block-diagonality of the expected
value of the Hessian and the covariance matrix of the score are that E[Zy 11(%)|¥,] and

E[Zy_st(¥)|e0] are both 0. But given that

chlt(¢007 wirm ¢zc) = [aﬂgl(wco)/ad)c . 2:_1/2,(¢00) \I/i_cl/Q/
+ {8vec/[2§1/2(w00)]/8¢c Iy ® 2?71/2,(7/%0)]} (W, ® ‘Il;cl/Zl)’
Dot (W Vimtbie) = {00l 1572 00)) 0%, - [Ty © 27 ()]} (@120 0,2,

those conditions will be satisfied if (14) holds in view of the full rank of ¥,,. O

D Relationship to Fan, Qi and Xiu (2014)

Fan, Qi and Xiu (2014) considered a special case of model (2) in which 7 is set to its true
value of 0. This means that there is one parameter less to estimate. We can exploit many of
the results in the proof of Proposition 6 to study this model. Somewhat surprisingly, tedious
algebraic manipulations show that the first part of this proposition remains valid provided that
we set ¥;,,.,(0) = 0. In other words, the asymptotic covariance matrix of the pseudo ML

estimator of 1, for fixed value of g will be given by

M. (@; ¢o)
(M (0; ¢9)]?

As for our proposed consistent closed-form estimator, we can also show that the asymptotic

VL (DY6)

variance of 9;.(t,p) will be given by

MO (Q' ‘PO) Ix7—1
M55\ & Po) yyryy-1yy D97
M (@ 90 (Do)

which coincides with the (2,2) element of expression (24) with v;,,..(0) = 0.

(% - 1) 2200 + 41/}1200

Obviously, the same relationship applies to the Gaussian PMLEs, so our estimator of v,
will be more efficient than its Gaussian PMLE counterpart when the Pseudo ML estimator of

1, will be more efficient than its Gaussian PMLE counterpart.
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Finally, we can also prove that the third part of Proposition 6 also holds, so that the only
change that simultaneously estimating the shape parameters g implies is that all the expressions
must be evaluated at g.

Let us now compare the asymptotic distributions previously obtained for the case of o
fixed with the asymptotic distribution reported by Fan, Qi and Xiu (2014) for their estimation
method, bearing in mind that the mapping between our notation and theirs is as follows: 1, = =,
Ve = 02, Aoo() = nfc, 02 = v, and gf = &.

A crucial ingredient of their results is the vector

-1 -2
k _ U<t> ('ch)aO_g(dja)/adjc _ ‘50-;) ('QZJCO)BU?Q (QpcO)/awc
(¢) = _1/2 = ~1/2
wic wzc
and the matrix

;o —1/2
E[k(«p)k’(wm:(”""w Yie W>,

1/};61/2W, 1/}1_61
whose inverse is
V-1 — i AV-Iw
( —U WV g (1 WIVTIW) ) |

The difference between this matrix and the corresponding matrix in the proof of Proposition
6 is due to the fact that Fan, Qi and Xiu (2014) are interested in the asymptotic distribution of
the estimator of @ZJZIC/ 2, which the delta method implies is related to the asymptotic distribution
of the estimator of i,. through the quantity —.5@!);:1/2
Theorem 2 in Fan, Qi and Xiu (2014) states that the asymptotic distribution of their three

step estimator of 1, is given by V! times the following scalar

El{hele;, A2 (0)]32]0]
Moo (@) [B{hiclet, M ()]0} 2

where

h(z,s) = In [if(i)]zlnf(i)—lns

hi(z,s) = ah(a:i,s) _ _é [1+9{:81ni;(€x/3)}
_ 0*h(z,s)  Ohe(z,s) 1 x0ln f(z/s) 22 0%In f(z/s)
ha(@.8) = Hae T " as —32{2 [5(‘96+1] +528585_1}‘

It is then easy to see that

El{he[e;, M2 (@)]Fleo] = A (@) M (e, o)

and

Efhalef, A2 (0)leo} = Axd (@) M (5 00)
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so that the asymptotic variance of their estimator of 1, will be

Mgs(ga ®o) vl
(ML (0; ) ’

which coincides with (D96).

Similarly, if we re-write (D97) as

4%200 M, (; ¢o) x—1 MS,(b; #o) )] :
[ME (5 00)]? 4 [ME (5 p0)]?

it is clear that the Fan, Qi and Xiu (2014) estimator of 1, also has the same asymptotic variance

(1+W'VIW) + <

as our counterpart.
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TABLE 1: Monte Carlo simulation results of univariate GARCH-M model.

Parameter B v 0, Virn Vi V40 e T

True value 0.85 0.1 0.05 1.0 0.1 0.05
G-PML  0.8424  0.0909  0.0518  1.0953  0.0998  0.0508
(0.0538) (0.0463) (0.0473) (0.6003) (0.0332) (0.0433)
t-PML 0.8424  0.0909  0.0519  1.0951  0.0998  0.0508
Normal (0.0538) (0.0465) (0.0474) (0.6034) (0.0333) (0.0433)
FS Asy.  0.8424  0.0909  0.0518  1.0950  0.0998  0.0507
(0.0538) (0.0465) (0.0473) (0.6034) (0.0332) (0.0433)
FS Sym. 0.8424  0.0909  0.0519  1.0950  0.0998  0.0508
(0.0538) (0.0465) (0.0474) (0.6034) (0.0332) (0.0433)
G-PML  0.8418  0.0911  0.0513  1.0938  0.1002  0.0500
(0.0593) (0.0516) (0.0477) (0.6699) (0.0382) (0.0429)
t-PML 0.8426  0.0913  0.0513  1.0892  0.1000  0.0505
Student t19 (0.0557) (0.0480) (0.0458) (0.6152) (0.0361) (0.0417)
FS Asy.  0.8426  0.0913  0.0512  1.0888  0.0999  0.0500
(0.0557) (0.0480) (0.0471) (0.6163) (0.0361) (0.0427)
FS Sym. 0.8426  0.0913  0.0513  1.0889  0.0999  0.0504
(0.0557) (0.0480) (0.0458) (0.6163) (0.0361) (0.0417)
G-PML  0.8411  0.0911  0.0518  1.0933  0.0997  0.0509
(0.0641) (0.0527) (0.0474) (0.6727) (0.0436) (0.0434)
t-PML 0.8442  0.0934  0.0511 1.4512 0.1355 0.0433
GC(0,3.2) (0.0548) (0.0463) (0.0366) (0.8458) (0.0607) (0.0290)
FS Asy. 0.0511 1.0623  0.0995  0.0507
(0.0459) (0.5632) (0.0385) (0.0432)
FS Sym. 1.0626  0.0995  0.0509
(0.5640) (0.0385) (0.0334)
G-PML  0.8419  0.0913  0.0528  1.0929  0.1003  0.0522
(0.0644) (0.0524) (0.0480) (0.6844) (0.0441) (0.0442)
t-PML 0.8442 0.0940 0.1748 1.6489 0.1531 0.1366
GC(-.9,3.2) (0.0531) (0.0452) (0.0560) (1.0232) (0.0727) (0.0340)
FS Asy. 0.0518  1.0602  0.0996  0.0516
(0.0460) (0.5650) (0.0363) (0.0441)
FS Sym. 1.0754 0.1010 0.1698
(0.5732) (0.0368) (0.0335)

Monte Carlo medians and (interquartile ranges) of Gaussian PMLE (G-PML), Student t-based PMLE (¢-PML),

our consistent estimator of mean and scale parameters (FS Asy.) and our consistent estimator of the overall

scale parameter (FS Sym.). Bold figures refer to inconsistent estimators. Random draws of innovations are

standard normal (Normal), standardised Student t with v degrees of freedom (Student ¢,), and standardised

fourth-order Gram-Charlier expansion with skewness equal to c3 and excess kurtosis equal to ca (GC(cs,ca)).

Sample length=1000. Replications=10,000.
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FIGURE 1: Relative bias of non Gaussian PMLE of ¥,
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FIGURE 3: Relative efficiency of non Gaussian/Gaussian PMLEs of .
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FIGURE 4: Efficiency of Gaussian PMLE and MLE of ; relative to our consistent estimators
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FIGURE 5A: Relative efficiency of non Gaussian/Gaussian PMLEs of a and b
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FIGURE 5B: Relative efficiency of non Gaussian/Gaussian PMLEs of ©o
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FIGURE 6: Efficiency of our consistent estimator relative to the MLE of ¥,
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