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1 Introduction

As is well known, the Gaussian pseudo-maximum likelihood (PML) estimators advocated by

Bollerslev and Wooldridge (1992) among many others remain root-T consistent for the mean

and variance parameters of conditionally heteroskedastic dynamic regression models irrespective

of the degree of asymmetry and kurtosis of the conditional distribution of the observed variables,

so long as the first two moments are correctly specified and the fourth moments are bounded.

Nevertheless, many empirical researchers prefer to specify a non-Gaussian parametric distri-

bution for the standardised innovations, which they use to estimate the conditional mean and

variance parameters by maximum likelihood (ML). The dominant commercially available econo-

metric packages have responded to this demand by offering ML procedures that either jointly

estimate the parameters characterising the shape of the assumed distribution or allow the user

to fix them to some pre-specified values. In particular, Eviews and Stata support Student

t and Generalised Error distributions (GED) in univariate models (see the Arch sections of

IHS Global Inc (2015) and StataCorp LP (2015)), while Stata additionally allows for Student

t innovations in multivariate ones (see the March section of StataCorp LP (2015)).

However, while such ML estimators (and their Bayesian counterparts) will often yield asymp-

totically more effi cient estimators than Gaussian PML if the assumed conditional distribution is

correct, they may end up sacrificing consistency when it is not, as shown by Newey and Steiger-

wald (1997) and Gouriéroux, Monfort and Zakoïan (2016). Intuitively, the reason is that mean,

variances and covariances are natural location and scale measures for the multivariate normal

distribution but not for others, so one cannot generally expect to consistently estimate the mean

and covariance matrix of the standardised innovations under distributional misspecification.

For univariate Garch models with zero conditional mean, Francq, Lepage and Zakoïan

(2011) and Fan, Qi and Xiu (2014) have proposed modifications of parametric non-Gaussian

pseudo ML estimators which achieve consistency even when the assumed distribution is misspec-

ified. The purpose of this paper is to study in detail the statistical properties of the alternative

consistent estimators we proposed in Fiorentini and Sentana (2007), whose closed-form expres-

sions in terms of residuals readily generated by the commercial packages make them very easy

to code. As we mentioned in Fiorentini and Sentana (2014) and formally prove in Appendix

D, our estimators are asymptotically equivalent to the Fan, Qi and Xiu (2014) estimators for

the univariate Garch model with no mean they considered, which in turn are asymptotically

equivalent to the Francq, Lepage and Zakoïan (2011) ones.

Nevertheless, our estimators remain consistent in multivariate models with non-zero means.

The inclusion of means and the explicit coverage of multivariate contexts make our procedures
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useful in many empirically relevant applications beyond Arch models, which have been the

motivating example for most of the existing work. In particular, our results apply to dynamic

linear models such asVars and multivariate regressions, which remain the workhorse in empirical

macroeconomics and asset pricing contexts.1 In addition, our estimators are not affected by the

curse of dimensionality because they are effectively sample means of residuals, their squares and

cross-products. Obviously, they also apply in univariate contexts as well as in static ones.

Another important differentiating feature of our analysis is that we consider not only ML

estimators that fix the shape parameters but also procedures that jointly estimate them. In

both cases, we characterise the conditional mean and variance parameters that these procedures

can consistently estimate, providing closed-form estimators for the rest. In addition, we study

the relative effi ciency of these modified procedures vis a vis Gaussian PML estimators.

The rest of the paper is organised as follows. In section 2, we introduce our proposed

estimators and study their asymptotic properties under misspecification, paying special attention

to their effi ciency relative to the Gaussian PML estimators. Then, we evaluate their finite sample

properties by means of a Monte Carlo exercise in section 3. Finally we present our conclusions

and discuss avenues for further research in section 4. Proofs and auxiliary results are gathered

in appendices.

2 Distributional misspecification and parameter consistency

2.1 The estimated model

In a multivariate dynamic regression model with time-varying variances and covariances, the

vector of N observed variables, yt, is typically assumed to be generated as:

yt = µt(θ) + Σ
1/2
t (θ)ε∗t ,

µt(θ) = µ(It−1;θ),
Σt(θ) = Σ(It−1;θ),

where µ() and vech [Σ()] areN×1 andN(N+1)/2×1 vector functions describing the conditional

mean vector and covariance matrix known up to the p× 1 vector of parameters θ, It−1 denotes

the information set available at t − 1, which contains past values of yt and possibly some

contemporaneous conditioning variables, and Σ
1/2
t (θ) is some particular “square root”matrix

such that Σ
1/2
t (θ)Σ

1/2′
t (θ) = Σt(θ). Throughout the paper, we maintain the assumption that

the conditional mean and variance are correctly specified, in the sense that there is a true value

of θ, say θ0, such that
E(yt|It−1) = µt(θ0)
V (yt|It−1) = Σt(θ0)

}
. (1)

1See Lanne, Meitz and Saikkonen (2017) and the references therein for recent examples of Var models with
non-Gaussian innovations.
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To complete the model, a researcher needs to specify the conditional distribution of ε∗t . In

Appendix C we study the general case. In view of the options that the dominant commercially

available software companies offer to their clients, though, in the main text we study the situation

in which a researcher makes the assumption that, conditional on It−1, the distribution of ε∗t

is independent and identically distributed as some particular member of the spherical family

with a well defined density, or ε∗t |It−1;θ,η ∼ i.i.d. s(0, IN ,η) for short, where η denotes q

additional shape parameters (see appendix A.1 for a brief introduction to spherically symmetric

distributions). The most prominent example is the standard multivariate normal, which we

denote by η = 0 without loss of generality. Another important example is a standardised

multivariate Student t with ν degrees of freedom, or i.i.d. t(0, IN , ν) for short. As is well known,

the multivariate t approaches the multivariate normal as ν →∞, but has generally fatter tails.

For that reason, we define η as 1/ν, which will always remain in the finite range [0, 1/2) under

our assumptions. Obviously, in the univariate case, any symmetric distribution, including the

GED (also known as the Generalised Gaussian distribution), is spherically symmetric too.2

For illustrative purposes, we consider the following two examples throughout the paper:

Univariate GARCH-M Let rMt denote the excess returns to the market portfolio. Drost

and Klaessen (1997) proposed the following model for such a series:

rMt = µt(θ) + σt(θ)ε∗t ,
µt(θ) = τσt(θ),

σ2
t (θ) = ω + αr2

Mt−1 + βσ2
t−1(θ).

 (2)

The conditional mean and variance parameters are θ′ = (τ , ω, α, β). Importantly, this model

nests the one considered by Fan, Qi and Xiu (2014) when τ = 0.

Multivariate market model Let rt denote the excess returns on a vector of N assets traded

on the same market as rMT . A very popular model is the so-called market model

rt = a + brMt + Ω1/2ε∗t . (3)

The conditional mean and variance parameters are θ′ = (a′,b′,ω′), where ω = vech(Ω) and

Ω = Ω1/2Ω
′1/2.

2.2 Asymptotic properties of the available pseudo maximum likelihood esti-
mators

Let LT (φ) denote the pseudo log-likelihood function of a sample of size T for the model

discussed in the section 2.1, where φ = (θ′,η′)′ are the p + q parameters of interest, which we

2See Gillier (2005) for a spherically symmetric multivariate version of the GED.
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assume variation free. As we mentioned in the introduction, the most popular commercially

available software packages allow users to maximise LT (φ) with respect to φ. But they also

give them the option to fix the shape parameters to some admissible value η̄. In what follows,

we will refer to φ̂
′
T = (θ̂

′
T , η̂

′
T ) as the joint (or unrestricted) maximum likelihood estimator and

to θ̂T (η̄) as the equality restricted one. An important special case arises when η̄ = 0, in which

case θ̂T (0) coincides with the Gaussian PML estimator θ̃T .

As a benchmark, in Appendix A.3 we provide the asymptotic distribution of these estimators

under correct specification. In this section, though, we obtain their distribution under misspec-

ification. We consider several cases, in decreasing order of agreement with the true distribution.

We proceed as follows:

1. We transform the original set of conditional mean and variance parameters θ into another

set π = (π′c,π
′
i)
′ such that the inconsistencies resulting from misspecification affect the

elements of πi but not the rest.

2. We simultaneously estimate both subsets of parameters by (pseudo) maximum likelihood,

which effectively allows the estimators of πi to mop up the biases that would otherwise

affect the estimators of πc. In this sense, it is important to emphasise that a restricted

PMLE of πc obtained by fixing πi to its true value would be generally inconsistent. The

same applies to GMM estimators that combine the non-Gaussian scores for πc with the

Gaussian scores for πi, unless the former do not depend on πi.

3. We discard the inconsistent pseudo-ML estimators of πi, replacing them by closed-form

consistent estimators that use the Gaussian scores with respect to πi evaluated at either

π̂c or π̂c(η̄) in a sequential GMM procedure. Given that our proposed estimators of those

parameters are effectively sample means of residuals, their squares and cross-products,

they are not affected by the curse of dimensionality. Importantly, we rely on standard

GMM theory to derive the joint asymptotic distribution of the original estimators and

the ones we propose by means of the usual sandwich formula, providing computationally

reliable expressions for the expected Jacobian and the asymptotic covariance matrix of the

influence functions.

4. We combine the consistent estimators of πc and πi thus obtained to recover consistent

estimators of all the original parameters θ, employing the delta method to derive their

asymptotic standard errors.

Throughout the paper, we use the high level regularity conditions in Bollerslev andWooldridge

(1992) because we want to leave unspecified the conditional mean vector and covariance matrix
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in order to maintain full generality. Primitive conditions for specific multivariate models can be

found for example in Ling and McAleer (2003).

2.2.1 When the true distribution is spherically symmetric

Let us first consider situations in which the true distribution is i.i.d. spherical but different

from the parametric one assumed for estimation purposes, which will often be chosen for con-

venience or familiarity. Note that this covers situations in which the conditional distribution is

correctly specified, but we fix η to some η̄ which does not coincide with the true value η0.

In this case, all the parameters but one can be consistently estimated. To make this statement

more precise, it is convenient to introduce the following reparametrisation:

Reparametrisation 1 A homeomorphic transformation rs(.) = [r′sc(.), r
′
si(.)]

′ of the mean and
variance parameters θ into an alternative set of parameters ϑ = (ϑ′c, ϑ

′
i)
′, where ϑi is a positive

scalar, and rs(θ) is twice continuously differentiable with rank[∂r′s (θ) /∂θ] = p in a neighbour-
hood of θ0, such that

µt(θ) = µt(ϑc),
Σt(θ) = ϑiΣ

◦
t (ϑc)

}
∀t. (4)

Expression (4) simply requires that one can construct pseudo-standardised residuals

ε◦t (ϑc) = Σ
◦−1/2
t (ϑc)[yt − µ◦t (ϑc)]

which are i.i.d. s(0, ϑiIN ,η), where ϑi is a global scale parameter, a condition satisfied by most

static and dynamic models.

Such a reparametrisation is not unique, since we can always multiply the overall scale pa-

rameter ϑi by some scalar positive smooth function of ϑc, k(ϑc) say, and divide Σ◦t (ϑc) by the

same function without violating (4) or redefining ϑc. As we shall see in Proposition 2 below, a

convenient normalisation for the purposes of simplifying some of the expressions would guarantee

E[ln |Σ◦t (ϑc)||φ0] = k ∀ϑc. (5)

However, this is by no means essential since the estimators of ϑc are numerically invariant to

the choice of scaling, so their asymptotic covariance matrix is unaffected.

For the examples in section 2.1, reparametrisation 1 is as follows:

Univariate GARCH-M We can write model (2) as

rMt = µt(ϑc) + ϑ
1/2
i σ◦t (ϑc)ε

∗
t ,

µt(ϑc) = δσ◦t (ϑc),
σ◦2t (ϑ) = 1 + γr2

Mt−1 + βσ◦2t−1(ϑc).

 (6)

The transformed conditional mean and variance parameters are ϑ′c = (δ, γ, β) and ϑi, whose

relationship with the original parametrisation is τ = ϑ
−1/2
i δ, α = ϑiγ and ω = ϑi.
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Imposing (5) in this model would be tricky because we need to obtain

E

[
ln

(
1

1− β + γ
∑∞

j=0
βjr2

Mt−1−j

)]
as a function of ϑc, which is probably best computed by numerically quadrature.

Multivariate market model We can write model (3) as

rt = a + brMt + ϑ
1/2
i Ω◦1/2($)ε∗t . (7)

The transformed conditional mean and variance parameters are ϑ′c = (a′,b′,$′) and ϑi,

where $ contains N(N + 1)/2− 1 elements. Following Amengual and Sentana (2010), we can

achieve (5) by writing ϑi = |Ω|1/N and Ω◦($) = Ω/|Ω|1/N so as to achieve |Ω◦($)| = 1 ∀$.

Appendix A.5 discusses explicit parametrisations of Ω◦($) that ensure this condition.

For simplicity, we shall define the pseudo-true values of ϑ and η as consistent roots of the

expectation of the spherical pseudo log-likelihood score, which under appropriate regularity

conditions will maximise the expected value of the pseudo log-likelihood function.

The next proposition extends the first part of Theorem 1 in Newey and Steigerwald (1997)

to multivariate dynamic models:

Proposition 1 If (4) holds, and ε∗t |It−1;ϕ0, is i.i.d. s(0, IN ), where ϕ includes ϑ and the
true shape parameters, but the spherical distribution assumed for estimation purposes does not
necessarily nest the true density, then the pseudo-true value of the joint ML estimator of φ =
(ϑ′c, ϑi,η)′, φ∞, is such that ϑc∞ is equal to the true value ϑc0.

This result confirms that a spherically-based PMLE can consistently estimate all the condi-

tional mean and variance parameters except the expected value of

ς◦t (ϑc) = [yt − µt(ϑc)]′Σ◦−1
t (ϑc)[yt − µt(ϑc)] = ϑiςt(ϑc). (8)

Figure 1 illustrates the extent of the inconsistency in estimating ϑi in a five-dimensional

version of model (7) estimated by pseudo maximum likelihood assuming a multivariate Student t

with unknown degrees of freedom when the true distribution is a discrete scale mixture of normals

as a function of the mixing probability and the ratio of the variances of the two components.

As can be seen from the depicted binding function, the relative bias ϑi∞/ϑi0 can be substantial,

especially when the mixture is such that both components are equally likely but one has a much

larger variance than the other. Importantly, these relative biases are invariant to the true value

of ϑi. More importantly, while they depend on the cross-sectional dimension N , they do not

depend on the specification of the conditional mean vector or covariance matrix of the model.
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In this context, in Fiorentini and Sentana (2007) we proposed to estimate ϑi by ϑiT (ϑ̂cT ),

where

ϑiT (ϑc) =
1

N

1

T

T∑
t=1

ς◦t (ϑc). (9)

The rationale for this estimator comes from the fact that the Gaussian pseudo score for ϑi

is simply

sϑit(ϑ,0) =
1

2ϑi
[ςt(ϑ)−N ] (10)

whose expected value when evaluated at ϑ0 is 0 because the expected value of ς◦t (ϑc0) in (8) is

precisely Nϑi0, and whose variance is proportional to the theoretical counterpart to Mardia’s

(1970) coeffi cient of multivariate excess kurtosis of ε∗t ,

κ0 = E(ς2
t )/[N(N + 2)]− 1, (11)

where ςt = ε∗′t ε
∗
t and the expectation is taken with respect to the true unconditional distribution

of the innovations.

If we regard (10) as an additional influence function, we can rely on standard GMM argu-

ments for just identified models to obtain the asymptotic variance of ϑiT (ϑ̂cT ), as well as its

asymptotic covariances with the pseudo ML estimators ϑ̂T and η̂T by means of the usual sand-

wich formula C = A−1BA′−1, where A is the expected Jacobian and B the asymptotic covariance

matrix of the sample average of all the influence functions involved (see e.g. Newey and Mac-

Fadden (1994) for details). In doing so, though, we must carefully distinguish between ϑi, which

is the parameter estimated with the misspecified log-likelihood function, and the parameter

estimated with the Gaussian score, which we shall refer to ϑ̄i to avoid confusion. Specifically,

Proposition 2 If (4) holds, and ε∗t |It−1;ϕ0, is i.i.d. s(0, IN ) with κ0 < ∞, where ϕ includes
ϑ and the true shape parameters, but the spherical distribution assumed for estimation purposes
does not necessarily nest the true density, then

1.

A =

(
Aφφ 0
Aϑ̄iφ Aϑ̄iϑ̄i

)
=


Aϑcϑc Aϑcϑi Aϑcη 0
A′ϑcϑi Aϑiϑi Aϑiη 0

A′ϑcη A′ϑiη Aηη 0

Aϑ̄iϑc 0 0′ Aϑ̄iϑ̄i

 ,

B =

(
Bφφ Bφϑ̄i
B′
φϑ̄i

Bϑ̄iϑ̄i

)
=


Bϑcϑc Bϑcϑi Bϑcη Bϑcϑ̄i
B′ϑcϑi Bϑiϑi Bϑiη Bϑiϑ̄i
B′ϑcη B′ϑiη Bηη Bηϑ̄i
B′
ϑcϑ̄i

Bϑiϑ̄i B′
ηϑ̄i

Bϑ̄iϑ̄i

 ,

with detailed expressions for all the elements in the proof.

2. If in addition (5) holds, then both A and B become block diagonal between ϑc and (ϑi,η, ϑ̄i).
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This proposition is very general, nesting several previous results in the literature. In partic-

ular, it generalises Proposition 5 in Amengual and Sentana (2010), who obtained expressions for

Aφφ and Bφφ in a multivariate regression model under exactly the same type of misspecification.

Obviously, it also applies under correct specification, in which case the information equality will

imply that Aφφ = Bφφ (see Proposition 8 in Appendix A.3).

Importantly, the above results also apply mutatis mutandi to restricted spherically-based

ML estimators of ϑ that fix η to some a priori chosen value η̄. In that case, we would simply

need to replace ϑi∞ by ϑi∞(η̄) and eliminate the rows and columns corresponding to η from the

A and B matrices. In that way, we would also nest Proposition 1 in Bollerslev and Wooldridge

(1992), who focused on the Gaussian PML estimators (see Proposition 9 in Appendix A.4).

Finally, it is important to emphasise that reparametrisation 1 only plays an auxiliary role.

After obtaining consistent estimators of the transformed parameters ϑc and ϑi with the pro-

cedures we propose, it is straightforward to consistently estimate the original parameters θ by

inverting the mapping rs(θ). Moreover, the regularity of this mapping guarantees that we can

obtain asymptotic standard errors for these consistent estimators by means of the delta method.

2.2.2 When the true distribution is asymmetric

Although the assumption of spherical symmetry is widespread in theoretical and empirical

finance, its failure will invalidate the consistency results in Proposition 1. Fortunately, it is

possible to find analogous results in the asymmetric case too, but at the cost of restricting further

the set of parameters that can be consistently estimated under misspecification. Effectively, the

number of parameters that are inconsistently estimated goes from 1 to N(N + 3)/2, which

represents a minimal increase in the univariate case (from 1 to 2). To make this statement more

precise, it is convenient to introduce an alternative reparametrisation:

Reparametrisation 2 A homeomorphic transformation rg(.) = [r′gc(.), r
′
gim(.), r′gic(.)]

′ of the
mean and variance parameters θ into an alternative parameter set ψ = (ψ′c,ψ

′
i)
′, where ψi =

(ψ′im,ψ
′
ic)
′, ψim is N × 1, ψic = vech(Ψic), Ψic is an unrestricted positive definite symmetric

matrix of order N and rg(θ) is twice continuously differentiable in a neighbourhood of θ0 with
rank

[
∂r′g (θ0) /∂θ

]
= p, such that

µt(θ) = µ�t (ψc) + Σ
�1/2
t (ψc)ψim

Σt(θ) = Σ
�1/2
t (ψc)ΨicΣ

�1/2′
t (ψc)

}
∀t. (12)

This parametrisations simply requires the pseudo-standardised residuals

ε�t (ψc) = Σ
�−1/2
t (ψc)[yt − µ�t (ψc)] (13)

to be i.i.d. with mean vector ψim and covariance matrix Ψic.
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Again, (12) is not unique, since it continues to hold with the same ψc if we replace Ψic by

K−1/2(ψc)ΨicK
−1/2′(ψc) and ψim by K−1/2(ψc)ψim− l(ψc), and adjust µ

�
t (ψc) and Σ

�1/2
t (ψc)

accordingly, where l(ψc) and K(ψc) are a N × 1 vector and a N × N positive definite matrix

of smooth functions of ψc, respectively. As we shall see in Proposition 4 below, a convenient

normalisation for the purposes of simplifying some of the expressions would be such that:

E
[
∂µ�′t (ψc)/∂ψc ·Σ

�−1/2
t (ψc)

∣∣∣φ0

]
= 0

E
{
∂vec[Σ

�1/2
t (ψc)]/∂ψc ·

[
IN ⊗Σ

�−1/2′
t (ψc)

]∣∣∣φ0

}
= 0

 . (14)

However, this is by no means essential since the estimators of ψc are numerically invariant to

these location-scale normalisations, so their asymptotic covariance matrix is unaffected.

For the examples in section 2.1, reparametrisation 2 is as follows:

Univariate GARCH-M We can write model (2) as

rMt = ψimµ
�
t (ψc) + ψ

1/2
ic σ�t (ψc)ε

∗
t ,

µ�t (ψc) = σ�t (ψc),
σ�t (ψc) = 1 + γr2

Mt−1 + βσ�2t−1(ϑc).

 (15)

The new conditional mean and variance parameters are ψ′c = (γ, β), ψim and ψic, whose

relationship with the original parametrisation is τ = ψ
−1/2
ic ψim, α = ψicγ and ω = ψic.

Multivariate market model We can write model (3) as

rt = ψim + brMt + Ψ
1/2
ic ε

∗
t .

The new conditional mean and variance parameters are ψc = b, ψim and ψic = vech(Ψic).

The next proposition provides the multivariate generalisation of Theorem 2 in Newey and

Steigerwald (1997):

Proposition 3 If (12) holds, and ε∗t |It−1;ϕ0 is i.i.d. (0, IN ), where ϕ includes ψ and the true
shape parameters, but the distribution assumed for estimation purposes does not necessarily nest
the true density, then the pseudo-true value of the joint ML estimator of φ = (ψ′c,ψ

′
i,η)′, φ∞,

is such that ψc∞ is equal to the true value ψc0.

If we further assume that the true conditional mean of yt is 0, and this restriction is imposed

in estimation, then ψim becomes unnecessary, thereby generalising the second part of Theorem

1 in Newey and Steigerwald (1997).

In simple terms, Proposition 3 says that in general, a parametric ML estimator based on a

spherically symmetric distribution cannot consistently estimate either the mean or the covariance

matrix of the i.i.d. pseudo-standardised residuals ε�t (ψc0) in (13) when the true distribution is

not spherically symmetric.
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Figures 2A-B illustrate the extent of the inconsistency in estimating ψim and ψic in a univari-

ate model estimated by pseudo maximum likelihood assuming a Student t with unknown degrees

of freedom when the true distribution is an admissible fourth-order Gram-Charlier expansion of

the standard normal as a function of the skewness and kurtosis coeffi cients.3 As can be seen

from the depicted binding functions, the relative mean and scale biases (ψim∞ − ψim0)/ψ
1/2
ic0

and ψic∞/ψic0, respectively, can be substantial when the skewness increases and especially the

kurtosis is large. Importantly, these relative biases are invariant to the true values of ψim and

ψic. More importantly, they do not depend on the specification of the rest of the conditional

mean or variance of the model.

In this context, in Fiorentini and Sentana (2007) we proposed to estimate ψim and ψic

as ψimT (ψ̂cT ) and ψicT (ψ̂cT ), respectively, where

ψimT (ψc) =
1

T

T∑
t=1

ε�t (ψc), (16)

ψicT (ψc) = vech

{
1

T

T∑
t=1

[ε�t (ψc)−ψimT (ψc)] [ε�t (ψc)−ψimT (ψc)]
′
}
. (17)

Once again, the rationale for these estimators arises from the fact the Gaussian pseudo scores

for ψim and ψic are simply:

sψimt(ψ,0) =
1

2
Ψ
−1/2′
ic ε∗t (ψ),

sψict(ψ,0) =
1

2
D′N (Ψ

−1/2′
ic ⊗Ψ

−1/2′
ic )vec

{
ε∗t (ψ)ε∗′t (ψ)−IN

}
,

where DN is the duplication matrix (see Magnus and Neudecker, 1988), whose expected values

at ψ0 are 0 because the expected value of

ε∗t (ψc0,ψi) = Ψ
−1/2
ic (ψim0 −ψim) + Ψ

−1/2
ic Ψ

1/2
ic0 ε

∗
t

is 0 and the expected value of ε∗t (ψc0,ψi)ε
∗′
t (ψc0,ψi) is IN when ψi = ψi0.

If we regard sψimt(ψ,0) and sψict(ψ,0) as additional influence functions, we can again rely

on standard GMM arguments for just identified models to obtain the asymptotic covariance

matrix of ψimT (ψ̂cT ) and ψicT (ψ̂cT ), as well their asymptotic covariances with the pseudo ML

estimators ψ̂T and η̂T by means of the usual sandwich formula. Nevertheless, we must carefully

distinguish between ψi, which are the parameters estimated with the misspecified log-likelihood

function, and the namesake parameters estimated with the Gaussian score, which we shall refer

to as ψ̄i to avoid confusion. Specifically,

3Since the magnitudes of the biases do not depend on the sign of the skewness coeffi cient, we only show the
positive side of the admissible region. See Jondeau and Rockinger (2003) for a characterisation of the set of
skewness and kurtosis values that give rise to a non-negative density for the fourth-order expansion.
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Proposition 4 If (12) holds, and ε∗t |It−1;ϕ0 is i.i.d. (0, IN ) with bounded fourth moments,
where ϕ includes ψ and the true shape parameters ρ, but the distribution assumed for estimation
purposes does not necessarily nest the true density, then:

1.

A=
(
Aφφ 0
Aψ̄iφ Aψ̄iψ̄i

)
=



Aψcψc Aψcψim Aψcψic Aψcη 0 0
A′ψcψim Aψimψim Aψimψic Aψimη 0 0

A′ψcψic A′ψimψic Aψicψic Aψicη 0 0

A′ψcη A′ψicη A′ψimη Aηη 0 0

Aψ̄imψc 0 0 0 Aψ̄imψ̄im 0

Aψ̄icψc 0 0 0 0 Aψ̄icψ̄ic


,

B=
(
Bφφ Bφψ̄i
B′
φψ̄i

Bψ̄iψ̄i

)
=



Bψcψc Bψcψim Bψcψic Bψcη Bψcψ̄im Bψcψ̄ic
B′ψcψim Bψimψim Bψimψic Bψimη Bψimψ̄im Bψimψ̄ic
B′ψcψic B′ψimψic Bψicψic Bψicη Bψicψ̄im Bψicψ̄ic
B′ψcη B′ψimη B′ψicη Bηη Bηψ̄im Bηψ̄ic
B′
ψcψ̄im

B′
ψimψ̄im

B′
ψicψ̄im

B′
ηψ̄im

Bψ̄imψ̄im Bψ̄imψ̄ic
B′
ψcψ̄ic

B′
ψicψ̄im

B′
ψicψ̄ic

B′
ηψ̄ic

B′
ψ̄imψ̄ic

Bψ̄icψ̄ic


,

with detailed expressions for all the elements in the proof.

2. If in addition (14) holds, then both A and B become block diagonal between ψc and
(ψi,η, ψ̄i).

As in section 2.2.1, the above results also apply mutatis mutandi to restricted spherically-

based ML estimators of ψ that fix η to some a priori chosen value η̄. In that case, we would

simply need to replace ψim∞ and ψic∞ by ψim∞(η̄) and ψic∞(η̄), respectively, and eliminate

the rows and columns corresponding to η from the A and B matrices.

Once again, we should emphasise that reparametrisation 2 only plays an auxiliary role. After

obtaining consistent estimators of the transformed parameters ψc and ψi with the procedures

that we propose, it is straightforward to consistently estimate the original parameters θ by

inverting the mapping rg(θ). Moreover, the regularity of this mapping guarantees that we can

obtain asymptotic standard errors for these consistent estimators by means of the delta method.

2.2.3 When the shape parameters are inequality restricted

So far, we have maintained the assumption that the shape parameters η are freely estimated.

In several important cases, though, they will be estimated subject to inequality constraints. In

the Student t case, for example, the reciprocal of the degrees of freedom η cannot be negative.

This means that what we have called the unrestricted estimator η̂T will in fact be characterised

by Kuhn-Tucker (KT) conditions instead of the usual first-order ones. Somewhat surprisingly,

such inequality constraints may imply that the whole of θ will be consistently estimated despite

distributional misspecification. The following proposition illustrates our claim:

11



Proposition 5 1. Let φ∞ denote the pseudo-true values of the parameters θ and η implied
by a multivariate Student t log-likelihood function. If the true coeffi cient of multivariate
excess kurtosis of ε∗t , κ0, is not positive, then θ∞ = θ0 and η∞ = 0.

2. If κ0 is strictly negative, then
√
T η̂T = op(1) and

√
T (θ̃T − θ̂T ) = op(1).

3. If κ0 is exactly 0, then
√
T η̂T will have an asymptotic normal distribution censored from

below at 0, and θ̃T will be identical to θ̂T with probability approaching 1/2. If in addition

Aθη(φ∞;ϕ0) = E[[N + 2− ςt(θ0)]{ε∗′t (θ0)|vec′[ε∗t (θ0)ε∗′t (θ0)]}Z′dt(θ0)|ϕ0] = 0, (18)

then
√
T (θ̃T − θ̂T ) = op(1) the rest of the time.

Intuitively, the reason is that the score with respect to the reciprocal degrees of freedom

parameter η evaluated under normality is proportional to the second generalised Laguerre poly-

nomial

ς2
t (θ)/4− (N + 2)ςt(θ)/2 +N(N + 2)/4 (19)

in the multivariate Student t case (see Fiorentini, Sentana and Calzolari (2003)). In fact, as far

as θ̂T is concerned, Proposition 5 is valid not only for the Student t, but also for any pseudo ML

estimator based on a symmetric generalised hyperbolic distribution (see Mencía and Sentana

(2012) for details). In addition, it is also true for ML estimators based on fourth-order spherically

symmetric expansions of the multivariate normal density, as well as on discrete scale mixtures of

normals in which the odds ratio of the components is given (see Amengual and Sentana (2011)).

More generally, it will be true for any leptokurtic spherical distribution that nests the normal as

a limiting case, and which is such that the scores with respect to the shape parameters evaluated

under Gaussianity are proportional to (19). In all those cases θ̂T = θ̃T whenever η̂T = 0, which

will occur when the sample coeffi cient of excess kurtosis of the innovations evaluated at the

Gaussian PMLE is non-positive.

2.3 Effi ciency comparisons

As explained by Fan, Qi and Xiu (2014), the equality restricted estimators ψ̂cT (η̄) are not

necessarily more effi cient than the Gaussian PML estimators under misspecification, the obvious

counterexample being an estimator that fixes η to a non-zero value when the true distribution

is in fact Gaussian. If we knew the true distribution of ε∗t , but still decided to use the wrong

log-likelihood function, we could minimise the asymptotic variance of ψ̂cT (η̄) with respect to

η. In practice, we could estimate the required expressions by means of sample analogues, with

the unknown innovations replaced by estimated ones, and then choose η as the minimiser of

the estimated asymptotic variance, along the lines of Francq, Lepage and Zakoïan (2011). The

comparison between the asymptotic covariance matrix of the resulting “optimised”estimator of

ψ and the Gaussian PMLE deserves further investigation.

12



Given existing software, though, practitioners are more likely to simultaneously estimate η by

maximum likelihood. In the next two subsections, we will make use of Proposition 2 above and

Proposition 12 in Appendix C, which generalises Proposition 4 to non-spherical log-likelihoods,

to compare the Gaussian and non-Gaussian PMLEs in detail for the univariate Garch-M model

(2) and the multivariate regression (3).

Univariate GARCH-M In Fiorentini and Sentana (2014), we investigated whether the

joint and restricted estimators of ψc are more effi cient than the Gaussian PML estimators in

the univariate Garch model with no mean considered by Fan, Qi and Xiu (2014) when the

distribution used for estimation purposes is a Student t but the true distribution is a GED. Our

results indicated that the Gaussian PMLE is always worse than the unrestricted ML estimator

that simultaneously estimates η. Those results are in line with the local power comparisons in

Fiorentini and Sentana (2010), whose focus is testing for mean and variance predictability in

univariate models using non-Gaussian-based classical ML tests. The next proposition extends

those results to the univariate Garch-M model (15) without imposing any symmetry assump-

tion on the distribution used for estimating purposes or the true one, a fact that we emphasise

by denoting the shape parameters by %.4

Proposition 6 1. Under standard regularity conditions, the asymptotic covariance matrix of
the Pseudo ML estimator of ψc in model (15) for fixed values of % is given by S(φ∞;ϕ0) ·
V−1
ψc

(ψc0;ϕ0), where

S(φ;ϕ) =

[
ψ2im∞(%)
ψic∞(%)M

O
ll (φ;ϕ) + 2ψim∞(%)

ψ
1/2
ic∞(%)

MO
ls(φ;ϕ) +MO

ss(φ;ϕ)

]
[
ψ2im∞(η̄)
ψic∞(η̄)MH

ll (φ;ϕ) + 2ψim∞(%)

ψ
1/2
ic∞(%)

MH
ls (φ;ϕ) +MH

ss(φ;ϕ)

]2 , (20)

Vψc(ψc;ϕ) = V

[
1

2σ�2t (ψc)

∂σ�2t (ψc)

∂ψc

∣∣∣∣ϕ] , (21)

−E
{
∂2 ln f [εt[ψc0,ψi∞(%)];%]

∂ε∂ε

[
1 εt[ψc0,ψi∞(%)]

εt[ψc0,ψi∞(%)] ε2t [ψc0,ψi∞(%)]

]∣∣∣∣ϕ0

}
=

[
MH

ll (φ;ϕ) MH
ls (φ;ϕ)

MH
ls (φ;ϕ) MH

ss(φ;ϕ)

]
=MH

dd(φ;ϕ) (22)

and

V

{(
∂ ln f [εt[ψc0,ψi∞(%)];%]/∂ε

1 + εt[ψc0,ψi∞(%)]∂ ln f [εt[ψc0,ψi∞(%)];%]/∂ε

)∣∣∣∣ϕ0

}
=

[
MO

ll (φ;ϕ) MO
ls(φ;ϕ)

MO
ls(φ;ϕ) MO

ss(φ;ϕ)

]
=MO

dd(φ;ϕ). (23)

4An analogous proposition applies when both the assumed distribution and the true one are symmetric. The
main difference is that ψim becomes consistent, so only ψic needs to be replaced. Furthermore, some expressions
simplify because MO

ls(φ;ϕ) =MH
ls(φ;ϕ) = φ = 0 under symmetry. We discuss this case in detail at the end of

the proof of Proposition 6.
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2. In turn, the asymptotic covariance matrix of our consistent estimator of ψi is[
ψic0 φψ

3/2
ic0

φψ
3/2
ic0 (κ − 1)ψ2

ic0

]
+S(φ∞;ϕ0)c(ψi0)c′(ψi0)W′

ψc
(ψc0;ϕ0)V

−1
ψc

(ψc0;ϕ0)Wψc(ψc0;ϕ0), (24)

where φ and κ are the coeffi cients of skewness and kurtosis, respectively, of the true stan-
dardised innovations, c(ψi) = ( ψim 2ψic )′ and

Wψc(ψc;ϕ) = E

[
1

2σ�2t (ψc)

∂σ�2t (ψc)

∂ψc

∣∣∣∣ϕ] . (25)

3. When % is jointly estimated, exactly the same expressions apply if we replace % by %∞.

Somewhat surprisingly, (24) provides an additive decomposition of the asymptotic covari-

ance matrix of our consistent estimators of ψi, ψiT (ψ̂cT ). The first term corresponds to the

asymptotic covariance matrix of our estimators of ψim and ψic in (16) and (17) if we knew ψc,

while the second term reflects the additional sampling uncertainty resulting from the estimation

of ψc. Interestingly, though, this second term has rank 1 only.

Importantly, Proposition 6 also gives us the asymptotic covariance matrix of the correspond-

ing Gaussian pseudo-ML estimators by setting % = 0. Thus, we can compare the effi ciency of

the two estimators of ψc by simply comparing the scalars (20). For the Gaussian pseudo-ML

estimators, the relevant scalar simplifies to

S(ψ0,0;ϕ0) =

(
ψ2im0
ψic0

+ 2ψim0

ψ
1/2
ic0

φ+ κ − 1

)
(
ψ2im0
ψic0

+ 2
)2 (26)

regardless of the true distribution. In contrast, we will usually have to resort to numerical

quadrature to compute (20) in the general case.

Figure 3 displays the ratio of (20) to (26) for all admissible fourth-order Gram-Charlier

expansions of the Gaussian density for a Garch(1,1)-M model in which ψim0/ψ
1/2
ic0 = .05 when

the pseudo log-likelihood is based on the Student t, a design we will revisit in the Monte Carlo

section. Although it is not clear a priori how the scaling factor S(φ∞;ϕ0) vary with %, the

results clearly show that %∞ systematically leads to more effi cient estimators than % = 0, at

least for the parametric configuration we have chosen.

Similarly, if we subtract (24) from the asymptotic covariance matrix of the Gaussian PMLE

of ψi, we are left with

c(ψi0)c′(ψi0)W′
ψc

(ψc0;ϕ0)V−1
ψc

(ψc0;ϕ0)Wψc(ψc0;ϕ0) [S(0;%0)− S(η̄;%0)] .

Therefore, our proposed estimator of ψi will be more effi cient than its Gaussian PMLE coun-

terpart if and only if the Pseudo ML estimator of ψc is more effi cient than the corresponding
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Gaussian PMLE. As a result, the evidence presented in Figure 3 implies that our consistent

estimators of ψim and ψic will also be more effi cient than the Gaussian PMLEs when the true

distribution is a Gram-Charlier expansion of the Gaussian density.

These effi ciency gains in estimating ψc and ψi will be inherited by our estimators of the

original parameters, whose distribution we can obtain as a straightforward application of the

delta method.5 Specifically, the estimators of τ = ψ
−1/2
ic ψim, α = ψicγ and ω = ψic obtained

by combining the non-Gaussian PMLE of γ with our consistent estimators of ψim and ψic will

be more effi cient that both their Gaussian PML counterparts and “mix and match”estimators

that combine the non-Gaussian PMLE of γ with the Gaussian PMLEs of ψim and ψic.

Finally, we have also assessed whether the consistent estimators of ψi in (16) and (17) entail

any effi ciency loss when the distribution assumed for estimation purposes is correct, in which

case the MLE of these parameters is fully effi cient. Figure 4 displays the asymptotic variances

of the MLEs and Gaussian PMLEs of ψim and ψic relative to the asymptotic variance of our

consistent estimators for the case in which the true and estimated distribution is a Student t

with unknown degrees of freedom. Given that the fourth moment of this distribution diverges to

infinity as the number of degrees of freedom converges to 4 from above, the asymptotic effi ciency

loss of the Gaussian PMLEs of ψi can be made arbitrarily large, and the same is true of our

consistent estimator of ψic. But even in those circumstances, our proposed estimator of this

parameter is substantially more effi cient than the Gaussian one. In addition, the effi ciency loss

of (16) and (17) is much smaller for larger, more empirically realistic values of the degrees of

freedom, and their advantages over the Gaussian PMLEs persists for longer. Those effi ciency

losses are not the same for the two parameters, though, being more pronounced for ψic than

ψim.

Multivariate regression In the context of the multivariate market model that we have

used as our second illustrative example, Amengual and Sentana (2010) compared the effi ciency

of the non-Gaussian pseudo ML estimator of the conditional mean parameters a and b with the

Gaussian estimator when the true conditional distribution is spherical and leptokurtic. Specifi-

5For example, in the case of a simple Arch(1) model, the original parametrisation is

σ2t = ψic(1 + ψcx
2
t−1) = ψic + αx2t−1,

so that we need to find the asymptotic distribution of α(ψc, ψic) = ψicψc. But since the Jacobian of the trans-
formation is

[ ∂α(ψc, ψic)/∂ψc ∂α(ψc, ψic)/∂ψc ] = ( ψic ψc ),

the asymptotic variance of α̃T = ψ̂cψic(ψ̂c) can be easily obtained as a quadratic form in the joint asymptotic
covariance of ψ̂cT and ψiT (ψ̂cT ).
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cally, their corollary 1 states that the former is more effi cient that the latter if and only if

ϑi∞(η)

ϑi0

mOll (φ∞;ϕ0)[
mHll (φ∞;ϕ0)

]2 < 1. (27)

They found that when true distribution is a two-component scale mixture of normals but the

distribution used for estimation purposes is a Student t, the pseudo ML estimator that jointly

estimates η is always strictly more effi cient than the Gaussian-based one. Figure 5A illustrates

their results. However, they did not compare the effi ciency of the estimators of the residual

variance parameters, which are also of interest in empirical applications.

Let us parametrise Ω◦ in terms of the Cholesky decomposition ΩLΩ◦DΩ′L, with ΩL unit

lower triangular and Ω◦D diagonal. For convenience, we partition $ into $L = vecl(ΩL)

and $D = ($D1, . . . , $DN−1)′, which contains the N − 1 free parameters that we use to en-

sure that |Ω◦D($D)| = 1, as explained in Appendix A.5. Further, we can partition $L into

$L1,$L2 . . . ,$LN−1, of dimension N − 1, N − 2, . . . , 1 respectively, which contain the strict

lower triangular elements in each of the columns of the matrix ΩL. We can then prove that:

Proposition 7 1. Under standard regularity conditions, the asymptotic covariance matrix
of the Pseudo ML estimator of $ in model (15) is given by

mOss(φ∞;ϕ0)

[mHss(φ∞;ϕ0)]2
(28)

times the inverse of a (1
2N

2 + 1
2N − 1) × (1

2N
2 + 1

2N − 1) block diagonal matrix with
respect to $D,$L1,$L2 . . . ,$LN−1which only depends on $, whose detailed expression
we provide in the proof.

2. The asymptotic variance of our consistent estimator of ϑi is given by

N [(N + 2)κ0 + 2]

N2
ϑ2
i0 (29)

3. When η is jointly estimated, the same expression apply if we replace η̄ by η∞.

Given that this result applies to a Gaussian log-likelihood function too, in which case

mOss(ϑ0,0;ϕ0) = 1 + κ and mHss(ϑ0,0;ϕ0) = 1, the first part of the proposition immediately

implies that the non-Gaussian pseudo ML estimator of the variance parameters $ will be more

effi cient than the Gaussian estimator if and only if (28) is less than 1 + κ.

Figure 5B shows the ratio of (28) to (1 + κ) for all possible two-component scale mixture of

normals when the assumed distribution is a Student t and η is simultaneously estimated. As

can be seen, the Gaussian estimator is systematically dominated, except when the mixture is

such that there is a small probability of drawing from a component with very small variance,

i.e. the so-called inlier case in Amengual and Sentana (2011).
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On the other hand, the second part of the proposition says that our proposed consistent

estimator of the overall scale parameter is as asymptotically as effi cient as the Gaussian PMLE.

The difference with Proposition 6 is that the asymptotic covariance matrices are block diagonal

between ϑc and ϑi in this model.

Finally, it is also of some interest to assess the effi ciency loss in re-estimating ϑi when the

true distribution is indeed a Student t with unknown degrees of freedom. As in the univariate

case, we can make this loss arbitrarily large by choosing the number of degrees of freedom

arbitrarily close to 4. However, Figure 6 shows that the effi ciency loss is more reasonable for

more realistic values. Therefore, it seems to us that this loss is probably worth paying to ensure

the consistency of the entire parameter vector.

3 Monte Carlo evidence

In this section, we assess the finite sample performance of the different estimators and testing

procedures discussed above by means of some extensive Monte Carlo exercises.

Univariate GARCH-M In our first simulation exercise we consider the univariate Garch-

M model (2). As we saw before, this model can be easily written in terms of reparametrisation

2 with ψc = (β, γ)′, ψim and ψic, while in terms of reparametrisation 1 we have ϑc = (β, γ, δ)′

and ϑi.

We generate random draws of ε∗t from four different distributions: a standard normal, a

standardised Student t with ν = 10 degrees of freedom, a standardised symmetric fourth-order

Gram-Charlier expansion with an excess kurtosis of 3.2, and another standardised Gram-Charlier

expansion with skewness and excess kurtosis coeffi cients equal to -0.9 and 3.2, respectively. For

a given distribution, random draws are obtained with the NAG library G05DDF and G05FFF

functions, as detailed in Amengual, Fiorentini and Sentana (2013). In all four cases, we generate

10,000 samples of length 1,000 (plus another 100 for initialisation) with β = 0.85, α = 0.1,

τ = 0.05 and ω = 1, which implies that δ = ψim = 0.05, γ = 0.1 and ϑi = ψic = 1. These

parameter values ensure strict stationarity of the generating process.

We estimate the model parameters twice: first by Gaussian PML and then by maximising the

log-likelihood function of the Student t distribution. In both cases, we initialise the conditional

variance processes by setting σ◦21 = (1 + γr2)/(1− β), where r2 = 1
T

∑T
1 r

2
t , which corresponds

to an estimate of the unconditional variance of rt/ω1/2. In addition, we compute our closed-

form consistent estimators both assuming symmetry of the true distribution, and also allowing

for asymmetries. The Gaussian and Student t log-likelihood functions are maximised with a
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quasi-Newton algorithm implemented by means of the NAG library E04LBF routine with the

analytical expressions for the score vector and conditional information matrix in Fiorentini,

Sentana and Calzolari (2003).

We report the Monte Carlo medians and interquartile ranges of the estimators in Table 1.

We also report results for the estimators of αand τ in the canonical parametrisation of the model

in equation (2). Under normality, the four estimators perform equally well in terms of small

sample bias and sampling variability. When the innovations follow a Student t with 10 degrees

of freedom, the ML estimators outperform the Gaussian PML estimators, as expected. On the

other hand, our consistent estimators are very similar to the MLEs. Under the symmetric GC

distribution, our consistent symmetric estimator is the best. In contrast, the Student t-based

ML estimator of ω is remarkably biased with a Monte Carlo median equal to 1.4512, in broad

agreement with the results displayed in Figure 2B. Of course, this bias is carried forward to the

estimators of α and τ in the original parametrisation. Nevertheless, the Student t-based ML

estimators of the consistently estimated parameters β, γ and δ are considerably more effi cient

than the Gaussian PMLE, as expected from Figure 3. Finally, when we draw the innovations

from the skewed GC distribution, the Student t-based ML estimator of δ also shows large

biases, in agreement with Figure 2A. This time our consistent asymmetric estimator is the best.

Somewhat surprisingly, though, the estimator of ω that assumes symmetry does not seem to be

much biased, probably because ω is large relative to δ. Once again, the Student t-based ML

estimators of the consistently estimated parameters β and γ are more effi cient than the Gaussian

PMLEs. Overall, the univariate simulation exercise confirms the asymptotic results displayed

in Figures 2A, 2B, 3 and 4.6

Multivariate market model In our second exercise, we consider the multivariate market

model (3). Again, we consider several standardised multivariate distributions for ε∗t including

a multivariate Gaussian and a Student t with 8 degrees of freedom, a discrete scale mixture of

two normals (DSMN) with mixing probability equal to 0.2 and variance ratio equal to 10, and

an asymmetric Student t distribution with ν = 8 and β = −1000 (see Amengual and Sentana

(2010) for further details). For each distribution we generate 1,000 samples of dimension N = 5

and length T = 500 with a = .112`5, b = `5 and Ω = D1/2RD1/2 with D = 3.136 I5 and the

off diagonal terms of the correlation matrix R equal to 0.3, where `5 is a vector of fives ones.

Finally, we generate the strongly exogenous regressor rMt in each replication as an i.i.d. normal

with an annual mean return of 7% and an annual standard deviation of 16%.
6The medians of the estimators of the shape parameter η in the four designs are .0010, .0961, .3592 and .3856,

respectively. Those values compare favourably with the corresponding (pseudo) true values: 0, .1, .3615 and
.3875. Further, they are precisely estimated, with interquartile ranges .0119, .0389, .0375 and .0386.
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The Gaussian PML estimators of a, b are very easy to obtain using equation by equation

OLS. Similarly, the estimated covariance matrix of the OLS residuals yields the closed-form

Gaussian PML estimator of Ω. The Student t-based ML estimator is computationally more

demanding because we need to numerically maximise the criterion function with respect to

2N + N(N + 1)/2 + 1 = 26 parameters. For that reason, it is convenient to find very good

initial values to start up the numerical maximisation of the joint log-likelihood function. In

that regard, we first compute the method of moments estimator of the reciprocal of the degrees

of freedom parameter η suggested by Fiorentini, Sentana and Calzolari (2003), which is based

on the sample version of the coeffi cient of multivariate excess kurtosis (11). Next, we obtain a

sequential ML estimator by maximising the Student likelihood function with respect to η keeping

the other parameters fixed at their Gaussian PML estimates, as in Amengual, Fiorentini and

Sentana (2013). Finally, we jointly maximise the Student likelihood function with a quasi-

Newton method. Our numerical procedure is fast and reliable.

We report the results of the Monte Carlo experiment in Table 2 for several groups of parame-

ters. Specifically, we exploit the exchangeability of our design to report medians and interquartile

ranges of representative elements of the vectors of intercepts a and slopes b, the global scale

parameter ϑi = |Ω|1/N , and representative elements of the vectors vecd(Ω◦), vecl(Ω◦), vecd(Ω)

and vecl(Ω). Under normality all estimators perform comparably, as expected from Proposition

5. Similarly, when the true distribution of the innovations is a Student t, the ML estimator is

the best performer. Nevertheless, our proposed consistent estimator of the global scale para-

meter ϑi fares remarkably well, somewhat better than the corresponding Gaussian PMLE. On

the other hand, when the innovations follow a DSMN distribution, the Student t-based PML

estimators of ϑi and the covariance matrix of the original parametrisation Ω are upward biased,

confirming the theoretical results in Figure 1. In those circumstances, though, both the sym-

metric and asymmetric versions of our estimators perform very well, with the former moderately

better than the latter, as expected. As already observed in the univariate simulation experi-

ments, the Student t-based PML estimators of a, b, Ω◦ are substantially more effi cient than

the Gaussian PML counterparts in those circumstances. Finally, when the innovations follow

an asymmetric Student t distribution, the symmetric Student t-based MLEs of the intercepts

are noticeably biased. In contrast, the version of our estimator consistent under asymmetries

and the Gaussian PMLE are the best. Once more, though, the Student t-based MLE of the

slopes are not only consistent but they also dominate the Gaussian PMLEs. As expected, both

the t-based MLE and our consistent under symmetry estimator of Ω are biased. Overall, the

multivariate simulation exercise confirms the asymptotic results displayed in Figures 1, 5A, 5B
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and 6.7

4 Conclusions

We characterise the subset of conditional mean and variance parameters that distributionally

misspecified non-Gaussian maximum likelihood estimators can consistently estimate in multi-

variate conditionally heteroskedastic dynamic regression models. We consider not only ML esti-

mators that fix the parameters characterising the shape of the distribution but also procedures

that jointly estimate them.

We then exploit the Gaussian scores of the parameters that are inconsistently estimated by

the misspecified log-likelihood to derive simple closed-form consistent estimators for the rest.

Our proposed estimators are in effect first and second sample moments of residuals readily

generated by most software packages, which make them immune to the curse of dimensionality.

In addition, we show that when the true conditional distribution is either platykurtic or

mesokurtic, in the sense that the coeffi cient of multivariate excess kurtosis is either negative or

zero, pseudo ML estimators based on certain leptokurtic spherical distributions, including the

multivariate Student t and indeed any symmetric generalised hyperbolic distribution, as well

as some discrete scale mixtures and polynomial expansions of the multivariate normal, provide

consistent estimators of all the parameters irrespective of the ellipticity of the true distribution

because they converge to the Gaussian PML estimators.

It is important to emphasise that the reparametrisations that we consider only play an

auxiliary role. After obtaining consistent estimators of all the transformed mean and variance

parameters with the procedures that we propose, it is straightforward to consistently estimate

the original parameters and to obtain their asymptotic standard errors by means of the delta

method.

The inclusion of means and the explicit coverage of multivariate models make our procedures

useful in many empirically relevant applications beyond Arch models, which have been the

motivating example for most of the existing work. In particular, our results apply to dynamic

linear models such asVars and multivariate regressions, which remain the workhorse in empirical

macroeconomics and asset pricing contexts.

We study the statistical properties of our proposed consistent estimators. We also assess

their effi ciency relative to Gaussian pseudo maximum likelihood for two empirically relevant

examples: a univariate Garch-M and a multivariate market model. In accordance with earlier

7The medians of the estimators of the shape parameter η in the four designs are 0, .1240, .3344 and .2023,
respectively. Those values compare favourably with the corresponding (pseudo) true values: 0, .125, .3344 and
.2014. Further, they are precisely estimated, with interquartile ranges .0043, .0233, .0297 and .0322.
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results in Amengual and Sentana (2010) and Fiorentini and Sentana (2010, 2014), it seems

that our modified estimators are usually more effi cient than their Gaussian PML counterparts,

at least when the pseudo log-likelihood function is based on a Student t distribution whose

shape parameter is simultaneously estimated. Those effi ciency gains should translate into more

precise estimators of transformations of the model parameters of empirical interest, such as

impulse response functions in Var contexts or Sharpe ratios and optimal mean variance weights

in portfolio allocation ones, as well as more powerful tests.

In a detailed Monte Carlo experiment we confirm that the ML estimators of the transformed

parameters we single out in our theoretical analysis are biased when the true distribution does

not coincide with the one assumed for estimation purposes. Nevertheless, our simulation results

also indicate that our proposed methods yield consistent estimators for all the parameters, and

with lower Monte Carlo dispersion than their Gaussian counterparts.

It is diffi cult to find empirically relevant examples of models for which reparametrisation 1

does not hold, so our spherically symmetric results can be directly applied to most static and

dynamic models. Our first example also shows that reparametrisation 2 applies seamlessly to

univariate Garch-m models, including sophisticated asymmetric alternatives such as the one

in Sun and Stengos (2006). In turn, our second example confirms that this reparametrisation

can also be readily applied to multivariate regression models. Unfortunately, the same is not

generally true in multivariateGarchmodels when the true distribution is asymmetric even if the

conditional mean is 0. The constant conditional correlation (CCC) model of Bollerslev (1990),

which assumes that Σt(ψc,ψic) = St(ψc)RSt(ψc), where St is a positive diagonal matrix,

ψic = vecl(R) and R a correlation matrix, provides an important exception.8 In most other

models, though, we may need to artificially augment the original parametrisation with ψic and

ψim even though we know that ψim0 = 0 and ψic0 = vech(IN ), which might lead to a substantial

effi ciency cost. Furthermore, in doing so, we must guarantee that the parameters ψc remain

identified (see Newey and Steigerwald (1997) and Gouriéroux, Monfort and Zakoïan (2016) for a

detailed discussion of these issues in univariate and multivariate models, respectively). Assessing

the effi ciency costs of estimating those overparametrised models relative to using Gaussian PML

estimators in the original model would constitute a valuable addition.

In a univariate context with bounded fourth moments, Meddahi and Renault (1998) proposed

optimal GMM estimators that combine the Gaussian scores with an optimal weighting matrix,

which generally differs from the one implicit in the Gaussian PMLE. It would also be interesting

to study the effi ciency properties of our procedures relative to a multivariate generalisation of

8Ling and McAleer’s (2003) generalisation of the CCC model and example 1 in Hafner and Rombouts’(2007)
are other examples of multivariate models that can also be directly written using analogous reparametrisations.
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theirs.

When the true innovations have unbounded fourth moments, the variance of the Gaussian

scores for scale will be unbounded too, and the asymptotic distribution of our consistent esti-

mators will be non-standard, a property shared with the Gaussian PMLE and the Meddahi and

Renault (1998) procedures (see Hall and Yao (2003)). Alternative “robust”consistent estimators

such as multivariate versions of the ones mentioned by Andrews (2014), Francq and Zakoïan

(2014) and Ling and Zhu (2014) would prove useful in those circumstances.

A comparison of the sequential estimators of the shape parameters discussed in Amengual,

Fiorentini and Sentana (2013), which keep θ fixed at the Gaussian PMLEs, with an analogous

sequential procedure which instead keeps them fixed at the consistent estimators we have studied

in this paper would be worthwhile too.

Finally, one of the reasons why practitioners prefer to use non-Gaussian distributions for

estimating Garch models is that they are often not only interested in the conditional variance

of the process, but also in other features of the conditional distribution. For example, they

might be interested in its quantiles, which are required for the computation of commonly used

risk management measures such as V@R, or the probability of the joint occurrence of several

negative events, which is relevant for systemic risk measures. In contrast, the existing literature,

including our paper, focuses mostly on parameter estimation. An evaluation of the consequences

that the different estimation procedures which we consider have for such empirically relevant

functionals of the conditional distribution constitutes another fruitful avenue for future research.
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Appendices

A Auxiliary results

A.1 Some useful distribution results

A spherically symmetric random vector of dimension N , ε◦t , is fully characterised in Theorem

2.5 (iii) of Fang, Kotz and Ng (1990) as ε◦t = etut, where ut is uniformly distributed on the

unit sphere surface in RN , and et is a non-negative random variable independent of ut, whose

distribution determines the distribution of ε◦t . The variables et and ut are referred to as the

generating variate and the uniform base of the spherical distribution. Assuming that E(e2
t ) <∞,

we can standardise ε◦t by setting E(e2
t ) = N , so that E(ε◦t ) = 0, V (ε◦t ) = IN . Specifically, if ε◦t

is distributed as a standardised multivariate Student t random vector of dimension N with ν0

degrees of freedom, then et =
√

(ν0 − 2)ζt/ξt, where ζt is a chi-square random variable with N

degrees of freedom, and ξt is an independent Gamma variate with mean ν0 > 2 and variance

2ν0. If we further assume that E(e4
t ) < ∞, then the coeffi cient of multivariate excess kurtosis

κ0, which is given by E(e4
t )/[N(N + 2)]− 1, will also be bounded. For instance, κ0 = 2/(ν0− 4)

in the Student t case with ν0 > 4, and κ0 = 0 under normality. In this respect, note that since

E(e4
t ) ≥ E2(e2

t ) = N2 by the Cauchy-Schwarz inequality, with equality if and only if et =
√
N

so that ε◦t is proportional to ut, then κ0 ≥ −2/(N + 2), the minimum value being achieved in

the uniformly distributed case.

Then, it is easy to combine the representation of spherical distributions above with the higher

order moments of a multivariate normal vector in Balestra and Holly (1990) to prove that the

third and fourth moments of a spherically symmetric distribution with V (ε◦t ) = IN are given by

E(ε◦tε
◦
t
′ ⊗ ε◦t ) = 0, (A1)

E(ε◦tε
◦
t
′⊗ε◦tε◦t ′) =E[vec(ε◦tε

◦
t
′)vec′(ε◦tε

◦
t )] = (κ0 +1)[(IN2 +KNN )+vec (IN ) vec′ (IN )], (A2)

where Kmn is the commutation matrix of orders m and n (see e.g. Magnus and Neudecker

(1987)).

A.2 Likelihood, score and Hessian for spherically symmetric distributions

Let exp[c(η) + g(ςt,η)] denote the assumed conditional density of ε∗t given It−1 and the

shape parameters, where c(η) corresponds to the constant of integration, g(ςt,η) to its kernel

and ςt = ε∗′t ε
∗
t . Ignoring initial conditions, the log-likelihood function of a sample of size T for

those values of θ for which Σt(θ) has full rank will take the form LT (φ) =
∑T

t=1 lt(φ), where

lt(φ) = dt(θ) + c(η) + g [ςt(θ),η], dt(θ) = ln |Σ−1/2
t (θ)| is the Jacobian and ςt(θ) = ε∗′t (θ)ε∗t (θ).
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Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

sηt(φ), whose dimensions conform to those of θ and η, respectively. If µt(θ), Σt(θ), c(η) and

g [ςt(θ),η] are differentiable, then

sηt(φ) = ∂c(η)/∂η + ∂g [ςt(θ),η] /∂η = ert(φ), (A3)

while

sθt(φ) =
∂dt(θ)

∂θ
+
∂g [ςt(θ),η]

∂ς

∂ςt(θ)

∂θ
= [Zlt(θ),Zst(θ)]

[
elt(φ)
est(φ)

]
= Zdt(θ)edt(φ), (A4)

where

∂dt(θ)/∂θ = −Zst(θ)vec(IN ),

∂ςt(θ)/∂θ = −2{Zlt(θ)ε∗t (θ) + Zst(θ)vec
[
ε∗t (θ)ε∗′t (θ)

]
}, (A5)

Zlt(θ) = ∂µ′t(θ)/∂θ ·Σ−1/2′
t (θ),

Zst(θ) =
1

2
∂vec′ [Σt(θ)] /∂θ·[Σ−1/2′

t (θ)⊗Σ
−1/2′
t (θ)],

elt(θ,η) = δ[ςt(θ),η] · ε∗t (θ), (A6)

est(θ,η) = vec
{
δ[ςt(θ),η] · ε∗t (θ)ε∗′t (θ)−IN

}
, (A7)

and

δ[ςt(θ),η] = −2∂g[ςt(θ),η]/∂ς (A8)

is a damping factor that reflects the tail-thickness of the distribution assumed for estimation

purposes. Importantly, while both Zdt(θ) and edt(φ) depend on the specific choice of square

root matrix Σ
1/2
t (θ), sθt(φ) does not, a property that inherits from lt(φ). As we shall see in

Appendix C, this result is not generally true for non-spherical distributions.

Obviously, sθt(θ,0) reduces to the multivariate normal expression in Bollerslev andWooldridge

(1992), in which case:

edt(θ,0) =

[
elt(θ,0)
est(θ,0)

]
=

{
ε∗t (θ)

vec [ε∗t (θ)ε∗′t (θ)−IN ]

}
.

Assuming further twice differentiability of the different functions involved, we will have that

the Hessian function ht(φ) = ∂st(φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ′ will be

hθθt(φ) =
∂2dt(θ)

∂θ∂θ′
+
∂2g [ςt(θ), η]

(∂ς)2

∂ςt(θ)

∂θ

∂ςt(θ)

∂θ′
+
∂g [ςt(θ), η]

∂ς

∂2ςt(θ)

∂θ∂θ′
, (A9)

hθηt(φ) = ∂ςt(θ)/∂θ · ∂2g [ςt(θ),η] /∂ς∂η′, (A10)

hηηt(φ) = ∂2c(η)/∂η∂η′ + ∂2g [ςt(θ),η] /∂η∂η′,
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where

∂2dt(θ)/∂θ∂θ′=2Zst(θ)Z′st(θ)-
1

2

{
vec′

[
Σ−1
t (θ)

]
⊗ Ip

}
∂vec

{
∂vec′ [Σt(θ)] /∂θ

}
/∂θ′, (A11)

∂2ςt(θ)/∂θ∂θ′ = 2Zlt(θ)Z′lt(θ) + 8Zst(θ)[IN ⊗ ε∗t (θ)ε∗′t (θ)]Z′st(θ) + 4Zlt(θ)[ε∗′t (θ)⊗ IN ]Z′st(θ)

+4Zst(θ)[ε∗t (θ)⊗ IN ]Z′lt(θ)− 2[ε∗′t (θ)Σ
−1/2′
t (θ)⊗Ip]∂vec[∂µ

′
t(θ)/∂θ]∂θ′

−{vec′[Σ−1/2
t (θ)ε∗t (θ)ε∗′t (θ)Σ

−1/2′
t (θ)]⊗ Ip}∂vec{∂vec′[Σt(θ)]/∂θ}/∂θ′.

Note that ∂ςt(θ)/∂θ, ∂2dt(θ)/∂θ∂θ′ and ∂2ςt(θ)/∂θ∂θ′ depend on the dynamic model specifica-

tion, while ∂2g(ς, η)/(∂ς)2, ∂2g(ς, η)/∂ς∂η′ and ∂g(ς, η)/∂η∂η′ depend on the specific spherical

distribution assumed for estimation purposes (see Fiorentini, Sentana and Calzolari (2003) for

expressions for δ(ςt,η), c(η), g(ςt,η) and its derivatives in the multivariate Student t case,

Amengual and Sentana (2010) for the Kotz distribution (see Kotz (1975)) and discrete scale

mixture of normals, and Amengual, Fiorentini and Sentana (2013) for polynomial expansions).

A.3 Asymptotic distribution under correct specification

Given correct specification, the results in Crowder (1976) imply that et(φ) = [e′dt(φ), ert(φ)]′

evaluated at φ0 follows a vector martingale difference, and therefore, the same is true of the score

vector st(φ). His results also imply that, under suitable regularity conditions, the asymptotic

distribution of the joint ML estimator will be
√
T (φ̂T − φ0)→ N

[
0, I−1(φ0)

]
, where I(φ0) =

E[It(φ0)|φ0],

It(φ) = V [st(φ)|It−1;φ] = Zt(θ)M(φ)Z′t(θ) = −E [ht(φ)|It−1;φ] ,

Zt(θ) =

(
Zdt(θ) 0

0 Iq

)
=

(
Zlt(θ) Zst(θ) 0

0 0 Iq

)
, (A12)

andM(φ) = V [et(φ)|φ]. In particular, Crowder (1976) requires: (i) φ0 is locally identified and

belongs to the interior of the admissible parameter space, which is a compact subset of Rp+q; (ii)

the Hessian matrix is non-singular and continuous throughout some neighbourhood of φ0; (iii)

there is uniform convergence to the integrals involved in the computation of the mean vector

and covariance matrix of st(φ); and (iv) −E−1
[
−T−1

∑
t ht(φ)

]
T−1

∑
t ht(φ)

p→ Ip+q, where

E−1
[
−T−1

∑
t ht(φ)

]
is positive definite on a neighbourhood of φ0.

As for θ̃T (η̄), assuming that η̄ coincides with the true value of this parameter vector, the

same arguments imply that
√
T [θ̃T (η̄) − θ0] → N

[
0, I−1

θθ (φ0)
]
, where Iθθ(φ0) is the relevant

block of the information matrix.

Proposition 1 in Fiorentini and Sentana (2007), which generalises Propositions 3 in Lange,

Little and Taylor (1989), 1 in Fiorentini, Sentana and Calzolari (2003) and 5.2 in Hafner and

Rombouts (2007), provides detailed expressions forM(φ). We reproduce it here to facilitate its

comparison to Proposition 2:
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Proposition 8 If ε∗t |It−1;φ is i.i.d. s(0, IN ,η) with density exp[c(η) + g(ςt,η)], then

M(η) =

 Mll(η) 0 0
0 Mss(η) Msr(η)
0 M′sr(η) Mrr(η)

 , (A13)

Mll(η) = mll(η)IN , (A14)

Mss(η) = mss(η) (IN2 + KNN ) + [mss(η)− 1]vec(IN )vec′(IN ), (A15)

Msr(η) = vec(IN )msr(η), (A16)

mll(η) = E
[
δ2(ςt,η)

ςt
N

∣∣∣η] = E

[
2∂δ(ςt,η)

∂ς

ςt
N

+ δ(ςt,η)

∣∣∣∣η] ,
mss(η) =

N

N + 2

{
1 + V

[
δ(ςt,η)

ςt
N

∣∣∣η]} =
N

N + 2
E

[
2∂δ(ςt,η)

∂ς

( ςt
N

)2
∣∣∣∣η]+ 1,

msr(η) = E
{[
δ(ςt,η)

ςt
N
− 1
]
e′rt(φ)

∣∣∣φ} = −E
[
ςt
N

∂δ(ςt,η)

∂η′

∣∣∣∣η] .
Fiorentini, Sentana and Calzolari (2003) provide the relevant expressions for the multivariate

standardised Student t, while the expressions for the Kotz distribution and the DSMN are

given in Amengual and Sentana (2010) (The expression for mss(κ) for the Kotz distribution in

Amengual and Sentana (2010) contains a typo. The correct value is (Nκ+ 2)/[(N + 2)κ+ 2]).

A.4 Gaussian pseudo maximum likelihood estimators

Let θ̃T = arg maxθ LT (θ,0) denote the Gaussian PML estimator of θ. As we mentioned

in the introduction, θ̃T remains root-T consistent for θ0 under correct specification of µt(θ)

and Σt(θ) even though the true conditional distribution of ε∗t |It−1;φ0 is neither Gaussian nor

spherical, provided that it has bounded fourth moments. The proof is based on the fact that

in those circumstances, the pseudo log-likelihood score, sθt(θ,0), is also a vector martingale

difference sequence when evaluated at θ0, a property that inherits from edt(θ,0). This property

is preserved even when the standardised innovations, ε∗t , are not stochastically independent

of It−1. The asymptotic distribution of the PML estimator of θ is stated in the following

result, which specialises Proposition 1 in Bollerslev and Wooldridge (1992) to models with i.i.d.

innovations with shape parameters ρ:

Proposition 9 Assume that the regularity conditions A.1 in Bollerslev and Wooldridge (1992)
are satisfied.

1. If ε∗t |It−1;ϕ is i.i.d.D(0, IN ,ρ) with tr[K(ρ)]<∞, where ϕ = (θ′,ρ′)′, then
√
T (θ̃T−θ0)→

N [0, Cθθ(θ0,0;ϕ0)] with

Cθθ(θ,0;ϕ) = A−1
θθ (θ,0;ϕ)Bθθ(θ,0;ϕ)A−1

θθ (θ,0;ϕ),

Aθθ(θ,0;ϕ) = −E [hθθt(θ,0)|ϕ] = E [Aθθt(θ,0;ϕ)|ϕ] ,

Aθθt(θ,0;ϕ) = −E[hθθt(θ; 0)| It−1;ϕ] = Zdt(θ)K(0)Z′dt(θ),

Bθθ(θ,0;ϕ) = V [sθt(θ,0)|ϕ] = E [Bθθt(θ,0;ϕ)|ϕ] ,

Bθθt(θ,0;ϕ) = V [sθt(θ; 0)| It−1;ϕ] = Zdt(θ)K(ρ)Z′dt(θ),
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and

K(ρ) =V [edt(θ,0)| It−1;ϕ] =

[
IN Φ(ρ)

Φ(ρ) Υ(ρ)

]
, (A17)

where
Φ(ρ) = E[ε∗t vec

′(ε∗tε
∗′
t )|ϕ]

Υ(ρ) = E[vec(ε∗tε
∗′
t − IN )vec′(ε∗tε

∗′
t − IN )|ϕ]

depend on the multivariate third and fourth order cumulants of ε∗t , so that Φ(0) = 0 and
Υ(0) = (IN2 + KNN ) if we use ρ = 0 to denote normality.

2. If ε∗t |It−1;φ0 is i.i.d. s(0, IN ,ρ0) with κ0 <∞, then (A17) reduces to

K (κ) =

[
IN 0
0 (κ+1) (IN2 +KNN )+κvec(IN )vec′(IN )

]
, (A18)

which only depends on the true distribution through the population coeffi cient of multivari-
ate excess kurtosis κ0.

A.5 Explicit parametrisation of the residual covariance matrix

Let us start with the simplest possible example in which Ω is assumed diagonal. In that

case, we can easily achieve |Ω◦D($)| = 1 by writing ωjj = ϑi exp($Dj) for j = 1, . . . , N − 1 and

ωNN = ϑi exp
(
−
∑N−1

j=1 $Dj

)
. Thus, the Jacobian of vecd(Ω) with respect to ϑi will be

vecd(Ω◦D) = [exp($D1), . . . , exp($DN−1), exp
(
−
∑N−1

j=1 $Dj

)
]′

while the one with respect to $D = ($1, . . . , $N−1)′ will be ϑi times

∂vecd(Ω◦D)

∂$′D
=

[
diag[exp($D1), . . . , exp($DN−1)]

− exp
(
−
∑N−1

j=1 $Dj

)
`′N−1

]
, (A19)

where `N−1 denotes a vector of N − 1 ones and diag($D) a square diagonal matrix with the

elements of the vector $D along the main diagonal. Obviously, in the special case of Ω scalar,

then Ω◦D = IN and $D drops out.

Let us now move to the case in which, other than being positive (semi)definite, Ω is com-

pletely unrestricted. Let Ω = ΩLΩDΩ′L denote the Cholesky factorisation of the matrix Ω, with

ΩD diagonal and ΩL unit lower triangular. Given that |ΩL| = 1, we will have that |Ω| = |ΩD|

so we can ensure |Ω◦($)| = 1 by parametrising ΩD as in the diagonal case above.

Using the product rule for differentials, we get that

dΩ = dΩL ·ΩDΩ′L + ΩL · dΩD ·Ω′L + ΩLΩD · dΩ′L,

whence

dvec(Ω) = (ΩLΩD ⊗ IN )dvec(ΩL) + (ΩL ⊗ΩL)dvec(ΩD) + (IN ⊗ΩLΩD)dvec(Ω′L)

= [(ΩLΩD ⊗ IN ) + (IN ⊗ΩLΩD)KNN ]dvec(ΩL) + (ΩL ⊗ΩL)dvec(ΩD)

= (IN + KNN )(ΩLΩD ⊗ IN )dvec(ΩL) + (ΩL ⊗ΩL)dvec(ΩD).
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Let SN the unique 1
2N(N − 1) ×N2 matrix which transforms vecl(ΩL) into vec(ΩL − IN )

as vec(ΩL − IN ) = S′Nvecl(ΩL), where vecl(ΩL) is the 1
2N(N − 1)× 1 vector that contains the

elements in the strict lower triangle of ΩL stacked by columns (see Magnus (1988)). Given that

dvec(ΩL) = dvec(ΩL − IN ) = S′Ndvecl(ΩL), we can finally write

dvec(Ω) = (IN + KNN )(ΩLΩD ⊗ IN )S′Ndvecl(ΩL) + (ΩL ⊗ΩL)E′Ndvecd(ΩD),

where EN is the unique diagonalisation matrix which transforms vecd(ΩD) into vec(ΩD) as

vec(ΩD) = E′Nvecd(ΩD) (see again Magnus (1988)). Using this expression we can trivially

prove that

∂vec(Ω)

∂vecl′(ΩL)
= (IN + KNN )(ΩLΩD ⊗ IN )S′N , (A20)

∂vec(Ω)

∂vecd′(ΩD)
= (ΩL ⊗ΩL)E′N . (A21)

Then, we can obtain the Jacobian of vec(Ω) with respect to ϑi and $D from the expressions

for the Jacobian of vecd(Ω◦D) in the diagonal case.

Finally, let us study the fairly common situation in which Ω is estimated subject to the exact

single factor structure cc′ + Υ, where c is an N × 1 vector and Υ a diagonal matrix. Assuming

that Υ is positive definite, we can always parametrise Ω as

Υ1/2(c∗c∗′ + IN )Υ1/2, (A22)

where c∗ = Υ−1/2c. Given that the eigenvalues of c∗c∗′ + IN are 1 + c∗′c∗ (once) and 1 (N − 1

times), then |Ω| = |Υ| · (1 + c∗′c∗). As a result, if we write υjj = ϑi(1 + c∗′c∗)−1/N exp($Dj) for

j = 1, . . . , N−1 and υNN = ϑi(1+c∗′c∗)−1/N exp
(
−
∑N−1

j=1 $Dj

)
, we will ensure that |Ω| = ϑNi

as required.

As for the Jacobian matrices, it follows from (A22) that

dΩ=dΥ1/2(c∗c∗′+IN )Υ1/2+Υ1/2 ·dc∗ ·c∗′Υ1/2+Υ1/2c∗ ·dc∗′ ·Υ1/2+Υ1/2(c∗c∗′+IN )·dΥ1/2,

whence

dvec(Ω) = [Υ1/2(c∗c∗′ + IN )⊗ IN ]dvec(Υ1/2) + (Υ1/2c∗ ⊗Υ1/2)dc∗

+(Υ1/2 ⊗Υ1/2c∗)dc∗ + [IN ⊗Υ1/2(c∗c∗′ + IN )]dvec(Υ1/2)

= [(Υ1/2c∗ ⊗Υ1/2) + (Υ1/2 ⊗Υ1/2c∗)]dc∗

+
1

2
{[Υ1/2(c∗c∗′ + IN )⊗ IN ] + [IN ⊗Υ1/2(c∗c∗′ + IN )]}E′NΥ−1/2dvecd(Υ),

where we have exploited the fact that

dvec(Υ1/2) = E′Ndvecd(Υ1/2) = E′NΥ−1/2dvecd(Υ).
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The derivatives of γjj with respect to to ϑi and $Dk are simply (1 + c∗′c∗)−1/N times the

corresponding derivatives in the diagonal case we discussed above. Thus, the only remaining

derivatives will be
∂υjj
∂c∗k

=
2ϑiυjj

N(1 + c∗′c∗)(N+1)/N
c∗k.

B Proofs

Proposition 1

We can directly work in terms of the ϑ parameters thanks to our assumptions on the mapping

rs(.). Let us initially keep η fixed to some admissible value so as to focus on the spherically

symmetric score vector for ϑ in (A4). Given that the conditional covariance matrix of yt is of

the form ϑiΣ
◦
t (ϑc), it is straightforward to show that

Zdt(ϑ) =

[
Zϑclt(ϑ) Zϑcst(ϑ)

0 Zϑist(ϑ)

]
=

{
ϑ
−1/2
i [∂µ′t(ϑc)/∂ϑc] Σ

◦−1/2′
t (ϑc)

0

=
1
2{∂vec

′[Σ◦t (ϑc)]/∂ϑc}[Σ
◦−1/2′
t (ϑc)⊗Σ

◦−1/2′
t (ϑc)]

1
2ϑ
−1
i vec′(IN )

}
. (B23)

Thus, the conditional mean and variance parameter scores will be

sϑct(ϑ,η) = ϑ
−1/2
i

∂µ′t(ϑc)

∂ϑc
Σ
◦−1/2′
t (ϑc)δ[ςt(ϑ),η]ε∗t (ϑ)

+
1

2

∂vec′[Σ◦t (ϑc)]

∂ϑc
[Σ
◦−1/2′
t (ϑc)⊗Σ

◦−1/2′
t (ϑc)]vec

{
δ[ςt(ϑ),η] · ε∗t (ϑ)ε∗′t (ϑ)−IN

}
(B24)

and

sϑit(ϑ,η) =
1

2ϑi
{δ[ςt(ϑ),η]ςt(ϑ)−N} . (B25)

But since

ε∗t (ϑc0, ϑi) =
√

1/ϑiΣ
◦−1/2
t (ϑc0)[yt − µt(ϑc0)] =

√
ϑi0/ϑiε

∗
t = λ−1/2ε∗t ,

so that

ςt(ϑc0, ϑi) = (ϑi0/ϑi)ςt = λ−1ςt,

we will have that

elt(ϑc0, ϑi,η) = δ(λ−1ςt,η)λ−1/2ε∗t = δ(λ−1ςt,η)λ−1/2√ςtut, (B26)

est(ϑc0, ϑi,η)=vec
[
δ(λ−1ςt,η)λ−1ε∗tε

∗′
t −IN

]
=vec

[
δ(λ−1ςt,η)λ−1ςtutu

′
t − IN

]
. (B27)

Then, it follows that E[elt(ϑc0, ϑi,η)|It−1;ϕ0] = 0 regardless of ϑi and η because of the

serial and mutual independence of ςt and ut, and the fact that E(ut) = 0. Similarly,

E[est(ϑc0, ϑi,η)|It−1;ϕ0] = E[δ(λ−1ςt, η)λ−1(ςt/N)− 1
∣∣ϕ0] · vec(IN )
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because of the serial and mutual independence of ςt and ut, and the fact that E(utu
′
t) = N−1IN .

If we define ϑi∞(η) > 0 as the value of ϑi that satisfies the moment condition

E
[
δ[λ−1
∞ (η)ςt,η]λ−1

∞ (η)(ςt/N)− 1
∣∣ϕ0

]
= 0, (B28)

with

λ∞(η) = ϑi∞(η)/ϑi0, (B29)

then it is straightforward to show that

E{sϑt[ϑc0, ϑi∞(η),η]|It−1;ϕ0} = 0, (B30)

which confirms that ϑc0 and ϑi∞(η) will be the pseudo-true values of the parameters corre-

sponding to a restricted PML estimator that keeps η fixed. Thus, we can understand λ∞(η) in

(B29) as the “relative asymptotic bias”in estimating ϑi.

If we define η∞ as the value of η that satisfies the moment condition

E{sηt[ϑc0, ϑi∞(η∞),η∞]|ϕ0} = 0, (B31)

which we assume lies in the interior of the admissible parameter space, then it is clear that

ϑc0, ϑi∞ = ϑi∞(η∞) and η∞ will be the pseudo-true values of the parameters corresponding to

the unrestricted PMLE that jointly estimates η, and λ∞ = ϑi∞/ϑi0 the corresponding “relative

asymptotic bias”.

Proposition 2

To obtain the asymptotic distribution of the unrestricted pseudo ML estimators ϑ̂T and η̂T ,

we need the asymptotic covariance matrix of the average scores as well as the expected value

of the average Hessian matrix evaluated at the pseudo true values φ′∞ = (ϑ′c0, ϑi∞,η
′
∞). Given

that sηt(φ∞) only depends on ςt(ϑc0, ϑi∞), which is i.i.d. over time, it follows that

E[sηt(φ∞)|It−1;ϕ0] = 0, (B32)

which in conjunction with (B30) proves the martingale difference nature of the misspecified

spherical score evaluated at the pseudo-true values. As a result, we only need the contempo-

raneous covariance matrix of the component of the score corresponding to the tth observation,

which in turn depends on the contemporaneous covariance matrix of edt(φ∞) and ert(φ∞).

If we re-write edt(φ∞) as in (B26) and (B27), it immediately follows that

E[elt(φ∞)e′lt(φ∞)] = E
{
δ2(λ−1

∞ ςt,η∞)λ−1
∞ ςtutu

′
t

}
= E[δ2(λ−1

∞ ςt,η∞)λ−1
∞ (ςt/N)]IN = mOll (φ∞;ϕ0)IN ,

E[elt(φ∞)e′st(φ∞)] = E
{
δ(λ−1
∞ ςt,η∞)λ−1/2

∞
√
ςtut · vec′

[
δ(λ−1
∞ ςt,η∞)λ−1

∞ ςtutu
′
t − IN

]}
= 0
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by virtue of (A1), and

E[est(φ0)e′st(φ0)] = E
{
vec

[
δ(λ−1
∞ ςt,η∞)(λ−1

∞ ςt/N)Nutu
′
t − IN

]
×vec′

[
δ(λ−1
∞ ςt,η∞)(λ−1

∞ ςt/N)Nutu
′
t − IN

]}
= E

[
δ(λ−1
∞ ςt,η∞)(λ−1

∞ ςt/N)
]2 N

N + 2
[(IN2 + KNN ) + vec (IN ) vec′ (IN )]

−2E
[
δ(λ−1
∞ ςt,η∞)(λ−1

∞ ςt/N)
]
vec (IN ) vec′ (IN ) + vec (IN ) vec′ (IN )

=
N

(N + 2)
E
[
δ(λ−1
∞ ςt,η∞)(λ−1

∞ ςt/N)
]2

(IN2 + KNN )

+

{
N

(N + 2)
E
[
δ(λ−1
∞ ςt,η∞)(λ−1

∞ ςt/N)
]2 − 1

}
vec (IN ) vec′ (IN )]

= mOss(φ∞;ϕ0) (IN2 + KNN ) + [mOss(φ∞;ϕ0)− 1]vec(IN )vec′(IN )

by virtue of (A2) and (B28).

Moreover, it is clear from (A3) that ert(φ∞) will be a function of ςt but not of ut, which

immediately implies that E[elt(φ∞)e′rt(φ∞)] = 0 and

E[est(φ∞)e′rt(φ∞)] = E
{
vec

[
δ(λ−1
∞ ςt,η∞)λ−1

∞ ςt · utu′t − IN
]
e′rt(φ∞)

}
= vec(IN )E

{[
δ(λ−1
∞ ςt,η∞)(λ−1

∞ ςt/N)− 1
]
e′rt(φ∞)

}
= vec(IN )mOsr(φ∞;ϕ0).

If we combine these expressions with (B23) and apply the law of iterated expectations, after

some algebraic manipulations we obtain

Bϑcϑc(φ∞;ϕ0) = E[sϑct(φ∞)s′ϑct(φ∞)|ϕ0] =
mOll (φ∞;ϕ0)

ϑi∞
E

[
∂µ′t(ϑc0)

∂ϑc
Σ◦−1
t (ϑc0)

∂µt(ϑc0)

∂ϑ′c

∣∣∣∣ϕ0

]
+
mOss(φ∞;ϕ0)

2
E

[
∂vec′[Σ◦t (ϑc0)]

∂ϑc
[Σ◦−1

t (ϑc0)⊗Σ◦−1
t (ϑc0)]

∂vec[Σ◦t (ϑc0)]

∂ϑ′c

∣∣∣∣ϕ0

]
+
mOss(φ∞;ϕ0)−1

4
E

[
∂vec′[Σ◦t (ϑc0)]

∂ϑc
vec[Σ◦−1

t (ϑc0)]vec′[Σ◦−1
t (ϑc0)]

∂vec[Σ◦t (ϑc0)]

∂ϑ′c

∣∣∣∣ϕ0

]
, (B33)

Bϑcϑi(φ∞;ϕ0) = E[sϑct(φ∞)sϑit(φ∞)|ϕ0] =
mOss(φ∞;ϕ0)(N + 2)−N

2ϑi∞
Wϑc(ϑc0;ϕ0),

Bϑiϑi(φ∞;ϕ0) = E[s2
ϑit

(φ∞)|ϕ0] =
N [(N + 2)mOss(φ∞;ϕ0)−N ]

4ϑ2
i∞

,

Bϑcη(φ∞;ϕ0) = E[sϑct(φ∞)s′ηt(φ∞)|ϕ0] = Wϑc(ϑc0;ϕ0)mOsr(φ∞;ϕ0),

Bϑiη(φ∞;ϕ0) = E[sϑit(φ∞)s′ηt(φ∞)|ϕ0] =
N

2ϑi∞
mOsr(φ∞;ϕ0),

where

Wϑ(ϑ0;ϕ0) = Zd(ϑ0)[0′, vec′(IN )]′ = E[Zdt(ϑ0)|ϕ0][0′, vec′(IN )]′

= E

{
1

2

∂vec′ [Σt(ϑ0)]

∂ϑ
vec[Σ−1

t (ϑ0)]

∣∣∣∣ϕ0

}
= E[Wϑt(ϑ0)|ϕ0] = −E

[
∂dt(ϑ)

∂ϑ

∣∣∣∣ϕ0

]
, (B34)
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mOll (φ;ϕ) = E
{
δ2[ςt(ϑ),η] · [ςt(ϑ)/N ]

∣∣ϕ}
mOss(φ;ϕ) = N(N + 2)−1 [1 + V {δ[ςt(ϑ),η] · [ςt(ϑ)/N ]|ϕ}] ,

mOsr(φ;ϕ) = E
[
{δ[ςt(ϑ),η] · [ςt(ϑ)/N ]− 1} e′rt(φ)

∣∣ϕ] ,
and

Bηη(φ∞;ϕ0) = E[sηt(φ∞)s′ηt(φ∞)|ϕ0] = mOrr(φ∞;ϕ0).

To obtain the expected value of the Hessian, it is convenient to write hϑϑt(φ∞) in (A9) as

−4Zst(ϑ∞)[IN ⊗ {δ(λ−1
∞ ςt,η∞)λ−1

∞ ε
∗
tε
∗′
t − IN}]Z′st(ϑ∞)

+[e′lt(φ∞)Σ
−1/2′
t (ϑ∞)⊗ Ip]

∂vec

∂ϑ′

[
∂µ′t(ϑ∞)

∂ϑ

]
+

1

2
{e′st(φ∞)[Σ

−1/2
t (ϑ∞)⊗Σ

−1/2
t (ϑ∞)]⊗Ip}

∂vec

∂ϑ′

{
∂vec′[Σt(ϑ∞)]

∂ϑ

}
−2Zlt(ϑ∞)[e′lt(φ∞)⊗ IN ]Z′st(ϑ∞)− 2Zst(ϑ∞)[elt(φ∞)⊗ IN ]Z′lt(ϑ∞)

−δ(λ−1
∞ ςt,η∞)Zlt(ϑ∞)Z′lt(ϑ∞)− 2Zst(ϑ∞)Z′st(ϑ∞)

−2∂δ(λ−1
∞ ςt,η∞)

∂ς
{Zlt(ϑ∞)ε∗t (ϑ∞)ε∗′t (ϑ∞)Z′lt(ϑ∞)

+Zlt(ϑ∞)ε∗t (ϑ∞)vec′[ε∗t (ϑ∞)ε∗′t (ϑ∞)]Z′st(ϑ∞) + Zst(ϑ∞)vec[ε∗t (ϑ∞)ε∗′t (ϑ∞)]ε∗t (ϑ∞)Z′lt(ϑ∞)

+ Zst(ϑ∞)vec[ε∗t (ϑ∞)ε∗′t (ϑ∞)]vec′[ε∗t (ϑ∞)ε∗′t (ϑ∞)]Z′st(ϑ∞)
}
.

Clearly, the first four lines have zero conditional expectation, and the same is true of the

sixth line by virtue of (A1). As for the remaining terms, we can write them as

−δ(λ−1
∞ ςt,η∞)Zlt(ϑ∞)Z′lt(ϑ∞)− 2∂δ(λ−1

∞ ςt,η∞)/∂ς · Zlt(ϑ∞)λ−1
∞ ςtutu

′
tZ
′
lt(ϑ∞)

−2Zst(ϑ∞)Z′st(ϑ∞)− 2∂δ(λ−1
∞ ςt,η∞)/∂ς · (λ−1

∞ ςt)
2Zst(ϑ∞)vec(utu

′
t)vec

′(utu
′
t)Z
′
st(ϑ∞),

whose conditional expectation will be

−E[δ(λ−1
∞ ςt,η∞) + 2(λ−1

∞ ςt/N) · ∂δ(λ−1
∞ ςt,η∞)/∂ς] · Zlt(ϑ∞)Z′lt(ϑ∞)− 2Zst(ϑ∞)Z′st(ϑ∞)

−2NE[(λ−1
∞ ςt/N)2 · ∂δ(λ−1

∞ ςt,η∞)/∂ς]

(N + 2)
Zst(ϑ∞)[(IN2 ⊗KNN ) + vec(IN )vec′(IN )]Z′st(ϑ∞)

= −mHll (φ∞;ϕ0)Zlt(ϑ∞)Z′lt(ϑ∞)

−Zst(ϑ∞)
{
mHss(φ∞;ϕ0) (IN2 + KNN ) + [mHss(φ∞;ϕ0)− 1]vec(IN )vec′(IN )

}
Z′st(ϑ∞),

where

mHll (φ;ϕ) = E {2∂δ[ςt(ϑ),η]/∂ς · [ςt(ϑ)/N ] + δ[ςt(ϑ),η]|ϕ} ,

mHss(φ;ϕ) = N(N + 2)−1E
{

2∂δ[ςt(ϑ),η]/∂ς · ς2
t (ϑ)/[N(N + 2)]

∣∣ϕ}+ 1.
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As for hϑηt(φ∞), it follows from (A10) and (A5) that we can write it as

{Zlt(ϑ∞)ε∗t (ϑ∞) + Zst(ϑ∞)vec
[
ε∗t (ϑ∞)ε∗′t (ϑ∞)

]
} · ∂δ(λ−1

∞ ςt,η∞)/∂η′

= [Zlt(ϑ∞)utλ
−1/2
∞
√
ςt + Zst(ϑ∞)vec(utu

′
t)λ
−1
∞ ςt · ∂δ(λ−1

∞ ςt,η∞)/∂η′,

whose conditional expected value will be

Zst(ϑ∞)vec(IN )E[(λ−1
∞ ςt/N) · ∂δ(λ−1

∞ ςt,η∞)/∂η′] = −Zst(ϑ∞)vec(IN )mHsr(φ∞;ϕ0),

with

mHsr(φ;ϕ) = −E {[ςt(ϑ)/N ] · ∂δ[ςt(ϑ),η]/∂η|ϕ} .

Replacing once again Zlt(ϑ∞) and Zst(ϑ∞) by the relevant expressions in (B23) and applying

the law of iterated expectations, we obtain

Aϑcϑc(φ∞;ϕ0) = −E[hϑcϑct(φ∞)|ϕ0] =
mHll (φ∞;ϕ0)

ϑi∞
E

[
∂µ′t(ϑc0)

∂ϑc
Σ◦−1
t (ϑc)

∂µt(ϑc0)

∂ϑ′c

∣∣∣∣ϕ0

]
+
mHss(φ∞;ϕ0)

2
E

[
∂vec′[Σ◦t (ϑc0)]

∂ϑc
[Σ◦−1

t (ϑc0)⊗Σ◦−1
t (ϑc0)]

∂vec[Σ◦t (ϑc0)]

∂ϑ′c

∣∣∣∣ϕ0

]
+
mHss(φ∞;ϕ0)−1

4
E

[
∂vec′[Σ◦t (ϑc0)]

∂ϑc
vec[Σ◦−1

t (ϑc0)]vec′[Σ◦−1
t (ϑc0)]

∂vec[Σ◦t (ϑc0)]

∂ϑ′c

∣∣∣∣ϕ0

]
, (B35)

Aϑcϑi(φ∞;ϕ0) = −E[hϑcϑit(φ∞)|ϕ0] =
mHss(φ∞;ϕ0)(N + 2)−N

2ϑi∞
Wϑc(ϑc0;ϕ0),

Aϑiϑi(φ∞;ϕ0) = −E[hϑiϑit(φ∞)|ϕ0] =
N [(N + 2)mHss(φ∞;ϕ0)−N ]

4ϑ2
i∞

,

Aϑcη(φ∞;ϕ0) = −E[hϑcηt(φ∞)|ϕ0] = Wϑc(ϑc0;ϕ0)mHsr(φ∞;ϕ0),

Aϑiη(φ∞;ϕ0) = −E[hϑiηt(φ∞)s′ηt(φ∞)|ϕ0] =
N

2ϑi∞
mHsr(φ∞;ϕ0),

and

Aηη(φ∞;ϕ0) = −E[hηηt(φ∞)|ϕ0] = mHrr(φ∞;ϕ0).

Let us now turn to our consistent estimator of ϑi in (9). The fact that the Gaussian pseudo

score for this parameter is an influence function that only depends on ϑc and ϑ̄i trivially implies

that
∂sϑit(ϑc, ϑ̄i; 0)

∂ϑi
= 0 and

∂sϑit(ϑc, ϑ̄i; 0)

∂η
= 0.

For analogous reasons,

∂sϑct(ϑc, ϑi;η)

∂ϑ̄i
= 0,

∂sϑit(ϑc, ϑi;η)

∂ϑ̄i
= 0 and

∂sηt(ϑc, ϑi;η)

∂ϑ̄i
= 0.
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We will also have that

∂sϑit(ϑc, ϑ̄i; 0)

∂ϑc
= h′ϑcϑit(ϑ,0) = − 1

ϑ
3/2
i

∂µ′t(ϑc)

∂ϑc
Σ
◦−1/2′
t (ϑc)ε

∗
t (ϑ)

− 1

2ϑi

∂vec′[Σ◦t (ϑc)]

∂ϑc
[Σ
◦−1/2′
t (ϑc)⊗Σ

◦−1/2′
t (ϑc)]vec

[
ε∗t (ϑ)ε∗′t (ϑ)

]
,

∂sϑit(ϑc, ϑ̄i; 0)

∂ϑi
= hϑiϑit(ϑ,0) =

1

ϑ̄
2
i

[ςt(ϑ)−N ]− N

2ϑ̄
2
i

.

But εt(ϑ0) = εt because we are evaluating these two expressions at consistent estimators of

both ϑc and ϑi, whence we can prove that

Aϑcϑ̄i(ϑ0,0;ϕ0) = Aϑcϑi(ϑ0,0;ϕ0) = Wϑc(ϑc0;ϕ0)
1

ϑi0
,

Aϑ̄iϑ̄i(ϑ0,0;ϕ0) = Aϑiϑi(φ∞;ϕ0) =
N

2ϑ2
i0

. (B36)

Finally, we need to find out the asymptotic variance of the sample average of sϑit(ϑ0,0) as

well as its asymptotic covariance with the sample averages of sϑct(φ∞), sϑit(φ∞) and sηt(φ∞),

which coincide with contemporaneous variance and covariances of these influence functions be-

cause they are all martingale difference sequences.

The definition of the coeffi cient of multivariate excess kurtosis in (11) immediately implies

that

Bϑ̄iϑ̄i(ϕ0) = E[s2
ϑit

(ϑ0,0)|ϕ0] =
N [(N + 2)κ0 + 2]

4θ2
i0

. (B37)

Tedious algebraic manipulations also show that

Bϑcϑ̄i(φ∞;ϕ0) = E[sϑct(φ∞)sϑit(ϑ0,0)|ϕ0] =
N

2ϑi0
Wϑc(ϑc0;ϕ0)mOss̄(φ∞;ϕ0),

Bϑiϑ̄i(φ∞;ϕ0) = E[sϑit(φ∞)sϑit(ϑ0,0)|ϕ0] =
N2

4ϑi0ϑi∞
mOss̄(φ∞;ϕ0),

Bηϑ̄i(φ∞;ϕ0) = E[sηt(φ∞)sϑit(ϑ0,0)|ϕ0] =
N

2ϑi0
mOrs̄(φ∞;ϕ0)

with

mOss̄(φ;ϕ) = E

[{
δ[ςt(ϑ),η]

ςt(ϑ)

N
− 1

}( ςt
N
− 1
)∣∣∣∣ϕ0

]
,

mOrs̄(φ;ϕ0) = E
[
ert(φ)

( ςt
N
− 1
)∣∣∣ϕ0

]
.

Finally, it follows from the above expressions that the condition for block-diagonality of A

and B between ϑc and (ϑi,η, ϑ̄i) is Wϑc(ϑc0;ϕ0) = 0 regardless of the values of ϑi∞ and η∞

because Wϑct(ϑc0, ϑi∞) does not depend of those parameters in view of (B23). �
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Proposition 3

We can directly work in terms of the ψ parameters thanks to our assumptions on the mapping

rg(.). Let us initially keep η fixed to some admissible value. It immediately follows from

reparametrisation 2 that

∂µt(ψ)/∂ψ′c = ∂µ�t (ψ)/∂ψ′c + (ψ′im ⊗ IN )∂vec[Σ
�1/2
t (ψc)]/∂ψ

′
c,

∂µt(ψ)/∂ψ′im = Σ
�1/2
t (ψc),

∂µt(ψ)/∂ψ′ic = 0,

and

∂vec[Σt(ψ)]/∂ψ′c = (IN2 + KNN )[Σ
�1/2
t (ψc)Ψic ⊗ IN ]∂vec[Σ

�1/2
t (ψc)]/∂ψ

′
c,

∂vec[Σt(ψ)]/∂ψ′im = 0,

∂vec[Σt(ψ)]/∂ψ′ic = [Σ
�1/2
t (ψc)⊗Σ

�1/2
t (ψc)]DN .

Hence,

Zψclt(ψ) =
∂µ�′t (ψ)

∂ψc
+
∂vec′[Σ

�1/2
t (ψc)]

∂ψc
(ψ′im ⊗ IN )Σ

�−1/2′
t (ψc)Ψ

−1/2′
ic ,

Zψimlt(ψ) = Ψ
−1/2′
ic ,

Zψiclt(ψ) = 0,

and

Zψcst(ψ) =
∂vec′[Σ

�1/2
t (ψc)]

∂ψc
[Ψ

1/2
ic ⊗Σ

�−1/2′
t (ψc)Ψ

−1/2′
ic )(IN2 + KNN ),

Zψimst(ψ) = 0,

Zψicst(ψ) = D′N (Ψ
−1/2′
ic ⊗Ψ

−1/2′
ic ).

As a result,

sψct(ψ,η) =

[
∂µ�′t (ψ)

∂ψc
+
∂vec′[Σ

�1/2
t (ψc)]

∂ψc
(ψ′im ⊗ IN )Σ

�−1/2′
t (ψc)Ψ

−1/2′
ic

]
δ[ςt(ψ),η] · ε∗t (ψ)

+
∂vec′[Σ

�1/2
t (ψc)]

∂ψc
[Ψ

1/2
ic ⊗Σ

�−1/2′
t (ψc)Ψ

−1/2′
ic )vec

{
δ[ςt(ψ),η] · ε∗t (ψ)ε∗′t (ψ)−IN

}
,

sψict(ψ,η) =
1

2
D′N (Ψ

−1/2′
ic ⊗Ψ

−1/2′
ic )vec

{
δ[ςt(ψ),η] · ε∗t (ψ)ε∗′t (ψ)−IN

}
,

sψimt(ψ,η) =
1

2
Ψ
−1/2′
ic δ[ςt(ψ),η] · ε∗t (ψ).

Let ψim∞(η) and ψic∞(η) = vech[Ψic∞(η)], with Ψic∞(η) p.d., denote the solution to the

implicit system of N(N + 3)/2 equations

E[sψimt(ψc0,ψim,ψic,η)|ϕ0] = 0
E[sψict(ψc0,ψim,ψic,η)|ϕ0] = 0

}
. (B38)
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The time-invariance of Zψimst(ψ) and Zψiclt(ψ) implies that ψim∞(η) and ψic∞(η) will also

solve the alternative system of N(N + 3)/2 equations

E{δ[ςt(ψc0,ψim,ψic,η),η] · ε∗t (ψc0,ψim,ψic,η)|ϕ0} = 0
E{vech {δ[ςt(ψc0,ψim,ψic,η),η] · ε∗t (ψc0,ψim,ψic,η)ε∗′t (ψc0,ψim,ψic,η)−IN} |ϕ0} = 0

}
.

Given that

ε∗t (ψ) = Ψ
−1/2
ic Σ

�−1/2
t (ψc)[yt − µ�t (ψc)−Σ

�1/2
t (ψc)ψim] = Ψ

−1/2
ic [ε�t (ψc)−ψim], (B39)

with ε�t (ψc) defined in (13), so that

ε�t (ψc0) = ψim0 + Ψ
1/2
ic0 ε

∗
t ,

we can immediately see that the pseudo standardised residuals ε�t (ψc0) will be i.i.d.(ψim,Ψic)

conditional on It−1. Moreover, instantaneous transformations of ε�t (ψc0) such as

ε∗t (ψc0,ψim,ψic) = Ψ
−1/2
ic (ψim0 −ψim) + Ψ

−1/2
ic Ψ

1/2
ic0 ε

∗
t ,

ςt(ψc0,ψim,ψic) = ε∗′t (ψc0,ψim,ψic)ε
∗
t (ψc0,ψim,ψic),

elt(ψc0,ψim,ψic,η) and est(ψc0,ψim,ψic,η) will also be i.i.d. As a result, the law of iterated

expectations implies that

E{sψct[ψc0,ψim∞(η),ψic∞(η),η]|It−1;ϕ0} = 0, (B40)

which confirms that ψc0, ψim∞(η) and ψic∞(η) will indeed be the pseudo-true values corre-

sponding to a restricted PML estimator that keeps η fixed.

If we define η∞ as the solution to the q equations

E{sηt[ψc0,ψim∞(η),ψic∞(η),η]|ϕ0} = 0

which we assume lies in the interior of the admissible parameter space, then it is clear that

ψc0, ψim∞ = ψim∞(η∞), ψic∞ = ψic∞(η∞) and η∞ will be the pseudo-true values of the

parameters corresponding to an unrestricted non-Gaussian PMLE that also estimates η. �

Proposition 4

This proposition is a special case of Proposition 12, so we omit its proof.

Proposition 5

The consistency of the Gaussian PML derives from the fact that E[sθt(θ0, 0)|It−1;ϕ0] = 0.

Thus, if the pseudo-true value of η, η∞ say, is 0, then the Student t based pseudo-true values of

the conditional mean and variance parameters, θ∞ say, will coincide with their true values θ0

39



by the law of iterated expectations. But since η is estimated subject to the inequality constraint

η ≥ 0, the population KT conditions that define η∞ will be

E[sηt(θ∞, η∞)|ϕ0] + υη∞ = 0; η∞ ≥ 0; υη∞ ≥ 0; η∞ · υη∞ = 0,

where υη∞ is the pseudo-true value of the KT multiplier, and the expectation is taken with

respect to the true unconditional distribution of the observations (see Calzolari, Fiorentini and

Sentana (2004)). Hence, η∞ = 0 if and only if E[sηt(θ0, 0)|ϕ0] ≤ 0.

Fiorentini, Sentana and Calzolari (2003) show that in the multivariate Student t case sηt(θ0, 0)

it is proportional to the second generalised Laguerre polynomial (19). Given that ςt(θ0) = ε∗′t ε
∗
t ,

we can write

sηt(θ0, 0) =
N(N + 2)

4
− N + 2

2
ςt(θ0)+

1

4
ς2
t (θ0)

=
N(N + 2)

4

[
(ε∗′t ε

∗
t )

2

N(N + 2)
− 1

]
+
N + 2

2
[(ε∗′t ε

∗
t )−N ].

But since we have normalised the innovations so that E(ε∗tε
∗′
t |It−1;ϕ0) = IN , then

N = tr(IN ) = tr[E(ε∗tε
∗′
t |It−1;ϕ0)] = E[tr(ε∗tε

∗′
t )|It−1;ϕ0] = E(ε∗′t ε

∗
t |It−1;ϕ0)

by the linearity of the expectation and trace operators. Therefore, it immediately follows that

υη∞ = min{0,−E[sηt(θ0, 0)|ϕ0]} = min

{
0,−N(N + 2)

4
κ0

}
in view of the definition of κ0 in (11). Therefore, η∞ = 0 if and only if κ0 ≤ 0.

To prove the second and third parts, we can use Propositions 1 and 2 in Calzolari, Fiorentini

and Sentana (2004) if we regard the Student t based estimator φ̂T as the “inequality restricted”

PML estimator of φ, and the Gaussian-based estimator φ̃T = (θ̃T , 0) as its “equality restricted”

counterpart, both of which share not only the pseudo-true values (θ0, 0, υη∞) when κ0 ≤ 0,

but also the modified pseudo-score mt(θ0, 0, υη∞) = sφt(θ0, 0) + ep+1 · υη∞, where ep+1 is the

(p + 1)th column of Ip+1, as well as the expected value of the average Hessian A(φ∞;ϕ0) =

−E[h̄φφT (φ0)|ϕ0].

Specifically, Proposition 1 in Calzolari, Fiorentini and Sentana (2004) implies here that

υη∞ ·
√
T η̂T = op(1),

while their Proposition 2 implies that[
Aθθ(φ∞;ϕ0) Aθη(φ∞;ϕ0)
A′θη(φ∞;ϕ0) Aηη(φ∞;ϕ0)

]√
T

(
θ̂T − θ0

η̂T

)
+ep+1

√
T (υ̂ηT − υη∞)

−
√
Tm̄T (θ0, 0, υη∞) = op(1),[

Aθθ(φ∞;ϕ0) Aθη(φ∞;ϕ0)
A′θη(φ∞;ϕ0) Aηη(φ∞;ϕ0)

]√
T

(
θ̃T − θ0

0

)
+ep+1

√
T (υ̃ηT − υη∞)

−
√
Tm̄T (θ0, 0, υη∞) = op(1),

40



where υ̂ηT and υ̃ηT are the sample versions of the KT and Lagrange multipliers associated to

the constraint η = 0. As a consequence,[
Aθθ(φ∞;ϕ0) Aθη(φ∞;ϕ0)
A′θη(φ∞;ϕ0) Aηη(φ∞;ϕ0)

]√
T

(
θ̂T − θ̃T
η̂T

)
+ ep+1

√
T (υ̂ηT − υ̃ηT ) = op(1).

Part 2 immediately follows from the fact that υη∞ > 0 when κ0 < 0. Similarly, the first

statement of Part 3 follows from the fact that υη∞ = 0 when κ0 = 0. As for the condition (18),

which derives directly from the expression for hθη(φ) in Fiorentini, Sentana and Calzolari (2003)

evaluated at (θ0, 0), its role is to guarantee that Aθη(φ∞;ϕ0) = 0. In this sense, it is worth

mentioning that condition (18) will be satisfied for instance if ε∗t |It−1;φ0 is i.i.d. s(0, IN ,η0)

with κ0 = 0 irrespective of whether or not it is Gaussian because in that case

E{[N + 2− ςt(θ0)]ε∗t (θ0)|It−1;θ0,η0] = E[(N + 2− ςt)
√
ςtut|η0] = 0

by the serial and mutual independence of ςt and ut, and the fact that E(ut) = 0, while

E{[N + 2− ςt(θ0)]ε∗t (θ0)ε∗′t (θ0)|It−1,φ0} = E[(N + 2− ςt)ςtutu′t|η0]

= N−1E[(N + 2− ςt)ςt|η0]IN = 0

by the definition of κ0 and the fact that E(utu
′
t) = N−1IN . �

Proposition 6

The proof essentially applies the results in the proof of Proposition 12 to model (15). Specif-

ically, expressions (C64) and (C66) become

Zlt(ψ) =
∂µt(ψ)/∂ψ

ψ
1/2
ic σ�t (ψc)

=
1

ψ
1/2
ic σ�t (ψc)

 1
2ψimσ

�−1
t (ψc)∂σ

�2
t (ψc)/∂ψc

σ�t (ψc)
0

 =

 ψimψ
−1/2
ic Wψct(ψc)

ψ
−1/2
ic

0

 ,
Zst(ψ) =

∂σ2
t (ψ)/∂ψ

2ψicσ
�2
t (ψc)

=
1

2ψicσ
�2
t (ψc)

 ψic∂σ
�2
t (ψc)/∂ψc

0
σ�2t (ψc)

 =

 Wψct(ψc;ϕ)
0

1
2ψ
−1
ic


and

elt(ψ,%) = −∂ ln f [εt(ψ);ρ]

∂ε
,

est(ψ,%) = −
{

1 + εt(ψ)
∂ ln f [εt(ψ);ρ]

∂ε

}
,

respectively, where

εt(ψ) =
ε�t (ψc)− ψim

ψ
1/2
ic

=
xt

ψ
1/2
ic σ�t (ψc)

− ψim

ψ
1/2
ic

=
xt − ψimσ�t (ψc)
ψ

1/2
ic σ�t (ψc)

(B41)
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and

Wψct(ψc) =
1

2σ�2t (ψc)

∂σ�2t (ψc)

∂ψc
. (B42)

Then, a direct application of (C65) yields

sψt(φ) = [ Zlt(ψ) Zst(ψ) ]

[
elt(ψ,%)
est(ψ,%)

]
=

[
Wt(ψc)r

′(ψi)
∆(ψic)

] [
elt(ψ,%)
est(ψ,%)

]
, (B43)

where

r(ψi) = ( ψimψ
−1/2
ic 1 )′

and

∆(ψic) =

(
ψ
−1/2
ic 0

0 1
2ψ
−1
ic

)
.

Let us now define ψi(%) = [ψim∞(%), ψic∞(%)] as the values of ψim and ψic that simultane-

ously solve the equations

E

[
∂ ln f{εt[ψc0,ψi∞(%)];ρ}

∂ε

∣∣∣∣ϕ0

]
= 0, (B44)

E

[
1 + εt[ψc0,ψi∞(%)]

∂ ln f{εt[ψc0,ψi∞(%)];ρ}
∂ε

∣∣∣∣ϕ0

]
= 0. (B45)

In what follows, we shall refer to the ratio

λ∞(%) = ψic∞(%)/ψic0 (B46)

as the “relative scale bias”in estimating ψic0, and to

µ∞(%) =
ψim∞(%)− ψim0

ψ
1/2
ic∞(%)

(B47)

as the “relative mean bias”in estimating ψim0, so that

εt[ψc0, ψim∞(%), ψic∞(%)] =
ε�t (ψc0)

ψ
1/2
ic∞(%)

− ψim∞(%)

ψ
1/2
ic∞(%)

=

√
ψic0

ψic∞(%)
ε∗t −

[
ψim∞(%)− ψim0

ψ
1/2
ic∞(%)

]
= λ−1/2

∞ (%)ε∗t − µ∞(%). (B48)

We will also make extensive use of Wψc(ψc;ϕ) = E[Wψct(ψc)|ϕ] and Vψc(ψc;ϕ) =

V [Wψct(ψc)|ϕ], which are defined in (25) and (21), respectively, which we will shorten to W

and V for the sake of brevity.

Given (C83), the expected Hessian is

Aψψ(φ∞;ϕ0) = E{hψψt[ψc0,ψi∞(%),%]|ϕ0} =

{
Aψcψc(φ∞;ϕ0) Aψcψi(φ∞;ϕ0)
A′ψcψi(φ∞;ϕ0) Aψiψi(φ∞;ϕ0)

}
= E

[{
Wψct(ψc)r

′[ψi∞(%)]
∆[ψic∞(%)]

}
MH

dd(φ;ϕ)
{

r[ψi∞(%)]W′
ψct

(ψc) ∆[ψic∞(%)]
}∣∣∣∣ϕ0

]
=

{
D(φ;ϕ)(V + WW′) Wr′[ψi∞(%)]MH

dd(φ;ϕ)∆[ψic∞(%)]
∆[ψic∞(%)]MH

dd(φ;ϕ)r[ψi∞(%)]W′ ∆[ψic∞(%)]MH
dd(φ;ϕ)∆[ψic∞(%)]

}
, (B49)
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and

D(φ;ϕ) = r′[ψi∞(%)]MH
dd(φ;ϕ)r[ψi∞(%)]

=

[
ψ2
im∞(%)

ψic∞(%)
MH

ll (φ;ϕ) +
2ψim∞(%)

ψ
1/2
ic∞(%)

MH
ls (φ;ϕ) +MH

ss(φ;ϕ)

]
.

We can then exploit the block structure of expression (B49) together with the partitioned

inverse formula to obtain A−1
ψψ. Specifically, the upper left block of A−1

ψψ, Aψcψc say, will be

given by the inverse of

D(φ;ϕ)(V + WW′)−Wr′[ψi∞(%)]MH
dd(φ;ϕ)∆[ψic(%)]

×
{
∆[ψic(%)]MH

dd(φ;ϕ)∆[ψic(%)]
}−1

∆[ψic(%)]MH
dd(φ;ϕ)r[ψi∞(%)]W′ = D(φ;ϕ)V. (B50)

Similarly, the bottom left block of A−1
ψψ will be given by

Aψiψc = −
{
∆[ψic(%)]MH

dd(φ;ϕ)∆[ψic(%)]
}−1

∆[ψic(%)]MH
dd(φ;ϕ)r[ψi∞(%)]W′V−1D−1(φ;ϕ)

= −D−1(φ;ϕ)c[ψi∞(%)]W′V−1, (B51)

where we have exploited that c(ψi) = ∆−1(ψic)r(ψi).

Finally, the bottom right block of A−1
ψψ will be

Aψiψi =
{
∆[ψic(%)]MH

dd(φ;ϕ)∆[ψic(%)]
}−1

+
{
∆[ψic(%)]MH

dd(φ;ϕ)∆[ψic(%)]
}−1

×∆[ψic(%)]MH
dd(φ;ϕ)r[ψi∞(%)]W′V−1D−1(φ;ϕ)

×Wr′[ψi∞(%)]MH
dd(φ;ϕ)∆[ψic(%)]

{
∆[ψic(%)]MH

dd(φ;ϕ)∆[ψic(%)]
}−1

= ∆−1[ψic(%)]MH
dd(φ;ϕ)∆−1[ψic(%)] +D−1(φ;ϕ)c[ψi∞(%)]c′[ψi∞(%)](W′V−1W). (B52)

In turn, (C82) implies that the variance of the scores will be

Bψψ(φ∞;ϕ0) = V {sψt[ψc0,ψi∞(%),%]|ϕ0} =

{
Bψcψc(φ∞;ϕ0) Bψcψi(φ∞;ϕ0)
B′ψcψi(φ∞;ϕ0) Bψiψi(φ∞;ϕ0)

}
= E

{[
Wψct(ψc)r

′(ψi)
∆(ψic)

]
MO

dd(φ;ϕ)
[

r(ψi)W
′
ψct

(ψc) ∆(ψic)
]∣∣∣∣ϕ}

=

{
N(φ;ϕ)(V + WW′) Wr′[ψi∞(%)]MO

dd(φ;ϕ)∆[ψic∞(%)]
∆[ψic∞(%)]MO

dd(φ;ϕ)r[ψi∞(%)]W′ ∆[ψic∞(%)]MO
dd(φ;ϕ)∆[ψic∞(%)]

}
, (B53)

where

N(φ;ϕ) = r′[ψi∞(%)]MO
dd(φ;ϕ)r[ψi∞(%)]

=

[
ψ2
im∞(%)

ψic∞(%)
MO

ll (φ;ϕ) +
2ψim∞(%)

ψ
1/2
ic∞(%)

MO
ls(φ;ϕ) +MO

ss(φ;ϕ)

]
.

Given that the expression for Bψψ in (B53) is entirely analogous to the expression for Aψψ
in (B49), except for the matrix MO

dd replacing the matrix MH
dd, it turns out that Cψψ =
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A−1
ψψBψψA

−1
ψψ can be substantially simplified. Specifically,

Cψcψc =
(
Aψcψc Aψiψc′

)( Bψcψc B′ψiψc
Bψiψc Bψiψi

)(
Aψcψc
Aψiψc

)
= AψcψcBψcψcA

ψcψc +Aψiψc′BψiψcA
ψcψc +AψcψcB′ψiψcA

ψiψc +Aψiψc′BψiψiA
ψiψc .

Given the expressions for Bψcψc in (B53) and the inverse of A
ψcψc in (B50), the first term,

i.e. AψcψcBψcψcA
ψcψc , will be

S(%;ρ0)V−1(V + WW′)V−1.

In turn, the second and third terms, Aψiψc′BψiψcA
ψcψc and AψcψcB′ψiψcA

ψiψc , respectively,

will be given by

−D−1(φ;ϕ)V−1Wc′[ψi∞(%)]∆[ψic∞(%)]MO
dd(φ;ϕ)r[ψi∞(%)]W′V−1D−1(φ;ϕ)

= −S(φ;ϕ)V−1WW′V−1.

Finally, the fourth term, i.e. Aψiψc′BψiψiA
ψiψc , will be

D−1(φ;ϕ)V−1Wc′[ψi∞(%)]∆[ψic∞(%)]MO
dd(φ;ϕ)∆[ψic(%)]c[ψi∞(%)]W′V−1D−1(φ;ϕ)

= S(φ;ϕ)V−1WW′V−1.

If we add up all these four terms together, we end up with the expression in the first part of

the proposition.

Let us now move to the second part, which deals with the asymptotic covariance matrix

of our consistent, closed-form estimators (16) and (17). Proposition 12 implies that the only

additional non-zero elements of the expected Jacobian of the moment conditions augmented

with ψ̄i are

Aψ̄iψc = −∆(ψic0)MH
dd(ψ,0;ϕ)r(ψi0)W′, Aψ̄iψ̄i = −∆(ψic0)MH

dd(ϑ,0;ϕ)∆(ψic0), (B54)

where vecd[MH
dd(ϑ,0;ϕ)] = (1, 2)′. Thus, if we make use of the partitioned inverse formula once

again, we get that the last diagonal element of the inverse of the expected Jacobian will be

Aψ̄iψ̄i =

[
Aψ̄iψ̄i −

(
Aψ̄iψc 0

)( Aψcψc Aψcψi
A′ψcψi Aψiψi

)−1(
0
0

)]−1

= A−1
ψ̄iψ̄i

= ∆−1(ψi0).

As for the ψψ block, it will trivially coincide with A−1
ψψ, while the ψψ̄i block will be 0.

Finally, the ψ̄iψ block will be given by

Aψ̄iψ = −A−1
ψ̄iψ̄i
Aψ̄iψA

−1
ψψ = −A−1

ψ̄iψ̄i

(
Aψ̄iψc 0

)( Aψcψc A′ψiψc
Aψiψc Aψiψi

)−1

= −
(
A−1
ψ̄iψ̄i
Aψ̄iψcA

ψcψc A−1
ψ̄iψ̄i
Aψ̄iψcA

ψiψc′
)

= −A−1
ψ̄iψ̄i
Aψ̄iψc

(
Aψcψc Aψiψc′

)
.
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As for the asymptotic covariances of the sample averages of the non-Gaussian scores for

ψ, sψt(ψc0,ψi∞(%),%), and the Gaussian scores for ψ̄i, sψ̄it(ψc0,ψi0,0), the same proposition

implies that

Bψ̄iψ̄i = ∆(ψic0)MO
d̄d̄(φ;ϕ)∆(ψic0), (B55)

Bψ̄iψc = ∆(ψic0)MO
dd̄(φ;ϕ)r[ψi∞(%)]W′ (B56)

and

Bψ̄iψi = ∆(ψic0)MO
dd̄(φ;ϕ)∆[ψic∞(%)]. (B57)

where the elements ofMO
dd̄

(φ;ϕ) are defined in the proof of Proposition 12 and vec[MO
d̄d̄

(φ;ϕ)] =

vec[MO
dd(ψ,0;ϕ)] = (1, φ, κ− 1)′.

Therefore, the asymptotic variance of ψi(ψ̂cT ) will be given by

A−1
ψ̄iψ̄i

(
−Aψ̄iψcA

ψcψc −Aψ̄iψcA
ψiψc′ I

) Bψcψc B
′
ψiψc

B′
ψ̄iψc

Bψiψc Bψiψi B
′
ψ̄iψi

Bψ̄iψc Bψ̄iψi Bψ̄iψ̄i


 −AψcψcA

′
ψ̄iψc

−AψiψcA′
ψ̄iψc

I

A−1
ψ̄iψ̄i

= A−1
ψ̄iψ̄i

[
Aψ̄iψc

(
Aψcψc Aψiψc′

)( Bψcψc B′ψiψc
Bψiψc Bψiψi

)(
Aψcψc
Aψiψc

)
A′
ψ̄iψc

]
A−1
ψ̄iψ̄i

−A−1
ψ̄iψ̄i

[
Aψ̄iψc

(
Aψcψc Aψiψc′

)( B′
ψ̄iψc
B′
ψ̄iψi

)]
A−1
ψ̄iψ̄i

−A−1
ψ̄iψ̄i

[
Aψ̄iψc

(
Bψ̄iψc Bψ̄iψi

)( Aψcψc
Aψiψc

)
A′
ψ̄iψc

]
A−1
ψ̄iψ̄i

+A−1
ψ̄iψ̄i
Bψ̄iψ̄iA

−1
ψ̄iψ̄i

.

Let us look at each of these terms in turn. The first term will be given by

A−1
ψ̄iψ̄i
Aψ̄iψcCψcψcA

′
ψ̄iψc
A−1
ψ̄iψ̄i

= [∆(ψic0)MH
dd(ψ,0;ϕ)∆(ψic0)]−1∆(ψic0)MH

dd(ψ,0;ϕ)r(ψi0)W′V−1S(%,%)

×Wr′(ψi0)MH
dd(ψ,0;ϕ)∆(ψic0)[∆(ψic0)MH

dd(ψ,0;ϕ)∆(ψic0)]−1

= S(%,%) · c(ψi0)c′(ψi0)(W′V−1W).

To obtain the second term, as well as the transpose of the third one, we need

AψcψcB′
ψ̄iψc

+Aψiψc′B′
ψ̄iψi

= D−1(%,%)V−1Wr′[ψi∞(%)]MO′
dd̄(φ;ϕ)∆(ψic0)

−D−1(%;ρ0)V−1Wc′[ψi∞(%)]∆[ψic∞(%)]MO′
dd̄(φ;ϕ)∆(ψic0) = 0.

Finally,

A−1
ψ̄iψ̄i
Bψ̄iψ̄iA

−1
ψ̄iψ̄i

= [∆(ψic0)MH
dd(ψ,0;ϕ)∆(ψic0)]−1∆(ψic0)MO

d̄d̄(φ;ϕ)

×∆(ψic0)[∆(ψic0)MH
dd(ψ,0;ϕ)∆(ψic0)]−1 =

[
ψic0 φψ

3/2
ic0

φψ
3/2
ic0 (κ − 1)ψ2

ic0

]
.
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The sum of the four terms confirms the second part of the proposition.

Let us now move to the last part of the proposition, in which % is jointly estimated. Assuming

no inequality constraints are binding, we can define its pseudo-true value %∞ from the equation

E{s%t[ψc0,ψi∞(%),%∞]|ϕ0} = E

[
∂ ln f{εt[ψc0, ψim∞(%∞), ψic∞(%∞)];ρ∞}

∂%

∣∣∣∣ϕ0

]
= 0. (B58)

A direct application of Proposition 12 implies that

Aψ% = −
[

Wr′[ψi∞(%)]
∆(ψic)

]
MH

dr(φ;ϕ), (B59)

and

Bψ% = −
[

Wψct(ψc)r
′[ψi∞(%)]

∆(ψic)

]
MO

dr(%;ρ),

with the elements ofMH
dr(φ;ϕ) andMO

dr(φ;ϕ) defined in the proof of that proposition.

Now, to invert Aφφ, we need to compute

A%% −A′ψ%A−1
ψψAψ% = A%% −

(
A′ψc% A′ψi%

)( Aψcψc Aψiψc′
Aψiψc Aψiψi

)(
Aψc%
Aψi%

)
= A%% − (A′ψc%A

ψcψcAψc% +A′ψi%A
ψiψcAψc% +A′ψc%A

ψiψc′Aψi% +A′ψi%A
ψiψiAψi%)

But

A′ψc%A
ψcψcAψc% = D−1(%,%)(W′V−1W)MH′

dr (φ;ϕ)r[ψi∞(%)]r′[ψi∞(%)]MH
dr(φ;ϕ),

A′ψi%A
ψiψcAψc% = −D−1(%,%)(W′V−1W)MH′

dr (φ;ϕ)r[ψi∞(%)]r′[ψi∞(%)]MH
dr(φ;ϕ)

= A′ψc%A
ψiψc′Aψi%

and finally

A′ψi%A
ψiψiAψi% =MH′

dr (φ;ϕ)∆(ψic){∆−1[ψic(%)][MH
dd(φ;ϕ)]−1∆−1[ψic(%)]

+D−1(%;ρ0)c[ψi∞(%)]c′[ψi∞(%)](W′V−1W)}∆(ψic)MH
dr(φ;ϕ)

=MH′
dr (φ;ϕ)[MH

dd(φ;ϕ)]−1MH
dr(φ;ϕ)

+D−1(%,%)(W′V−1W)MH′
dr (φ;ϕ)r[ψi∞(%)]r′[ψi∞(%)]MH

dr(φ;ϕ),

where we have exploited the expressions for Aψ% in (B59), Aψcψc in (B50), Aψiψc in (B51) and

Aψiψi in (B52).

Hence

~A%% = (A%% −A′ψ%A−1
ψψAψ%)−1 = {MH

rr(φ;ϕ)−MH′
dr (φ;ϕ)[MH

dd(φ;ϕ)]−1MH
dr(φ;ϕ)}−1

= [MH(φ;ϕ)]rr,

which does not depend at all on the dynamic specification of the model.
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Similarly, the ψ% block will be given by the matrix

~A%ψ′ = −A−1
ψψAψ%(A%% −A′ψ%A−1

ψψAψ%)−1 = −
(
Aψcψc Aψiψc′
Aψiψc Aψiψi

)(
Aψc%
Aψi%

)
[MH(φ;ϕ)]rr

=

(
AψcψcAψc% +Aψiψc′Aψi%
AψiψcAψc% +AψiψiAψi%

)
[MH(φ;ϕ)]rr

=

{
0

∆−1[ψic∞(%)][MH
dd(φ;ϕ)]−1MH

dr(φ;ϕ)[MH(φ;ϕ)]rr

}
because

AψcψcAψc% +Aψiψc′Aψi% = D−1(%,%)V−1Wr′[ψi∞(%)]MH
dr(φ;ϕ)

−D−1(%,%)V−1Wr′[ψi∞(%)]MH
dr(φ;ϕ) = 0

and

AψiψcAψc% +AψiψiAψi% = −D−1(%,%)c[ψi∞(%)]W′V−1Wr′[ψi∞(%)]MH
dr(φ;ϕ)

+
{
∆−1(ψic∞)[MH

dd(φ;ϕ)]−1∆−1(ψic∞) + c[ψi∞(%)]c′[ψi∞(%)](W′V−1W)D−1(%,%)
}

×∆(ψic)MH
dr(φ;ϕ) = ∆−1(ψic∞)[MH

dd(φ;ϕ)]−1MH
dr(φ;ϕ).

Finally, the ψψ block will be given by the matrix

~Aψψ = A−1
ψψ +A−1

ψψAψ%M
Hrr(φ;ϕ)A′ψ%A−1

ψψ =

(
Aψcψc Aψiψc′
Aψiψc Aψiψi

)
+

{
0

∆−1(ψic∞)[MH
dd(φ;ϕ)]−1MH

dr(φ;ϕ)[MH(φ;ϕ)]rr

}
×
{

0 MH′
dr (φ;ϕ)[MH

dd(φ;ϕ)]−1∆−1(ψic∞)
}
.

As a result, the first row/column of the inverse of this augmented expected Hessian matrix

Aφφ, ~Aφφ say, will be equal to(
~Aψcψc ~Aψiψc′ ~Aψ%ψc′

)
=
(
Aψcψc Aψiψc′ 0

)
,

which coincides with the inverse of Aψψ plus some 0’s. But since the asymptotic variance of

the pseudo ML estimators is given by Cφφ = A−1
φφBφφA

−1
φφ and the Bψψ block is unchanged,

the expression for the asymptotic variance of the pseudo ML estimator of ψc in (D96) remains

valid, except that it will be evaluated at %∞.

As for our consistent estimators, Proposition 12 implies that the additional terms of the

expected Jacobian are 0 while

B%ψ̄i = ∆−1(ψic0)MO
rd̄(φ;ϕ). (B60)

If we follow the same steps as before we get that(
Aφφ 0
Aψ̄iφ Aψ̄iψ̄i

)−1

=

(
A−1
φφ 0

Aψ̄iφ A−1
ψ̄iψ̄i

)
,
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where the different components of A−1
φφ can be found above. Similarly, the ψ̄iφ block will be

given by

Aψ̄iφ = −A−1
ψ̄iψ̄i

(
Aψ̄iψc 0 0

)
A−1
φφ = −A−1

ψ̄iψ̄i

(
Aψ̄iψc 0 0

) Aψcψc Aψiψc′ 0
Aψiψc Aψiψi A%ψi′

0 A%ψi A%%


= −A−1

ψ̄iψ̄i

(
Aψ̄iψcA

ψcψc Aψ̄iψcA
ψiψc′ 0

)
.

because ~Aψ%ψc′ is 0. Thus, the asymptotic covariance matrix of ψ̂c and ψ̄i(ψ̂cT ) will be the

same whether or not we estimate %. �
When the true distribution is symmetric and the researcher imposes this restriction in esti-

mation, the non-Gaussian PLME of ψim will also be consistent, in which case we only propose

to replace ψic. At the same time, ψim effectively becomes part of the consistent parameter set.

As a result, the Jacobian of the Gaussian score for ψic with respect to ψim will no longer be

0. In fact, it will coincide with the Jacobian of this score with respect to ψ̄im. However, the

expected Jacobian continues to be 0, which means that the asymptotic variance of ψicT (ψ̂cT )

which appears in the (2,2) element of (24) remains valid. In this context, we can also show that

the asymptotic variance of the non-Gaussian PMLE of ψim will be given by

ψic∞(%)
MO

ll (φ;ϕ)

[MH
ll (φ;ϕ)]2

+ ψ2
im0S(φ;ϕ)(W′

ψc
(ψc0;ϕ0)V−1

ψc
(ψc0;ϕ0)Wψc(ψc0;ϕ0),

where we have exploited the fact that MO
ls(φ;ϕ) = MH

ls (φ;ϕ) = φ = 0 under symmetry.

Further, this asymptotic variance will continue to be valid when we simultaneously estimate %

becauseMO
lr(φ;ϕ) =MH

lr (φ;ϕ) = 0 too.

Proposition 7

We are going to exploit the results in Proposition 2 together with the fact that the parametri-

sations in Appendix A.5 guarantee that |Ω◦($)| = 1 and consequently, that Wϑc(ϑc0;ϕ0) = 0.

The only new elements we need are the Jacobian matrices:

∂µt(ϑc)

∂(a′,b′,$′L,$
′
D)

= ( IN INrMt 0 0 ),

∂vec[Σ◦t (ϑc0)]

∂(a′,b′,$′L,$
′
D)

=
[

0 0 (IN + KNN )(Ω◦LΩ◦D ⊗ IN )S′N (Ω◦L ⊗Ω◦L)E′N
∂vecd(Ω◦D)

∂$′D

]
,

with ∂vecd(Ω◦D)/∂$′D in (A19).

Given the block diagonality of the Jacobian between the conditional mean parameters γ =

(a′,b′)′ and the conditional variance parameters $, it is clear that both Aϑcϑc(φ∞;ϕ0) and

Bϑcϑc(φ∞;ϕ0) will also be block-diagonal, with

Aγγ(φ∞;ϕ0) =
mHll (φ∞;ϕ0)

ϑi∞

(
1 µM
µM σ2

M + µ2
M

)
⊗Ω◦−1
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and

Bγγ(φ∞;ϕ0) =
mOll (φ∞;ϕ0)

ϑi∞

(
1 µM
µM σ2

M + µ2
M

)
⊗Ω◦−1,

where µM = E(rMt) and σ2
M = V (rMt), so that

Cγγ(φ∞;ϕ0) =
ϑi∞mOll (φ∞;ϕ0)

[mHll (φ∞;ϕ0)]2

( (
1 + µ2

M/σ
2
M

)
−µM/σ2

M

−µM/σ2
M 1/σ2

M

)
⊗Ω◦.

Since this expression applies to the Gaussian PMLE estimator too, we have that the effi ciency

ratio for the conditional mean parameters is given by

mOll (φ∞;ϕ0)[
mHll (φ∞;ϕ0)

]2 · ϑi∞ϑi0
which agrees with expression (16) in Amengual and Sentana (2010).

Let us now look at the conditional variance parameters. It follows from (B33) and (B35)

that both B$$(φ∞;ϕ0) and A$$(φ∞;ϕ0) require the computation of the following two terms:[
SN (Ω◦DΩ′L ⊗ IN )(IN + KNN )

∂vecd′(ΩD)
∂$D

EN (Ω′L ⊗Ω′L)

]
(Ω◦−1 ⊗Ω◦−1)

×
[

(IN + KNN )(ΩLΩ◦D ⊗ IN )S′N (ΩL ⊗ΩL)E′N
∂vecd(ΩD)
∂$′D

]
(B61)

and [
SN (Ω◦DΩ′L ⊗ IN )(IN + KNN )

∂vecd′(ΩD)
∂$D

EN (Ω′L ⊗Ω′L)

]
vec(Ω◦−1)vec′(Ω◦−1)

×
[

(IN + KNN )(ΩLΩD ⊗ IN )S′N (ΩL ⊗ΩL)E′N
∂vecd(ΩD)
∂$′D

]
. (B62)

However, the rank-1 matrix (B62) is identically zero. Specifically, Ω◦−1 = Ω−1′
L Ω◦−1

D Ω−1
L , so

vec′(Ω−1′
L Ω◦−1

D Ω−1
L )(IN + KNN )(ΩLΩ◦D ⊗ IN )S′N

= vec′(Ω−1′
L Ω◦−1

D Ω−1
L )[(ΩLΩ◦D ⊗ IN ) + (IN ⊗ΩLΩ◦D)KNN ]S′N

= [vec′(Ω−1′
L ) + vec′(Ω−1

L )KNN ]S′N = 2vec′(Ω−1′
L )S′N = 2vecl′(Ω−1′

L )

by virtue of theorem 6.7 of Magnus (1988). But Ω−1′
L is unit upper triangular so vecl(Ω−1′

L ) = 0.

Similarly, we have

vec′(Ω−1′
L Ω◦−1

D Ω−1
L )(ΩL⊗ΩL)E′N

∂vecd(ΩD)

∂$′D
=vec′(Ω◦−1

D )E′N
∂vecd(ΩD)

∂$′D
=vecd′(Ω◦−1

D )
∂vecd(ΩD)

∂$′D

by virtue of theorem 7.3 in Magnus (1988). But

vecd′(Ω◦−1
D )

∂vecd(ΩD)

∂$′D
= vecd′([exp(−$D1), . . . , exp(−$DN−1), exp

(∑N−1
j=1 $j

)
]

×
[
diag[exp($D1), . . . , exp($DN−1)]

− exp
(
−
∑N−1

j=1 $j

)
`′N−1

]
= 0.
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Therefore, the asymptotic covariance matrix of the pseudo ML estimators of$ will be given

by (B61) times (28).

In turn, the $L$L block of (B61) will be proportional to

SN (Ω◦DΩ′L ⊗ IN )(IN + KNN )(Ω−1′
L Ω◦−1

D Ω−1
L ⊗Ω−1′

L Ω◦−1
D Ω−1

L )(IN + KNN )(ΩLΩ◦D ⊗ IN )S′N

= SN [(Ω◦DΩ′L ⊗ IN ) + KNN (IN ⊗Ω◦DΩ′L)](Ω−1′
L Ω◦−1

D Ω−1
L ⊗Ω−1′

L Ω◦−1
D Ω−1

L )

×[(ΩLΩ◦D ⊗ IN ) + (IN ⊗ΩLΩ◦D)KNN ]S′N

= SN (Ω◦DΩ′L ⊗ IN )(Ω−1′
L Ω◦−1

D Ω−1
L ⊗Ω−1′

L Ω◦−1
D Ω−1

L )(ΩLΩ◦D ⊗ IN )S′N

+SN (Ω◦DΩ′L ⊗ IN )(Ω−1′
L Ω◦−1

D Ω−1
L ⊗Ω−1′

L Ω◦−1
D Ω−1

L )(IN ⊗ΩLΩ◦D)KNNS′N

+SNKNN (IN ⊗Ω◦DΩ′L)(Ω−1′
L Ω◦−1

D Ω−1
L ⊗Ω−1′

L Ω◦−1
D Ω−1

L )(ΩLΩ◦D ⊗ IN )S′N

+SNKNN (IN ⊗Ω◦DΩ′L)(Ω−1′
L Ω◦−1

D Ω−1
L ⊗Ω−1′

L Ω◦−1
D Ω−1

L )(IN ⊗ΩLΩ◦D)KNNS′N

= SN (Ω◦D ⊗Ω−1′
L Ω◦−1

D Ω−1
L )S′N + SN (Ω−1

L ⊗Ω−1′
L )KNNS′N

+SNKNN (Ω−1′
L ⊗Ω−1

L )S′N + SNKNN (Ω−1′
L Ω◦−1

D Ω−1
L ⊗Ω◦D)KNNS′N

= 2SN{(Ω◦D ⊗Ω−1′
L Ω◦−1

D Ω−1
L ) + (Ω−1

L ⊗Ω−1′
L )KNN}S′N

by virtue of theorems 3.1 and 3.5 in Magnus (1988). Note that premultiplying by SN effectively

selects the rows corresponding to the elements in the strict lower triangle of ΩL while postmulti-

plying by S′N does the same for the columns. But since Ω◦D ⊗Ω−1′
L Ω◦−1

D Ω−1
L is a block diagonal

matrix with blocks ω◦jjΩ
◦−1 and (Ω−1

L ⊗Ω−1′
L )KNN is symmetric, we can tediously prove that

the matrix above is block diagonal with respect to $L1,$L2 . . . ,$LN−1, which implies that

the estimators of the elements in different columns of ΩL are asymptotically independent.

Similarly, the $D$D block will be proportional to

∂vecd′(ΩD)

∂$D
EN (Ω′L ⊗Ω′L)(Ω−1′

L Ω◦−1
D Ω−1

L ⊗Ω−1′
L Ω◦−1

D Ω−1
L )(ΩL ⊗ΩL)E′N

∂vecd(ΩD)

∂$′D

=
∂vecd′(ΩD)

∂$D
EN (Ω◦−1

D ⊗Ω◦−1
D )E′N

∂vecd(ΩD)

∂$′D
=
∂vecd′(ΩD)

∂$D
(Ω◦−1

D �Ω◦−1
D )

∂vecd(ΩD)

∂$′D

by virtue of theorem 7.7 of Magnus (1988)), where � denotes the element by element Hadamard

product. But since Ω◦D is diagonal, Ω◦−1
D �Ω◦−1

D = Ω◦−1
D Ω◦−1

D , so

∂vecd′(ΩD)

∂$D
(Ω◦−1

D �Ω◦−1
D )

∂vecd(ΩD)

∂$′D
=
(

IN−1 −`N−1

)( IN−1

−`′N−1

)
=
(
IN−1 + `N−1`

′
N−1

)
because

diag[exp(−$D1), . . . , exp(−$DN−1), exp
(∑N−1

j=1 $j

)
]

[
diag[exp($D1), . . . , exp($DN−1)]

− exp
(
−
∑N−1

j=1 $j

)
`′N−1

]

=

(
IN−1

−`′N−1

)
.
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Finally, the $L$D block will be proportional to

SN (Ω◦DΩ′L ⊗ IN )(IN + KNN )(Ω◦−1 ⊗Ω◦−1)(ΩL ⊗ΩL)E′N
∂vecd(ΩD)

∂$′D
SN [(Ω◦DΩ′L ⊗ IN ) + KNN (IN ⊗Ω◦DΩ′L)](Ω−1′

L Ω◦−1
D Ω−1

L ⊗Ω−1′
L Ω◦−1

D Ω−1
L )

×(ΩL ⊗ΩL)E′N
∂vecd(ΩD)

∂$′D

= SN (IN ⊗Ω−1′
L Ω◦−1

D )E′N
∂vecd(ΩD)

∂$′D
+ SNKNN (Ω−1′

L Ω◦−1
D ⊗ IN )E′N

∂vecd(ΩD)

∂$′D

= 2SN (IN ⊗Ω−1′
L Ω◦−1

D )E′N
∂vecd(ΩD)

∂$′D

by virtue of theorem 7.4 in Magnus (1988). Once again, premultiplying by SN selects the rows

corresponding to the elements in the strict lower triangle of ΩL while postmultiplying by E′N

does the same for the columns corresponding to its diagonal elements. But since Ω−1′
L is upper

triangular and Ω◦−1
D diagonal, which in turn implies that (IN ⊗Ω−1′

L Ω◦−1
D ) is a block diagonal

matrix with identical upper triangular diagonal blocks, it is possible to tediously prove that

SN (IN ⊗Ω−1′
L Ω◦−1

D )E′N will be identically 0. As a result, the estimators of $L and $D will be

asymptotically orthogonal too.

Given the diagonality of the Jacobian matrices, the asymptotic variance of our consistent

estimator of ϑi will coincide with the asymptotic variance of its Gaussian version, which is given

by expression (29) because of (B36) and (B37) coupled with Aϑcϑ̄i(ϑ0,0;ϕ0) = Bϑcϑ̄i(φ∞;ϕ0) =

0.

Finally, the estimation of η is irrelevant because both theA and B matrices are block diagonal

between ϑc = (a′,b′,$′L,$
′
D)′ and (ϑi,η

′)′ since Wϑc(ϑc0;ϕ0) = 0 in this case. �

C The general case of non-spherical pseudo likelihoods

C.1 Likelihood, score and Hessian for non-spherical distributions

Let f(ε∗;%) denote the assumed conditional density of ε∗t given It−1 and some shape para-

meters %. Let also φ = (θ′,%)′ denote the p + q parameters of interest, which once again we

assume variation free. Ignoring initial conditions, the log-likelihood function of a sample of size

T for those values of θ for which Σt(θ) has full rank will take the form LT (φ) =
∑T

t=1 lt(φ),

where lt(φ) = dt(θ) + ln f [ε∗t (θ),%], dt(θ) = ln |Σ−1/2
t (θ)|, ε∗t (θ) = Σ

−1/2
t (θ)εt(θ), and εt(θ) =

yt − µt(θ).

The most common choices of square root matrices are the Cholesky decomposition, which

leads to a lower triangular matrix for a given ordering of yt, or the spectral decomposition, which

yields a symmetric matrix. The choice of square root matrix is non-trivial becauseΣ
1/2
t (θ) affects

the value of the log-likelihood function and its score in multivariate non-spherical contexts. In
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what follows, we rely mostly on the Cholesky decomposition because it is much faster to compute

than the sprectral one, especially when Σt(θ) is time-varying. Nevertheless, we also discuss some

modifications required for the spectral decomposition later on.

Let st(φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks, sθt(φ) and

s%t(φ), whose dimensions conform to those of θ and %, respectively. Assuming that µt(θ),

Σ
1/2
t (θ) and ln f(ε∗,%) are differentiable, it trivially follows that

sθt(θ,%) =
∂dt(θ)

∂θ
+
∂ε′∗t (θ)

∂θ

∂ ln f [ε∗t (θ) ;%]

∂ε∗
.

But since

∂dt(θ)/∂θ = −∂vec
′[Σ

1/2
t (θ)]

∂θ
vec[Σ

−1/2′
t (θ)] = −Zst(θ)vec(IN )

and

∂ε∗t (θ)

∂θ′
= −Σ

−1/2
t (θ)

∂µt(θ)

∂θ′
− [ε∗′t (θ)⊗Σ

−1/2
t (θ)]

∂vec[Σ
1/2
t (θ)]

∂θ′

= −{Z′lt(θ) + [ε∗′t (θ)⊗ IN ]Z′st(θ)}, (C63)

where
Zlt(θ) = ∂µ′t(θ)/∂θ ·Σ−1/2′

t (θ)

Zst(θ) = ∂vec′[Σ
1/2
t (θ)]/∂θ · [IN ⊗Σ

−1/2′
t (θ)]

}
, (C64)

it follows that

sθt(φ) = [Zlt(θ),Zst(θ)]

[
elt(φ)
est(φ)

]
= Zdt(θ)edt(φ), (C65)

s%t(φ) = ∂ ln f [ε∗t (θ) ;%]/∂% = ert(φ),

with

edt(φ) =

[
elt(φ)
est(φ)

]
=

[
−∂ ln f [ε∗t (θ);%]/∂ε∗,
−vec {IN + ∂ ln f [ε∗t (θ);%]/∂ε∗ · ε∗′t (θ)}

]
. (C66)

Similarly, let ht(φ) denote the Hessian function ∂st(φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ′. Assuming

twice differentiability of the different functions involved, expression (C63) implies that

∂elt(θ,%)

∂θ′
= −∂

2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
∂ε∗t (θ)

∂θ′
=
∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
{Z′lt(θ) + [ε∗′t (θ)⊗ IN ]Z′st(θ)} (C67)

because

delt(θ,%) = −d{∂ ln f [ε∗t (θ);%]/∂ε∗}. (C68)

In turn,

dest(θ,%) = −dvec
[
∂ ln f [ε∗t (θ);%]

∂ε∗
· ε∗′t (θ)

]
= −[ε∗t (θ)⊗ IN ]d

{
∂ ln f [ε∗t (θ);%]

∂ε∗

}
−
{

IN ⊗
∂ ln f [ε∗t (θ);%]

∂ε∗

}
dε∗t (θ) (C69)
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implies that

∂est(φ)

∂θ′
=
∂est(θ,%)

∂θ′
= −[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
∂ε∗t (θ)

∂θ′
−
{

IN ⊗
∂ ln f [ε∗t (θ);%]

∂ε∗

}
∂ε∗t (θ)

∂θ′{
[ε∗t (θ)⊗IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂ε∗′
+

[
IN⊗

∂ ln f [ε∗t (θ);%]

∂ε∗

]}
{Z′lt(θ)+[ε′∗t (θ)⊗IN ]Z′st(θ)}. (C70)

Finally, (C68) and (C69) trivially imply that

∂2elt(θ,%)

∂θ∂%′
= −∂

2 ln f [ε∗t (θ);%]

∂ε∗∂%′
,

∂2est(θ,%)

∂θ∂%′
= −[ε∗t (θ)⊗ IN ]

∂2 ln f [ε∗t (θ);%]

∂ε∗∂%′
.

Using these results, we can easily obtained the required expressions for

hθθt(φ) = Zlt(θ)
∂elt(φ)

∂θ′
+ Zst(θ)

∂est(φ)

∂θ′

+
[
e′lt(φ)⊗ Ip

] ∂vec[Zlt(θ)]

∂θ′
+
[
e′st(φ)⊗ Ip

] ∂vec[Zst(θ)]

∂θ′
, (C71)

hθ%t(φ) = Zlt(θ)∂elt(φ)/∂%′ + Zst(θ)∂est(φ)/∂%′, (C72)

h%%t(φ) = ∂2 ln f [ε∗t (θ) ;%]/∂%∂%′.

Importantly, while Zlt(θ), Zst(θ), ∂vec[Zlt(θ)]/∂θ′ and ∂vec[Zst(θ)]/∂θ′ depend on the dy-

namic model specification, the first and second derivatives of ln f(ε∗;%) depend on the specific

distribution assumed for estimation purposes.

For the standard (i.e. lower triangular) Cholesky decomposition of Σt(θ), we will have that

dvec(Σt) = [(Σ
1/2
t ⊗ IN ) + (IN ⊗Σ

1/2
t )KNN ]dvec(Σ

1/2
t ).

Unfortunately, this transformation is singular, which means that we must find an analogous

transformation between the corresponding dvech′s. In this sense, we can write the previous

expression as

dvech(Σt) = [LN (Σ
1/2
t ⊗ IN )L′N + LN (IN ⊗Σ

1/2
t )KNNL′N ]dvech(Σ

1/2
t ), (C73)

where LN is the elimination matrix (see Magnus, 1988). We can then use the results in chapter

5 of Magnus (1988) to show that the above mapping will be lower triangular of full rank as long

as Σ
1/2
t has full rank, which means that we can readily obtain the Jacobian matrix of vech(Σ

1/2
t )

from the Jacobian matrix of vech(Σt).

In the case of the symmetric square root matrix, the analogous transformation would be

dvech(Σt) = [D+
N (Σ

1/2
t ⊗ IN )DN + D+

N (IN ⊗Σ
1/2
t )DN ]dvech(Σ

1/2
t ),

whereD+
N = (D′NDN )−1D′N is the Moore-Penrose inverse of the duplication matrix (see Magnus

and Neudecker, 1988).
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From a numerical point of view, the calculation of both LN (Σ
1/2
t ⊗ IN )L′N and LN (IN ⊗

Σ
1/2
t )KNNL′N is straightforward. Specifically, given that LNvec(A) = vech(A) for any square

matrixA, the effect of premultiplying by the 1
2N(N+1)×N2 matrix LN is to eliminate rows N+1,

2N+1 and 2N+2, 3N+1, 3N+2 and 3N+3, etc. Similarly, given that LNKNNvec(A) = vech(A′),

the effect of postmultiplying by KNNL′N is to delete all columns but those in positions 1, N+1,

2N+1,. . . ,N+2, 2N+2,. . . , N+3, 2N+3,. . . , N2.

Let Ft denote the transpose of the inverse of LN (Σ
1/2
t ⊗ IN )L′N + LN (IN ⊗Σ

1/2
t )KNNL′N ,

which will be upper triangular. The fastest way to compute

∂vec′[Σ
1/2
t (θ)]

∂θ
[IN ⊗Σ

−1/2
t (θ)] =

1

2

∂vech′ [Σt(θ)]

∂θ
FtLN (IN ⊗Σ

−1/2
t )

is as follows:

1. From the expression for ∂vec′ [Σt(θ)] /∂θ we can readily obtain ∂vech′ [Σt(θ)] /∂θ by

simply avoiding the computation of the duplicated columns

2. Then we postmultiply the resulting matrix by Ft

3. Next, we construct the matrix

LN (IN ⊗Σ
1/2
t ) = LN


Σ
−1/2
t 0 · · · 0

0 Σ
−1/2
t · · · 0

...
...

. . .
...

0 0 · · · Σ
−1/2
t


by eliminating the first row from the second block, the first two rows from the third block,

. . . , and all the rows but the last one from the last block

4. Finally, we premultiply the resulting matrix by ∂vech′ [Σt(θ)] /∂θ · Ft.

C.2 Asymptotic distribution

C.2.1 Under correct specification

Proposition 10 If ε∗t |;φ is i.i.d. D(0, IN ,%) with density f(ε∗,%), then

It(φ) = Zt(θ)M(%)Z′t(θ),

Zt(θ) =

(
Zdt(θ) 0

0 Iq

)
=

(
Zlt(θ) Zst(θ) 0

0 0 Iq

)
,

and

M(%) =

[
Mdd(%) Mdr(%)
M′dr(%) Mrr(%)

]
=

 Mll(%) Mls(%) Mlr(%)
M′ls(%) Mss(%) Msr(%)
M′lr(%) M′sr(%) Mrr(%)

 ,

54



with

Mll(%) = V [elt(φ)|φ] = E
[
∂2 ln f(ε∗t ;%)/∂ε∗∂ε∗′

∣∣%] ,
Mls(%) = E[elt(φ)est(φ)′|φ] = E

[
∂2 ln f(ε∗t ;%)/∂ε∗∂ε∗′ · (ε′∗t ⊗ IN )

∣∣%] ,
Mss(%) = V [est(φ)|φ] = E

[
(ε∗t ⊗ IN ) · ∂2 ln f(ε∗t ;%)/∂ε∗∂ε∗′ · (ε∗′t ⊗ IN )|%

]
−KNN ,

Mlr(%) = E[elt(φ)e′rt(φ)|φ] = −E
[
∂2 ln f(ε∗t ;%)/∂ε∗∂%′|%

]
,

Msr(%) = E[est(φ)e′rt(φ)|φ] = −E
[
(ε∗t ⊗ IN )∂2 ln f(ε∗t ;%)/∂ε∗∂%′|%

]
,

and
Mrr(%) = V [ert(φ)|φ] = −E

[
∂2 ln f(ε∗t ;%)/∂%∂%′|φ

]
.

C.2.2 Under misspecification

Proposition 11 If (12) holds, and ε∗t |It−1;ϕ0 is i.i.d. (0, IN ), where ϕ includes ψ and the true
shape parameters ρ, but the distribution assumed for estimation purposes does not necessarily
nest the true density, then the pseudo-true value of the feasible parametric ML estimator of
φ = (ψ′c,ψ

′
im,ψ

′
ic,%)′, φ∞, is such that ψc∞ is equal to the true value ψc0.

Proof. We can directly work in terms of the ψ parameters thanks to our assumptions on

the mapping rg(.). Let us initially keep % fixed to some admissible value. The parametric

score vector for the remaining parameters will then be given by (C65), with Zψiclt(ψ) = 0 and

Zψimst(ψ) = 0.

Since we are systematically working with lower triangular square root decompositions, we

can write

Zψcst(ψ) = ∂vech′[Σ
�1/2
t (ψc)]/∂ψc · LN [Ψ

1/2
ic ⊗Σ

�−1/2′
t (ψc)Ψ

−1/2′
ic ],

Zψics(ψ) = ∂vech′(Ψ
1/2
ic )/∂ψic · LN [IN ⊗Ψ

−1/2′
ic ].

Given thatΨ
1/2′
ic is upper triangular,Ψ−1/2

ic Σ
�−1/2
t (ψc) is lower triangular and IN is diagonal,

Theorem 5.7.i in Magnus (1988) implies that

[Ψ
1/2′
ic ⊗Ψ

−1/2
ic Σ

�−1/2
t (ψc)]L

′
N = L′NLN [Ψ

1/2′
ic ⊗Ψ

−1/2
ic Σ

�−1/2
t (ψc)]L

′
N ,

(IN ⊗Ψ
−1/2
ic )L′N = L′NLN (IN ⊗Ψ

−1/2
ic )L′N ,

whence

Zψcst(ψ) =
∂vech′[Σ

�1/2
t (ψc)]

∂ψc
LN [Ψ

1/2
ic ⊗Σ

�−1/2′
t (ψc)Ψ

−1/2′
ic ]L′NLN ,

Zψics(ψ) =
∂vech′(Ψ

1/2
ic )

∂ψic
LN (IN ⊗Ψ

−1/2′
ic )L′NLN .

As a result,

sψict(ψ,%) = −∂vech
′(Ψ

1/2
ic )

∂ψic
LN (IN ⊗Ψ

−1/2′
ic )L′Nvech

{
IN +

∂ ln f [ε∗t (ψ);%]

∂ε∗
ε∗′t (ψ)

}
sψimt(ψ,%) = −Ψ

−1/2′
ic

∂ ln f [ε∗t (ψ);%]

∂ε∗
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and

sψct(ψ,%) =

{
∂µ�′t (ψc)

∂ψc
+
∂vec′[Σ

�1/2
t (ψc)]

∂ψc
(ψim ⊗ IN )

}
Σ
�−1/2′
t (ψc)sψimt(ψ,%)

−∂vec
′[Σ
�1/2
t (ψc)]

∂ψc
· LN [Ψ

1/2
ic ⊗Σ

�−1/2′
t (ψc)Ψ

−1/2′
ic ]L′Nvech

{
IN +

∂ ln f [ε∗t (ψ);%]

∂ε∗
ε∗′t (ψ)

}
since vech(A) = LNvec(A) for any N ×N square matrix A regardless of its structure.

Let ψim∞(%) and ψic∞(%) denote the solution to the implicit system of N + N(N + 1)/2

equations (B38), which we assume is such that Ψic∞(%) is p.d. Given the expression for

ε∗t (ψ) in (B39), we can immediately see that ε∗t (ψc0,ψim,ψic) will be i.i.d.[Ψ
−1/2
ic (ψim0 −

ψim),Ψ
−1/2
ic Ψic0Ψ

−1/2′
ic ] conditional on It−1. This, together with the full rank of Ψ

−1/2′
ic im-

plies that

E

[
∂ ln f [ε∗t [ψc0,ψim∞(%),ψic∞(%)];%]

∂ε∗

∣∣∣∣ It−1;ϕ0

]
= 0.

In addition, we know from Theorem 5.6 in Magnus (1988) that the matrix

LN (IN ⊗Ψ
−1/2′
ic )L′N

will be upper triangular of full rank. Similarly, given that we have defined ψic = vech(Ψic),

the matrix ∂vech′(Ψ1/2
ic )/∂ψic would also be of full rank in view of the discussion that follows

expression (C73).

As a result, we will also have that

vech

{
E

[
IN +

∂ ln f [ε∗t [ψc0,ψim∞(%),ψic∞(%)];%]

∂ε∗
ε∗′t [ψc0,ψim∞(%),ψic∞(%)]

∣∣∣∣ It−1;ϕ0

]}
= 0.

Consequently,

E{sψt[ψc0,ψim∞(%),ψic∞(%),%]|It−1;ϕ0} = 0, (C74)

which confirms that ψc0, ψim∞(%) and ψic∞(%) will be the pseudo-true values corresponding

to a restricted PML estimator that keeps % fixed.

If we define %∞ as the solution to the q equations

E{s%t[ψc0,ψim∞(%),ψic∞(%),%]|ϕ0} = 0,

which we assume lies in the interior of the admissible parameter space, then it is clear that ψc0,

ψim∞ = ψim∞(%∞), ψic∞ = ψic∞(%∞) and %∞ will be the pseudo-true values of the parameters

corresponding to an unrestricted PMLE that also estimates %. �
If we further assume that the true conditional mean of yt is 0, and this restriction is imposed

in estimation, then ψim becomes unnecessary, thereby generalising the second part of Theorem

1 in Newey and Steigerwald (1997).
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The next result, which extends propositions 2 and 4, contains the ingredients necessary

to compute the joint asymptotic covariance matrix of the consistent estimators ψim(ψ̂cT ) and

ψic(ψ̂cT ) defined in (16) and (17), respectively, and φ̂T :

Proposition 12 If (12) holds, and ε∗t |It−1;ϕ0 is i.i.d. (0, IN ), where ϕ includes ψ and the true
shape parameters, but the distribution assumed for estimation purposes does not necessarily nest
the true density, then:

1.

A=
(
Aφφ 0
Aψ̄iφ Aψ̄iψ̄i

)
=



Aψcψc Aψcψim Aψcψic Aψc% 0 0
A′ψcψim Aψimψim Aψimψic Aψic% 0 0

A′ψcψic A′ψimψic Aψicψic Aψim% 0 0

A′ψc% A′ψim% A′ψic% A%% 0 0

Aψ̄imψc 0 0 0 Aψ̄imψ̄im 0

Aψ̄icψc 0 0 0 0 Aψ̄icψ̄ic


,

B=
(
Bφφ Bφψ̄i
B′
φψ̄i

Bψ̄iψ̄i

)
=



Bψcψc Bψcψim Bψcψic Bψcη Bψcψ̄im Bψcψ̄ic
B′ψcψim Bψimψim Bψimψic Bψimη Bψimψ̄im Bψimψ̄ic
B′ψcψic B′ψimψic Bψicψic Bψicη Bψicψ̄im Bψicψ̄ic
B′ψcη B′ψimη B′ψicη Bηη Bηψ̄im Bηψ̄ic
B′
ψcψ̄im

B′
ψimψ̄im

B′
ψicψ̄im

B′
ηψ̄im

Bψ̄imψ̄im Bψ̄imψ̄ic
B′
ψcψ̄ic

B′
ψicψ̄im

B′
ψicψ̄ic

B′
ηψ̄ic

B′
ψ̄imψ̄ic

Bψ̄icψ̄ic


,

with detailed expressions for all the elements in the proof.

2. If in addition (14) holds, then both A and B become block diagonal between ψc and
(ψim,ψic,%, ψ̄im, ψ̄ic).

Proof.

To obtain the asymptotic distribution of the unrestricted pseudo ML estimators ψ̂T and %̂T ,

we need the asymptotic covariance matrix of the average scores as well as the expected value of

the average Hessian matrix evaluated at the pseudo true values φ′∞ = (ψ′c0,ψ
′
im∞,ψ

′
ic∞,%

′
∞).

Given that s%t(φ∞) only depends on ε∗t (ψc0,ψim∞,ψix∞), which is i.i.d. over time, it follows

that

E[s%t(φ∞)|It−1;ϕ0] = 0, (C75)

which in conjunction with (B30) proves the martingale difference nature of the spherical score

evaluated at the pseudo-true values. As a result, we only need the contemporaneous covariance

matrix of the component of the score corresponding to the tth observation, which in turn depends

on the contemporaneous covariance matrix of edt(φ∞) and ert(φ∞). Given the expression for
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edt(φ∞) in (C66), it immediately follows that

E[elt(φ∞)e′lt(φ∞)|ϕ0]=E

{
∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗′

∣∣∣∣ϕ0

}
=MO

ll (φ∞;ϕ0), (C76)

E[elt(φ∞)e′st(φ∞)] = E

{
∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗

×vec′
{

IN +
∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
ε∗′t (ψ∞)

}∣∣∣∣ϕ0

}
=MO

ls(φ∞;ϕ0), (C77)

E[est(φ∞)e′st(φ∞)] = E

{
vec

{
IN +

∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
ε∗′t (ψ∞)

}
×vec′

{
IN +

∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
ε∗′t (ψ)

}∣∣∣∣ϕ0

}
=MO

ss(φ∞;ϕ0). (C78)

Similarly,

E[elt(φ∞)e′rt(φ∞)|ϕ0]=E

{
−∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
∂ ln f [ε∗t (ψ∞) ;%∞]

∂%′

∣∣∣∣ϕ0

}
=MO

lr(φ∞;ϕ0)

(C79)

E[est(φ∞)e′rt(φ∞)] = E

{
−vec

{
IN +

∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
· ∂ ln f [ε∗t (ψ∞) ;%∞]

∂%′

}
×[ε∗′t (ψ∞)⊗ IN ])

∣∣ϕ0

}
=MO

sr(φ∞;ϕ0) (C80)

and

E[ert(φ∞)e′rt(φ∞)] = E

{
∂ ln f [ε∗t (ψ∞) ;%∞]

∂%

∂ ln f [ε∗t (ψ∞) ;%∞]

∂%′
|ϕ0

}
=MO

rr(φ∞;ϕ0).

(C81)

Hence, we will have that Bφφ = E[Bφφt(φ∞;ϕ0)], where

Bφφt(φ∞;ϕ0) = V [st(φ∞)|It−1;ϕ0] = Zt(ψ∞)MO(φ∞;ϕ0)Zt(ψ∞), (C82)

andMO(φ;ϕ) = V [et(φ)|ϕ].

Tedious algebra shows that Aφφ = E[At(φ∞;ϕ0)], where

At(φ∞;ϕ0) = −E[ht(φ∞)|It−1;ϕ0] = Zt(ψ∞)MH(φ∞;ϕ0)Zt(ψ∞), (C83)

andMH(φ∞;ϕ0) contains the following elements

MH
ll (φ∞;ϕ0) = E

{
∂2 ln f [ε∗t (ψ∞);%∞]/∂ε∗∂ε∗′

∣∣ϕ0

}
, (C84)

MH
ls (φ;ϕ) = E

{
∂2 ln f [ε∗t (ψ);%]/∂ε∗∂ε∗′ · [ε∗′t (ψ)⊗ IN ])

∣∣ϕ} , (C85)

MH
ss(φ;ϕ) = E

{
[ε∗t (ψ)⊗ IN ] · ∂2 ln f [ε∗t (ψ);%]/∂ε∗∂ε∗′ · [ε∗′t (ψ)⊗ IN ]|ϕ

}
−KNN (C86)

MH
lr (φ;ϕ) = −E

[
∂2 ln f [ε∗t (ψ);%]/∂ε∗∂%′|ϕ

]
, (C87)

MH
sr(φ;ϕ) = −E

[
[ε∗t (ψ)⊗ IN ]∂2 ln f [ε∗t (ψ);%]/∂ε∗∂%′|ϕ

}
, (C88)

and

MH
rr(φ;ϕ) = −E

{
∂2 ln f [ε∗t (ψ);%]/∂%∂%′|ϕ

}
. (C89)
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Let us now turn to our consistent estimators of ψic and ψim. The fact that the Gaussian

pseudo score for these parameters are influence functions that only depend on ψc and ψ̄i trivially

implies that
∂sψit(ψc, ψ̄i; 0)

∂ψ′i
= 0 and

∂sψit(ψc, ψ̄i; 0)

∂%′
= 0.

For analogous reasons,

∂sψct(ψc,ψi,%)

∂ψ̄
′
i

= 0,
∂sψit(ψc,ψi,%)

∂ψ̄
′
i

= 0,
∂s%t(ψc,ψi,%)

∂ψ̄
′
i

= 0,

We will also have that
∂s′ψit(ψc, ψ̄i; 0)

∂ψc
= h′ψcψit(ψ,0)

and
∂s′ψit(ψc, ψ̄i; 0)

∂ψ̄i
= h′ψiψit(ψ,0).

But since we are evaluating these expressions at consistent estimators of ψ, we will have that

ε∗t (ψ0) = ε∗t , whence we can obtain the remaining elements of A. In particular, given that (B39)

implies that for a fixed value of ψc we could understand the Gaussian log-likelihood function

of yt as a Gaussian log-likelihood for the pseudo-standardised residuals ε�t (ψc) with mean ψim

and covariance matrix Ψic, it immediately follows that Aψ̄imψ̄ic = 0.

Next, we need to find out the asymptotic covariance matrix of the sample averages of

sψict(ψ0; 0) and sψimt(ψ0; 0), as well as their asymptotic covariances with the sample aver-

ages of sψt(φ∞) and s%t(φ∞), which coincide with contemporaneous variance and covariances of

these influence functions because they are martingale difference sequences. In turn, they depend

on the covariance matrix of edt(ψ0,0), which is given by (A17), as well as on the covariances of

this vector with edt(φ∞) and ert(φ∞). Specifically, the required additional elements are

E[elt(φ∞)e′lt(ψ0,0)] = E

{
∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
ε∗′t (ψ0)

∣∣∣∣ϕ0

}
=MO

ll̄ (φ∞;ϕ0), (C90)

E[est(φ∞)e′lt(ψ0,0)] = E

{
vec

{
IN +

∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
ε∗′t (ψ∞)

}
ε∗′t (ψ0)

∣∣∣∣ϕ0

}
=MO

sl̄(φ∞;ϕ0),

(C91)

E[ert(φ∞)e′lt(ψ0,0)] = E

{
∂ ln f [ε∗t (ψ∞) ;%∞]

∂%′
ε∗′t (ψ0)|ϕ0

}
=MO

rl̄(φ∞;ϕ0), (C92)
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and

E[elt(φ∞)e′st(ψ0,0)] = E

{
∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
vec′

[
ε∗t (ψ0)ε∗′t (ψ0)− IN

]∣∣∣∣ϕ0

}
=MO

ls̄(φ∞;ϕ0),

(C93)

E[est(φ∞)e′st(ψ0,0)] = E

{
vec

{
IN +

∂ ln f [ε∗t (ψ∞);%∞]

∂ε∗
ε∗′t (ψ∞)

}
×vec′

[
ε∗t (ψ0)ε∗′t (ψ0)− IN

]∣∣ϕ} =MO
ss̄(φ;ϕ), (C94)

E[ert(φ∞)e′ct(ψ0,0)] = E

{
∂ ln f [ε∗t (ψ∞) ;%∞]

∂%′
vec′

[
ε∗t (ψ0)ε∗′t (ψ0)− IN

]∣∣∣∣ϕ} =MO
rs̄(φ;ϕ).

(C95)

Finally, we can tediously show that the conditions for block-diagonality of the expected

value of the Hessian and the covariance matrix of the score are that E[Zψclt(ψ∞)|ϕ0] and

E[Zψcst(ψ∞)|ϕ0] are both 0. But given that

Zψclt(ψc0,ψim,ψic) =
[
∂µ�′t (ψc0)/∂ψc ·Σ

�−1/2′
t (ψc0)

]
Ψ
−1/2′
ic

+
{
∂vec′[Σ

�1/2
t (ψc0)]/∂ψc · [IN ⊗Σ

�−1/2′
t (ψc0)]

}
(ψim ⊗Ψ

−1/2′
ic ),

Zψcst(ψc0,ψim,ψic) =
{
∂vec′[Σ

�1/2
t (ψc0)]/∂ψc · [IN ⊗Σ

�−1/2′
t (ψc0)]

}
(Ψ

1/2
ic ⊗Ψ

−1/2′
ic ),

those conditions will be satisfied if (14) holds in view of the full rank of Ψic. �

D Relationship to Fan, Qi and Xiu (2014)

Fan, Qi and Xiu (2014) considered a special case of model (2) in which τ is set to its true

value of 0. This means that there is one parameter less to estimate. We can exploit many of

the results in the proof of Proposition 6 to study this model. Somewhat surprisingly, tedious

algebraic manipulations show that the first part of this proposition remains valid provided that

we set ψim∞(%) = 0. In other words, the asymptotic covariance matrix of the pseudo ML

estimator of ψc for fixed value of % will be given by

MO
ss(%;ϕ0)

[MH
ss(%;ϕ0)]2

·V−1. (D96)

As for our proposed consistent closed-form estimator, we can also show that the asymptotic

variance of ψic(ψ̂cT ) will be given by

(κ − 1)ψ2
ic0 + 4ψ2

ic0

MO
ss(%;ϕ0)

[MH
ss(%;ϕ0)]2

W′V−1W, (D97)

which coincides with the (2,2) element of expression (24) with ψim∞(%) = 0.

Obviously, the same relationship applies to the Gaussian PMLEs, so our estimator of ψic

will be more effi cient than its Gaussian PMLE counterpart when the Pseudo ML estimator of

ψc will be more effi cient than its Gaussian PMLE counterpart.
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Finally, we can also prove that the third part of Proposition 6 also holds, so that the only

change that simultaneously estimating the shape parameters % implies is that all the expressions

must be evaluated at %∞.

Let us now compare the asymptotic distributions previously obtained for the case of %

fixed with the asymptotic distribution reported by Fan, Qi and Xiu (2014) for their estimation

method, bearing in mind that the mapping between our notation and theirs is as follows: ψc = γ,

ψic = σ2, λ∞(η̄) = η2
f , σ

�2
t = vt and ε∗t = εt.

A crucial ingredient of their results is the vector

k(ψ) =

(
σ�−1
t (ψc0)∂σ�t (ψc0)/∂ψc

ψ
−1/2
ic

)
=

(
.5σ�−2

t (ψc0)∂σ�2t (ψc0)/∂ψc
ψ
−1/2
ic

)

and the matrix

E[k(ψ)k′(ψ)|ϕ] =

(
V + WW′ ψ

−1/2
ic W

ψ
−1/2
ic W′ ψ−1

ic

)
,

whose inverse is (
V−1 −ψ1/2

ic V−1W

−ψ1/2
ic W′V−1 ψic(1 + W′V−1W)

)
.

The difference between this matrix and the corresponding matrix in the proof of Proposition

6 is due to the fact that Fan, Qi and Xiu (2014) are interested in the asymptotic distribution of

the estimator of ψ1/2
ic , which the delta method implies is related to the asymptotic distribution

of the estimator of ψic through the quantity −.5ψ
−1/2
ic .

Theorem 2 in Fan, Qi and Xiu (2014) states that the asymptotic distribution of their three

step estimator of ψc is given by V−1 times the following scalar

E[{hc[ε∗t , λ
1/2
∞ (%)]}2|ϕ0]

λ∞(%)[E{hic[ε∗t , λ
1/2
∞ (%)]|ϕ0}]2

,

where

h(x, s) = ln

[
1

s
f
(x
s

)]
= ln f

(x
s

)
− ln s

h1(x, s) =
∂h(x, s)

∂s
= −1

s

[
1 +

x

s

∂ ln f(x/s)

∂ε

]
h2(x, s) =

∂2h(x, s)

∂s∂s
=
∂hc(x, s)

∂s
=

1

s2

{
2

[
x

s

∂ ln f(x/s)

∂ε
+ 1

]
+
x2

s2

∂2 ln f(x/s)

∂ε∂ε
− 1

}
.

It is then easy to see that

E[{hc[ε∗t , λ1/2
∞ (%)]}2|ϕ0] = λ−1

∞ (%)MO
ss(%,ϕ0)

and

E{h2[ε∗t , λ
1/2
∞ (%)]|ϕ0} = λ−1

∞ (%)MH
ss(%;ϕ0)
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so that the asymptotic variance of their estimator of ψc will be

MO
ss(%,ϕ0)

[MH
ss(%;ϕ0)]2

·V−1,

which coincides with (D96).

Similarly, if we re-write (D97) as

4ψ2
ic0

[
MO

ss(φ;ϕ0)

[MH
ss(φ;ϕ0)]2

(1 + W′V−1W) +

(
κ − 1

4
− MO

ss(φ;ϕ0)

[MH
ss(φ;ϕ0)]2

)]
,

it is clear that the Fan, Qi and Xiu (2014) estimator of ψic also has the same asymptotic variance

as our counterpart.
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TABLE 1: Monte Carlo simulation results of univariate Garch-M model.

Parameter β γ δ, ψim ϑi, ψic α τ
True value 0.85 0.1 0.05 1.0 0.1 0.05

G-PML 0.8424 0.0909 0.0518 1.0953 0.0998 0.0508
(0.0538) (0.0463) (0.0473) (0.6003) (0.0332) (0.0433)

t-PML 0.8424 0.0909 0.0519 1.0951 0.0998 0.0508
Normal (0.0538) (0.0465) (0.0474) (0.6034) (0.0333) (0.0433)

FS Asy. 0.8424 0.0909 0.0518 1.0950 0.0998 0.0507
(0.0538) (0.0465) (0.0473) (0.6034) (0.0332) (0.0433)

FS Sym. 0.8424 0.0909 0.0519 1.0950 0.0998 0.0508
(0.0538) (0.0465) (0.0474) (0.6034) (0.0332) (0.0433)

G-PML 0.8418 0.0911 0.0513 1.0938 0.1002 0.0500
(0.0593) (0.0516) (0.0477) (0.6699) (0.0382) (0.0429)

t-PML 0.8426 0.0913 0.0513 1.0892 0.1000 0.0505
Student t10 (0.0557) (0.0480) (0.0458) (0.6152) (0.0361) (0.0417)

FS Asy. 0.8426 0.0913 0.0512 1.0888 0.0999 0.0500
(0.0557) (0.0480) (0.0471) (0.6163) (0.0361) (0.0427)

FS Sym. 0.8426 0.0913 0.0513 1.0889 0.0999 0.0504
(0.0557) (0.0480) (0.0458) (0.6163) (0.0361) (0.0417)

G-PML 0.8411 0.0911 0.0518 1.0933 0.0997 0.0509
(0.0641) (0.0527) (0.0474) (0.6727) (0.0436) (0.0434)

t-PML 0.8442 0.0934 0.0511 1.4512 0.1355 0.0433
GC(0,3.2) (0.0548) (0.0463) (0.0366) (0.8458) (0.0607) (0.0290)

FS Asy. 0.0511 1.0623 0.0995 0.0507
(0.0459) (0.5632) (0.0385) (0.0432)

FS Sym. 1.0626 0.0995 0.0509
(0.5640) (0.0385) (0.0334)

G-PML 0.8419 0.0913 0.0528 1.0929 0.1003 0.0522
(0.0644) (0.0524) (0.0480) (0.6844) (0.0441) (0.0442)

t-PML 0.8442 0.0940 0.1748 1.6489 0.1531 0.1366
GC(-.9,3.2) (0.0531) (0.0452) (0.0560) (1.0232) (0.0727) (0.0340)

FS Asy. 0.0518 1.0602 0.0996 0.0516
(0.0460) (0.5650) (0.0363) (0.0441)

FS Sym. 1.0754 0.1010 0.1698
(0.5732) (0.0368) (0.0335)

Monte Carlo medians and (interquartile ranges) of Gaussian PMLE (G-PML), Student t-based PMLE (t-PML),

our consistent estimator of mean and scale parameters (FS Asy.) and our consistent estimator of the overall

scale parameter (FS Sym.). Bold figures refer to inconsistent estimators. Random draws of innovations are

standard normal (Normal), standardised Student t with ν degrees of freedom (Student tν), and standardised

fourth-order Gram-Charlier expansion with skewness equal to c3 and excess kurtosis equal to c4 (GC(c3,c4)).

Sample length=1000. Replications=10,000.
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1.5

0.2 6

1.6

1.7

1.8

5.50.4

1.9

KurtosisSkewness

5
0.6 4.5

40.8
3.5

1 3



00.55

0.6

3

0.65

0.7

0.2

0.75

FIGURE 3: Relative e/ciency of non Gaussian/Gaussian PMLEs of Ac

3.5

0.8

0.85

0.9

4

0.95

0.4

1

4.5

SkewnessKurtosis

5 0.6
5.5

0.86
6.5 17



4 5 6 7 8 9 10 11 12
Degrees of freedom of Student t distribution

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

V
a
ri
a
n
ce

R
a
ti
o
s

FIGURE 4: E/ciency of Gaussian PMLE and MLE of Ai relative to our consistent estimators

ML Âim
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