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Abstract

A polynomial continuous system S = (F,X0) is specified by a polynomial vector field
F and a set of initial conditions X0. We study polynomial changes of bases that transform
S into a linear system, called linear abstractions. We first give a complete algorithm to
find all such abstractions that fit a user-specified template. This requires taking into ac-
count the algebraic structure of the set X0, which we do by working modulo an appropriate
invariant ideal. Next, we give necessary and sufficient syntactic conditions under which a
full linear abstraction exists, that is one capable of representing the behaviour of the in-
dividual variables in the original system. We then propose an approximate linearization
and dimension-reduction technique, that is amenable to be implemented “on the fly”. We
finally illustrate the encouraging results of a preliminary experimentation with the linear
abstraction algorithm, conducted on challenging systems drawn from the literature.
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1 Introduction

Recent years have seen a surge of interest in computational models based on ordinary differential
equations (ode’s), due to the prominence of such fields as system biology [5] and hybrid systems
[20, 27, 16, 22].

In general terms, the dynamics of a continuous system is specified by a system of generally
nonlinear, ordinary differential equations (ode’s) ẋ = F (x) and a set of initial states X0. In
the present paper we focus on the case where F is a polynomial vector field. A vast range
of functions can be expressed either directly or coded up in this formalism. Unfortunately,
polynomial systems very seldom admit an explicit solution. Therefore, one seeks for indirect
ways to understand the system’s behaviour. In the present paper, we study algorithms to build
tractable, linear abstractions of polynomial systems. These abstractions may be useful for the
purpose of both numerical simulations and formal verification of safety properties. A special
case of linear abstractions are the so called scale consecutions [21, 17], a type of invariant that
can be used to establish safety properties of a system. We give a more detailed account of our
work below.

Linear abstractions have been long studied in the field of dynamical systems. The idea is to
devise a simpler linear system of ode’s, easier to deal with, but equivalent to, or at least preserv-
ing some interesting properties of, the original system. In particular, Sankaranarayanan [23, 24]
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offers algorithms to build linear abstractions through polynomial change of basis transformations
of the original system. We extend this work in two directions.

As a first contribution, we provide an algorithm that, under reasonable assumptions, is
complete: it finds all and only the linear abstractions given by polynomial changes of basis that
fit a given template. Doing so requires taking appropriately into account the structure of the set
of initial states, X0. To appreciate what is at stake here, let us look at a simple example. Consider
a system S where ẋ = y2, ẏ = xy and X0 is the set of pairs in the line x = y. In every trajectory
starting from X0, one has x(t) = y(t). Thus one has, for instance, d

dt(y
2 − xy) = 0, which

makes y2 − xy a linear abstraction of S, in fact a strong scale consecution. These abstractions
escape existing algorithms based on polynomial changes of basis [23, 24], essentially because
those algorithms have no way of incorporating the information that x(t) = y(t) starting from
X0. We recover completeness working modulo an appropriate polynomial ideal J representing
X0, rather than with pure syntax. Continuing with S, one notes that the Lie derivative of y2−xy
is 0 modulo J =

〈
x − y

〉
. Once a basis of J is given, the method is entirely based on simple

linear algebra and constraints propagation. Preliminary experiments indicate that the resulting
algorithm works reasonably well on nontrivial systems drawn from the literature (see Section 5).
Going further, one can ask under which conditions a full linear abstraction exists, that is one
capable of representing the behaviour of the individual variables in the original system – hence
of any combination of them. We provide a syntactic necessary and sufficient condition for this
to be the case. This condition can be checked against any Gröbner basis of J .

As a second contribution, we provide a method for linearization and dimension reduction,
which permits trading off approximation with computational cost. One disadvantage of exact
linearization methods is that the dimension of the linear abstraction, even when it exists finite,
can be much higher than the original nonlinear system’s. Moreover, often no polynomial change
of basis exists yielding a linear abstraction. We propose a linearization method that, for a
prescribed m ≥ 1, returns an abstraction of dimension m that approximates a given function of
the trajectory. At the very least, the approximation error is guaranteed to decrease as O(tm)
around the origin (under mild conditions). Results to bound the absolute error in a given closed
interval are also provided. We argue that this technique might give good results when used
with an ansatz of Chebyshev polynomials. Again, the method is mostly based on simple linear
algebra. Moreover, it is amenable to an “on the fly” implementation that avoids the explicit
construction of large matrices.

Related work The concept of scale consecution has been proposed by Sankaranarayanan
et al. [21] and subsequently generalized by Matringe et al. [17]. The mentioned papers by
Sankaranarayanan [23, 24] build on these works and offer fixed-point algorithms to compute
changes of basis yielding linear abstractions. These algorithms are not complete in the sense
made precise above. Scale consecutions are generalized by Darboux polynomials, aka polynomial
consecutions, which cannot be captured by linear abstractions. See e.g. [21, 12] and more
recently [13] for examples of use of such polynomials in the context of verification.

Our work is also strongly related to methods for finding ideal/algebraic invariants, which
are more general than consecutions. In fact, our method requires that the ideal J we work up
to, be an invariant whose variety includes X0. Such invariants can in principle be obtained by
any method proposed in the literature. See for instance Ghorbal and Platzer’ technique based
on differential radical invariants [10], and references therein. More recently, Boreale [7] has
introduced a (in a precise sense, complete) method to obtain a small algebraic invariant that
includes a given algebraic X0. The abstraction method in the present paper, therefore, can be
seen as building on all such approaches.
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Our linearization techniques are also related to Carleman embedding [14], which can be used
to transform a given nonlinear system into an infinite linear system. Bellman and Richardson
[4] have studied in some special cases the effect of truncating the obtained infinite linear sys-
tem at a prescribed cutoff. Our approximate linearization technique draws from and generalize
these ideas. But in order to achieve dimension reduction, we blend Carleman embedding with
orthogonal projection techniques. Basically, we pursue dimension reduction via projection, by
working in the embedding coordinate space. In nonlinear Control Theory as well there is a fair
amount of work based on Carleman (bi)linearization followed by projection. These approxima-
tions focus on the frequency domain; see e.g. [15, 2]. Another approach relies on approximate
linearization via truncated Taylor expansion, repeated at various points along a trajectory, to
keep the approximation error globally small: a technique known as trajectory piece-wise linear
(tpwl) model order reduction [18]. See [3] for a recent survey. The relation of our work with
these techniques deserves further investigation. In particular, we wonder whether our approxi-
mate linearization technique might conveniently serve as a building block of tpwl and similar
strategies.

Our approach is very different from discrete abstractions, where the state space is subdivided
into small regions, each of which can be approximated by a linear system. See the discussions
in [23, 24, 25] and the references therein. The number of regions can grow exponentially as
the number of dimensions grows, making the subdivision very expensive. Techniques based
on changes of basis might offer an alternative in some cases. Here we offer some preliminary
experimental evidence that our techniques might be useful, but leave a systematic comparison
with discretization techniques for future work.

Structure of the paper The rest of the paper is organized as follows. In Section 2 we
introduce the necessary preliminary notions and terminology. Section 3 presents results on
exact linear abstractions. Section 4 introduces our approximate linearization and dimension
reduction technique. Section 5 presents the results of the experiments we have conducted on
some systems drawn from the literature, using the abstraction technique of Section 3. We draw
some concluding remarks and discuss further work in Section 6. For ease of reading, a few
technical proofs and an additional example have been confined to separate appendices.

2 Preliminaries

Throughout the paper ‘vectors’ are considered as column vectors unless otherwise specified. For
L a vector or matrix, we denote by LT its transpose.

Continuous systems and linear abstractions Fix N ≥ 1 and a tuple of distinct variables
x = (x1, ..., xN )T . A system of polynomial ode’s has the form

ẋ = F (x) (1)

where F = (f1, ..., fN )T is a vector field of multivariate polynomials in x. The functions fi are
called drifts in this context. Once N and x are fixed, we can identify a system of ode’s with its
vector field F . Given an initial condition x0 ∈ RN , we have an initial value problem. A solution
of the problem is a differentiable function x(t) : U → RN , defined on some nonempty open
interval U ⊆ R containing 0, such that x(0) = x0 and equation (1) is fulfilled: d

dtx(t) = F (x(t))
for each t ∈ U . By the Picard-Lindelöf theorem [1], there exists a nonempty open interval U
containing 0, over which there is a unique solution, say x(t) = (x1(t), ..., xN (t))T , of the problem.
In our case F is infinitely often differentiable, so the solution is seen to be analytic in U : each
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xi(t) admits a Taylor series expansion in a neighborhood of 0. For definiteness, we will take
the domain of definition U of x(t) to be the largest symmetric open interval where the Taylor
expansion from 0 of each of the xi(t) converges (possibly U = R). The resulting vector function
of t, denoted x(t), is called the time trajectory of the system. Note that both the time trajectory
and its domain of definition do depend in general on the initial x0 ∈ RN . We shall write them
as x(t;x0) and Ux0 , respectively, whenever we want to make this dependence explicit in the
notation.

For any analytic function g : RN → R, the function g(x(t;x0)) : U → R, obtained by
composing g as a function with the time trajectory x(t;x0), is analytic. We let g(t;x0) denote
the extension of g(x(t;x0)) over the largest symmetric open time interval of convergence
(possibly coinciding with R) of its Taylor expansion from 0. A continuous system is a pair of a
vector field F and a subset of initial conditions X0 ⊆ RN :

S = (F,X0) . (2)

Definition 1 (linear abstraction) Consider the continuous system S as defined in (2). A
vector of analytic functions φ = (φ1, ..., φk)

T , with φi : RN → R, is a linear abstraction for S
if there is a k × k real matrix A such that, for each x0 ∈ X0 the function φ(t;x0) satisfies the
equation (with z = (z1, ..., zk)

T a vector of distinct variables):

ż = Az . (3)

A linear abstraction of dimension k = 1 is called constant scale consecution of S.

The function vector φ will be referred to as the (change of) basis of the abstraction. The
matrix A in (3) will be referred to as the abstraction matrix. Seen as a function RN → Rk, the
basis φ transforms the original system S = (F,X0) into a linear system T = (H,Y0), where the
vector field H is the linear function described by A and Y0 = φ(X0). The elements of φ are
drawn from any chosen ansatz (class) A = {φ1, φ2, ...} of analytic functions.

A first, obvious use of linear abstractions is the effective, analytic or numerical, computation
of functions g of the trajectory that arise as linear combinations of the functions in φ, without
having to explicitly solve the original system S, which can be impossible or costly. Note, however,
that the dimension k of the linear system (3) can be (much) larger than the dimension N of the
original system. Dimension reduction, possibly at the cost of approximation, will be discussed in
Section 4. Under certain conditions, linear abstractions are also useful to reason about properties
of the original system such as stability, a theme that will not be covered here; see e.g. [23] and
references to the specialized literature therein.

Linear abstractions are also useful to prove safety properties of S. Indeed, it is easy to

see that for a (polynomial) abstraction φ, if X0 ⊆ V(φ)
4
= V({φ1, ..., φk}) then no trajectory

starting from X0 can ever leave V(φ). In order to prove unreachability of a given unsafe set
Xu, it is therefore sufficient to find an abstraction φ such that X0 ⊆ V(φ) and V(φ) ∩Xu = ∅.
We refer the reader to [23, 7] for discussions concerning this aspect. We point out again that
our definition of linear abstraction is more flexible than the one considered in [23, 24]. First, we
explicitly take into account the set of initial conditions X0. Second, the definition is semantic
- given in terms of time derivative -, as opposed to syntactic - in terms of Lie derivatives (see
below), as often found in other works. Let us illustrate the extra flexibility provided by this
definition with the following simple example.

Example 1 Consider the system S = (F,X0) in the variables x = (x, y)T , where F = (y2, xy)T

and X0 = {(λ, λ)T ∈ R2}. It is not difficult to see that, for x0 ∈ X0, x(t;x0) = y(t;x0),
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hence x − y is a linear abstraction, and in fact a constant scale consecution for S. Similarly,
e.g. y2 − xy and similar combinations all are constant scale consecutions for S. Note that by
taking the Lie derivative (see below) of each of these polynomials the degree gets increased. This
implies that if we consider the system S0 with X0 = R2, these polynomials fail to form linear
abstractions.

Lie derivatives Given a differentiable function g : E → R, for some open set E ⊆ RN , the Lie

derivative of g along F is the function E → R defined as: LF (g)
4
= 〈∇g, f〉 =

∑N
i=1(

∂g
∂xi
·fi). More

generally, we can define inductively L(0)F (g)
4
= p and L(j+1)

F (g)
4
= LF (LjF (g)). The Lie derivative

of the sum h+ g and product h · g functions obey the familiar rules: LF (h+ g) = LF (h) +LF (g)
and LF (h · g) = h · LF (g) + LF (h) · g. When g = p ∈ Rd[x] then LF (p) ∈ Rd+d′ [x], for
some integer d′ ≥ 0 that depends on d and on F . This allows us to view the Lie derivative
of polynomials along a polynomial vector field F as a purely syntactic mechanism, that is as
a function LF : R[x] → R[x]. In particular, if p = xi (projection on the i-th component),
LF (p) = fi.

The connection between the Lie derivatives of g along F and the system (1) is given by
the following equalities that can be readily checked. For any x0 ∈ RN , with the notation
introduced before Definition 1, we have: g(t;x0)|t=0 = g(x0) and and d

dtg(t;x0) = (LF (g))(t;x0).
More generally, we have the following equation for the j-th derivative of g(t;x0) (j = 0, 1, ...):
d(j)

dtj
g(t;x0) = (L(j)F (g))(t;x0). In the sequel, we shall omit the subscript F from LF when clear

from the context.

Algebraic geometry concepts We quickly review a few notions from algebraic geometry that
will be used throughout the paper. A comprehensive treatment of these concepts can be found
for instance in Cox et al.’s excellent textbook [9]. A set of polynomials I ⊆ R[x] is an ideal if:
(1) 0 ∈ I and (2) p1, ..., pm ∈ I and h1, ..., hm ∈ R[x] implies

∑m
i=1 hipi ∈ I. The ideal generated

by a set P ⊆ R[x] is
〈
P
〉 4

= {
∑m

i=1 hipi : m ≥ 0 and hi ∈ R[x], pi ∈ P for i = 1, ...,m}. This
is the smallest ideal containing P and as a consequence

〈 〈
P
〉 〉

=
〈
P
〉
. Given an ideal I, a

set P such that I =
〈
P
〉

is said to be a basis for I. Hilbert’s basis theorem implies that: (a)
any ideal I ⊆ R[x] has a finite basis; (b) any infinite ascending chain of ideals I0 ⊆ I1 ⊆ · · ·
stabilizes in a finite number of steps (ascending chain condition). Once a monomial order (e.g.
lexicographic) is fixed, a multivariate version of polynomial division naturally arises – see [9,
Ch.2,Sect.3] for the precise definition. A Gröbner basis of I (w.r.t. a fixed monomial order) is
a finite basis G of I such that for any polynomial p ∈ R[x] the remainder of the division of p
by G, r = p mod G, enjoys the following property: p ∈ I iff r = 0. As a consequence, given
a Gröbner basis G of I, the ideal membership problem p ∈ I can be decided1. Ideal inclusion
I ⊆ J can be decided similarly. There are algorithms (e.g. Buchberger’s) that, given a finite P
and a monomial order, compute a Gröbner basis G such that

〈
G
〉

=
〈
P
〉
. This computation

is potentially expensive.
The geometric counterpart of polynomial sets are algebraic varieties. Given a set of polyno-

mials P ⊆ R[x], the set of points in RN annihilating all of them: V(P )
4
= {x0 ∈ RN : p(x0) =

0 for each p ∈ P} is the algebraic variety represented by P . We will have in general more than
one set of polynomials P representing the same algebraic variety A. Ideals and algebraic vari-
eties are connected as follows. For any set A ⊆ RN , the set of polynomials that vanish on A,

I(A)
4
= {p : p(x0) = 0 for each x0 ∈ A}, is the ideal induced by A. Note that both V and I are

1Provided the involved coefficients can be finitely represented, for instance are rational.
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inclusion reversing: P ⊆ Q implies V(P ) ⊇ V(Q), and A ⊆ B implies I(A) ⊇ I(B). For A an
algebraic variety and J an ideal, it is easy to see that V(I(A)) = A and that I(V(J)) ⊇ J . If
the last inclusion is actually an equality, we will say that J is a real radical. Given a finite set of
polynomials P or ψ = V(P ), there exists algorithms, albeit very costly, to build the real radical
I(ψ). In some cases of interest, such as ψ or P a singleton, it is fortunately easy to determine
the real radical.

Invariants Let F be a polynomial vector field in the variables x. We say an ideal J is invariant
under F if whenever p ∈ J then LF (p) ∈ J . Correspondingly, we say an algebraic variety A is
invariant under F if whenever x0 ∈ A then x(t;x0) ∈ A for each t in the domain of definition
Ux0 . It is easy to prove that A is an invariant variety if and only if there exists an invariant
ideal J such that A = V(J); see e.g. [7]. Finally, we say a polynomial p is invariant w.r.t. F
and x0 if p(t;x0) is identically 0; such a p represents a system’s conservation law that is valid
from the initial state x0. We record the following easy fact for future reference (see [6]).

Lemma 1 Let J be an invariant ideal under F . For each p ∈ J and x0 ∈ A = V(J), p is an
invariant polynomial w.r.t. F and x0.

3 Linear abstractions modulo an invariant

In this section, we confine ourselves to polynomial changes of basis. In other words, the functions
in φ will be drawn from an ansatz A ⊆ R[x]. We can compactly represent such an A as follows.
Let us arbitrarily fix M ≥ 1 distinct monomials, α1, α2, ..., αM . A polynomial template π is a
polynomial with linear expressions2 ` of the parameters ai in a = (a1, ..., aM ) as coefficients,
say π =

∑M
j=1 `jαj . For any template π and v = (λ1, ..., λM )T ∈ RM , let π[v] ∈ R[x] be the

polynomial obtained by replacing each ai with λi. For S ⊆ RM , we let π[S] ⊆ R[x] be the set
{π[v] : v ∈ S}. Note that if S is a vector space, π[S] is in turn a vector space over R of dimension
≤M .

Let J ⊆ R[x] be an invariant ideal. This will represent X0 or a convenient overapproximation
of X0. Assume a monomial ordering on the polynomial ring R[a,x] such that ai > xj for each
i, j. Let G ⊆ R[x] be a Gröbner basis for J according to the fixed monomial ordering; note that
G is a Gröbner basis also in the larger ring R[a,x]. Moreover, we can assume that G is reduced :
whenever convenient, this will allows us to write p mod J , rather than p mod G – indeed the
result of division by G does not actually depend on the specific reduced G that is chosen, but
only on the chosen monomial ordering. Consider the sequence of polynomials rj ∈ R[a,x], j ≥ 0,
defined as follows:

r0
4
= π mod J (4)

rj+1
4
= L(rj) mod J . (5)

The following lemma, saying that reduction modulo G and substitutions commute, is proved in
[7].

Lemma 2 Let π be a template and G ⊆ R[x] a Gröbner basis according to a monomial ordering
as prescribed above. Then r = π mod G is linear in a. Moreover, for any v ∈ RM , π[v] mod G =
r[v].

2For instance, ` = 5a1 + 42a2 − 3a3 is one such expression. Linear expressions with a constant term, such as
2 + 5a1 + 42a2 − 3a3 are not allowed.
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We now define a descending chain of vector spaces V0 ⊇ V1 ⊇ · · · in RM , as follows. For
i ≥ 0

Vi
4
= {v ∈ RM : rj [v] ∈ π[RM ] for j = 0, ..., i } . (6)

That each Vi is a vector space, stems from the linearity of the rj ’s in the parameters in a. The
chain V0 ⊇ V1 ⊇ · · · must stabilize at some finite m such that Vm+j = Vm for each j ≥ 1.
The following lemma provides a criterion for detecting stabilization. In what follows, for any

p ∈ R[a,x] we shall abbreviate L(p) mod J as LJ(p); for i ≥ 0, L(i)J is defined inductively as
expected, once L(0)(p) = p mod J . Let us say that a set S ⊆ π[RM ] is closed under L and J if
for each p ∈ S, (p mod J) ∈ S and LJ(p) ∈ S.

Lemma 3 Suppose that Vm+1 = Vm. Then Vm+j = Vm for each j ≥ 1. Moreover, π[Vm] is
closed under L and J .

When Vm+1 = Vm, we return Vm a the result of the algorithm, written LinAbs(π, J) = Vm.

Theorem 1 Let LinAbs(π, J) = Vm. Then π[Vm] is the largest subspace of π[RM ] that is closed
under L and J .

Proof As Vm is a vector space, so is π[Vm], as already remarked. Lemma 3 implies that π[Vm]
is closed under L and J . Conversely, consider any vector space S ⊆ π[RM ], closed under L and
J . Consider any p = π[v] ∈ S, with v ∈ RM . We show that v ∈ Vm, thus proving the inclusion

S ⊆ π[Vm]. As S is closed under L and J , for each i ≥ 0 we have L(i)J (π[v]) ∈ S: this is proven
by induction on i. But, by applying Lemma 2 (see (18) in the appendix), we have that for each

i ≥ 0, L(i)J (π[v]) = ri[v]; thus in particular ri[v] ∈ π[RM ]. This proves that v ∈ Vm. 2

Assume LinAbs(π, J) = Vm and let {p1, ..., pk} be a basis of π[Vm] – this can be readily
obtained from any basis of Vm. For each 1 ≤ i ≤ k, we can express the Lie derivative of pi
modulo J uniquely as L(pi) mod J =

∑k
j=1 aijpj for suitable coefficients aij ; let A be the square

matrix of such coefficients3. The next result shows that π[Vm] includes all and only the linear
abstractions whose elements are instances of π, provided J is consistent with the initial set X0.
Note in order to apply the corollary, it is not required that X0 = V(J), although this may be
a typical use-case. Also, in the “all” part, J is required to be a radical; note that any algebraic
variety A is represented by the real radical I(A), although building it may be highly nontrivial.
In this part, a mild syntactic condition4 on π is required: we say r0 is an instance of π if
r0[RM ] ⊆ π[RM ].

Corollary 1 (completeness) Let LinAbs(π, J) = Vm. Assume V(J) ⊇ X0. Then any basis
{p1, ..., pk} of π[Vm], once ordered, is a linear abstraction for S, with abstraction matrix given
by A as defined above.

Conversely, assume that r0 is an instance of π. Assume that V(J) ⊆ X0 and that J is a
real radical. Then the elements of any linear abstraction (q1, ..., qh)T for S such that qi ∈ π[RM ]
(1 ≤ i ≤ h) are in π[Vm].

Proof Concerning the first part, consider any pi in the given basis and write L(pi) = q+r with
q ∈ J and L(pi) mod J = r ∈ π[Vm], say r =

∑k
j=1 aijpj . For any x0 ∈ X0 ⊆ V(J), the function

3Note that such coefficients do depend on the specific basis G that is chosen.
4The condition is satisfied, for example, if π is formed with all the monomials up to a given degree.
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p(t;x0) satisfies d
dtp(t;x0) = L(p)(t;x0) = q(t;x0) + r(t;x0) =

∑k
j=1 aijpj(t;x0), as q(t;x0) is

identically 0 (Lemma 1). Hence (p1, ..., pk) satisfies (3) as required.

Conversely, consider a linear abstraction for S, say (q1, ..., qh)T . For each i, let qi
4
= qi mod J :

note that as, for some v, qi = π[v] mod J = r0[v] (Lemma 2), and r0 is an instance of π, we must
have qi ∈ π[RM ]. Consider now the subspace S ⊆ π[RM ] spanned by {q1, ..., qh} ∪ {q1, ..., qh}.
By Theorem 1, the thesis will follow if we show that S is closed under L and J . S is clearly
closed under J . We check now that S is closed under LJ . Consider any qi. First, observe
that by hypothesis there are real coefficients bij ’s such that, for each x0 ∈ V(J), we have, in a
neighborhood of t = 0:

d

dt
qi(t;x0) = L(qi)(t;x0) =

h∑
j=1

bijqj(t;x0) .

In particular, taking t = 0 in the second equality above, we deduce that L(qi)(x0) =∑h
j=1 bijqj(x0). Since this holds for each x0 ∈ V(J), we have that the polynomial s

4
=

L(qi) −
∑h

j=1 bijqj vanishes on V(J), that is s ∈ I(V(J)) = J , where the last equality fol-
lows from the fact that J is a real radical. This implies that s mod J = 0, or equivalently
that

L(qi) mod J =

h∑
j=1

bijqj .

This shows that LJ(qi) ∈ S. On the other hand, by linearity of L(·) and invariance of J , it is
immediate to check that LJ(qi) = LJ(qi), which completes the proof for this case. 2

Remark 1 (result template) Given a template π and v ∈ RM , checking if π[v] ∈ π[Vm] is
equivalent to checking if v ∈ Vm: this can be effectively done knowing a basis of the vector space
V . In practice, it is computationally more convenient to represent the whole set π[Vm], with Vm
returned by the algorithm, compactly in terms of a new m-parameters result template π′ such
that π′[Rm] = π[Vm]. The result template π′ can in fact be built starting from π and propagating
the linear constraints on a implied by (6) as the rj’s are generated. When we take J = {0},
which corresponds to X0 = V(J) = RN , this algorithm degenerates into that of [23, 24].

Example 2 Consider again the system S of Example 1 and let π be the template given by all
monomials of degree ≤ 2. Note that X0 = V(J) where J =

〈
x−y

〉
is an invariant ideal, and is

moreover a real radical. Running LinAbs(π, J), the chain (6) stabilizes at m = 1, that is V1 =
V2 = · · · . One can check that π[V1] = π′[R4], where π′ = a1+a2(y−x)+a3(y

2−x2)+a4(xy−x2)
is the result template. Applying Corollary 1, we deduce that the space spanned by the four
polynomial terms of this template represents all and only the linear abstractions of degree ≤ 2
for S. In particular, all of the abstractions are constant scale consecutions for S.

On the other hand, consider the system S0 = (F,R2); that is, no condition is imposed on the
initial states. Running LinAbs(π, {0}), we obtain the result template π′′ = a0. As also {0} is
trivially radical, Corollary 1 implies there is no nontrivial linear abstraction for S0.

We end this section with a result of theoretical interest about the expressive power of linear
abstractions. We say a vector of polynomials (p1, ..., pk)

T is a full linear abstraction for S if
for every polynomial p ∈ R[x] there are coefficients λ1, ..., λk ∈ R such that, for each x0 ∈
X0, p(t;x0) =

∑k
j=1 λjpj(t;x0). Note that a full linear abstraction is necessarily also a linear
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abstraction for S in the sense of Definition 1. The following result provides us with a syntactic
characterization of systems that admit full abstractions via a polynomial change of basis. For
a set of polynomials S, LM(S) denotes the set of leading monomials in S, that is, the set of
maximal monomials in each polynomial in S, according to the chosen monomial ordering [9].

Theorem 2 (full abstraction) Let G be any Gröbner basis of J and consider the set of mono-
mials P = {α : α /∈

〈
LM(G)

〉
}. Assume V(J) ⊇ X0. If P is finite then it forms a full linear

abstraction for S, once it is totally ordered.
Conversely, assume that V(J) ⊆ X0 and that J is a real radical. If there is a full linear

abstraction for S then P is finite.

Given G, it is easy to syntactically check if the set P mentioned in the statement is finite: it
is necessary and sufficient that for each i, xji ∈ LM(G) for some j > 0. For instance, it is readily
checked that, as this condition is not true for G = {x− y}, the system S in Example 2 does not
admit a full linear abstraction.

4 Approximation and dimension reduction

In this section, we consider a method for approximate linearization of the system (1). Rather
than approximating the system as a whole, we will be searching reduced linear approximations
of a target function g of a trajectory x(t;x0), that is g(t;x0). The differential equations of the
obtained linear system will not depend on the initial state x0, although the approximation error
will, in general. The method is amenable to an “on the fly” implementation, in the following
sense: it only requires building the Lie derivatives of g until a prescribed order m. This order
coincides with the dimension of the obtained linear system and, at the very least, guarantees that
the error is O(tm) around the origin. This can be useful to study the behaviour of the system
near a (stable) equilibrium point. The method can easily be extended to work modJ , for a
suitable invariant J related to the initial set X0. However, following a separation of concerns
principle, we shall confine ourselves here to ‘pure’ Lie derivatives; equivalently, we fix X0 = RN .

A general scheme Formally, let us arbitrarily fix a target function g, given as a linear
combination of the elements of an ansatz A = {φ1, φ2, ...} up to a cutoff M . That is, we fix

v = (λ1, ..., λM )T ∈ RM and φ
4
= (φ1, ..., φM )T and consider

g =

M∑
i=1

λiφi = vTφ . (7)

All we require from the functions in A is that they are analytic5 and that the Lie derivative of
each φi can be expressed as a linear combination of the ansatz. That is, for each i ≥ 1

L(φi) =
∑
j≥0

aijφj . (8)

For the sake of simplicity, we shall assume that, for each i, only finitely many coefficients aij
here are nonzero; this assumption is true e.g. for an ansatz of polynomials (and anyway can be

easily lifted). We let ψ
4
= (φM+1, ..., φM+k)

T , where k is chosen large enough to ensure that,
for 1 ≤ i ≤ M , we have aij = 0 for each j > M + k. We let B be the M × k matrix of
elements bi,j = ai,M+j . For any initial condition x0 ∈ RN of the original system (1), we can form

5This can be weakened to analyticity in some open set containing the trajectory x(t;x0).
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the following finite linear inhomogeneous system of ode’s and initial condition, in the variables
z = (z1, ..., zM )T . Recall that ψ(t;x0), the composition of ψ with the solution x(t;x0) of the
original system (1), is an analytic function at the origin.

ż = A · z +B · ψ(t;x0) (9)

z(0) = φ(x0)
4
= z0 . (10)

The following is an almost immediate consequence of the existence and uniqueness of the solution
of ode’s (Picard-Lindelöf).

Theorem 3 (linearization) Let x0 ∈ RN . Then φ(t;x0) is the unique solution of the system
(9) with z(0) as in (10).

Note that we cannot explicitly build the system (9), as the function ψ(t;x0) is in general not
available – even when ψ and B are available. Moreover, the matrix A itself can in practice be
too large to be explicitly generated. Indeed (9) is the starting point to build an approximation:
essentially, we neglect the “remainder” ψ(t;x0) and then reduce the resulting linear homoge-
neous system, by projecting A onto an appropriate subspace of RM . We will show that in this
construction, none of A, B or ψ need to be explicitly built.

In what follows, we letKm denote am-dimensional (1 ≤ m ≤M ; typicallym�M) subspace
of RM . We let V = [v1| · · · |vm] be an orthonormal basis of Km, represented as a M ×m matrix.
Note that, for g = vTφ, with v ∈ RM , AT v yields the coefficients of g’s Lie derivative limited to
φ, as seen from (8). We consider the projection of AT onto Km and represent it w.r.t. the basis
V , in other words we consider the m×m matrix

Hm
4
= V TATV . (11)

Given a vector of distinct variables y = (y1, ..., ym)T , m ≥ 1, we let the reduced linear system
derived from (9) and the corresponding initial condition, derived from (10), be defined as:

ẏ = HT
my (12)

y(0) = V T z0
4
= y0 . (13)

Note that the reduced equation system (12) does not depend on x0. Let v ∈ RM represent the
coefficients of g with respect to φ, as in (7). We are interested in studying the approximation

g(t;x0) ≈ vTV y(t; y0) . (14)

This approximation will be studied in a fixed nonempty closed interval [a, b], containing the
origin in its interior, and included in an open interval of definition of both φ(t;x0) and ψ(t;x0).
The error function, which depends on the coefficients vector v of the target function g in (7), is
defined for t ∈ [a, b] as expected:

ε(t;x0)
4
= vT (φ(t;x0)− V y(t; y0)) . (15)

Our goal is to devise an easy to compute upper bound on |ε(t;x0)|. In what follows, let us
denote by || · || an arbitrary matrix norm induced by a vector norm. We let ρ(x0) > 0 such that
||φ(t;x0)||, ||ψ(t;x0)|| ≤ ρ(x0) for t ∈ [a, b]. Moreover, we let R be the M ×m matrix whose j-th

column rj (1 ≤ j ≤ m) is the projection of AT vj onto K⊥m: in other words rj
4
= AT vj−V V TAT vj .

We also make use of matrix exponential notation eL
4
=
∑

`≥0 L
`/`!, and denote by eL1 the first

row of the matrix eL. We first give a general error bound. We defer the discussion on the
computation of the involved quantities until we introduce a specific instantiation of the present
scheme.
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Theorem 4 (general error bound) Assume v ∈ Km and that v is orthogonal to vj for j 6= 1.
For t ∈ [a, b], we have

|ε(t;x0)| ≤ ρ(x0) · |vT v1| ·
∫ t

0

{
||e(t−τ)H

T
m

1 V TB|| + ||e(t−τ)H
T
m

1 RT ||
}

dτ . (16)

Krylov spaces and Arnoldi We now describe a convenient way of building the subspace Km

and the matrices V,B,R,Hm needed in the above theorem. For generic M ×M matrix L and

vector u ∈ RM , the order m Krylov space generated by L and u is Km
4
= span{u, Lu, ..., Lm−1u}.

Here we will assume that m is small enough to satisfy dim(Km) = m. Note that, as
Lj+1u = L(Lju), all that is needed to build Km is the vector u and access to the matrix-vector
multiplication function u 7→ Lu. In fact, there exist effective and numerically stable algorithms
that, given a handle to such a function, will build both the orthonormal basis V of Km and and
the matrix Hm = V TLV . For example, one has the Arnoldi algorithm [19, Ch.6]. The matrix
Hm returned by Arnoldi has additional nice properties, in particular it is Hessenberg. Here, we
apply the Krylov space construction to L = AT and u = v 6= 0. This choice guarantees that
v ∈ Km and in fact that v1 = v/||v||2, so that Theorem 4 can be applied.

We now discuss the computational prerequisites of the algorithm and of the error bound in
(16) when Km is to be built with Arnoldi. Concerning the computation of the function u 7→ ATu,
note that, from (8) and by definition of A,B and ψ, we have

L(uTφ) = φTATu+ ψTBTu . (17)

This implies that, for each u ∈ RM , the vector ATu can be obtained by taking the Lie derivative
of the function uTφ and then collecting the nonzero coefficients of the φi’s in this derivative.
As a consequence, the matrix-vector multiplication function u 7→ ATu can be computed “on the
fly”, without building the whole A explicitly. Similarly, (17) shows that one can build V TB by
collecting the nonzero coefficients of the ψi’s in the derivatives L(vTj φ) for 1 ≤ j ≤ m. As such

derivatives are already computed by the Arnoldi algorithm to build the AT vj ’s, the computation
of V TB comes at no additional cost. Concerning the matrix R, it is easy to see that all of its
columns are zero, but possibly the last one, rm, which can be built again as a by-product of the
Arnoldi algoritm: see [19, Ch.6,Sect.6.3]. Finally note that, being m typically quite small and

Hm quasi-triangular, the numerical computation of the matrix exponentials e(t−τ)H
T
m , hence of

the integral in (16), pose no problem.
The following theorem states an additional property of the approximation scheme when Km

is a Krylov space, saying essentially that the if the basis φ is rich enough to express the first
few derivatives of g, then the approximation is very good at the origin. Moreover, it gives a
sufficient condition under which the approximation becomes exact. Recall that a vector space
K is L-invariant if for each u ∈ K, Lu ∈ K.

Theorem 5 Let Km be the order m Krylov space generated by AT and v. Assume the first
M − 1 rows of B are zero. Then ε(t;x0) is O(tm) around the origin. If additionally Km is
AT -invariant, then g(t;x0) = V y(t; y0).

Chebyshev polynomials The above results can be made sharper by instantiating them to a
specific ansatz A, interval [a, b] and norm || · ||. We consider here the ansatz A of multivariate
Chebyshev polynomials [11, Ch.3], [a, b] ⊆ [−1, 1] and the norm ||·||∞. A multivariate Chebyshev
polynomial is obtained as a product of univariate Chebyshev polynomials Ti(xi) in the variables
xi, say φi(x) = Ti1(x1) · · ·TiN (xN ). Note that it is always possible to reparametrize the original
system so as to map any finite interval of interest into [−1, 1]. One advantage of considering

11



0.0 0.1 0.2 0.3 0.4

Time

0.0

0.5

1.0

1.5

exact g(t; x0)

appr. g(t; x0) (m= 14)

error bound in Th. 4

Figure 1: Plots of exact and approximate solutions and of error bound for Example 3.

Chebyshev polynomials is that the magnitude of the coefficients in B, hence ||B||∞, decreases
exponentially fast with the degree of ψ: more precisely, for any c > 1, such coefficients are of
magnitude O(c−d), where d is the minimal degree of the polynomials in ψ; see e.g. [11, Th.3.13].
As ||V T ||∞ ≤

√
M (by orthonormality and a general relation between norms∞ and 2), we have

||V TB||∞ ≤
√
M · ||B||∞: this implies, as seen from (16), that increasing d is beneficial for the

global error. Estimation of ρ(x0) is less straightforward. Assuming ||x(t;x0)||∞ ≤ 1 for t ∈ [a, b],
by the properties of Chebyshev polynomials [11, Th.3.6] we can set ρ(x0) = 1 in Theorem 4.
Note that, in principle, one can always re-scale the original system to make this assumption
true. We leave a more detailed treatment of this aspect for future work and end the section
withe a simple example.

Example 3 Consider the vector field F = (4x(y − 1),−4x2 − 4y2 + 16)T . This system has a
stable equilibrium (in particular, a focus) at (

√
3, 1). We consider an initial condition close to

this equilibrium, x0 = (
√

3 − 2/5, 3/5)T , and the time interval [a, b] = [−1/10, 1/2]. Figure 1
shows the result of applying the method described above with m = 14 to g(t;x0) = x(t;x0). The
basis of Chebyshev polynomials φ has been chosen so as to satisfy the assumption of Theorem 5.
For m = 15, the approximate plot in the considered interval is nearly indistinguishable from the
exact one.

5 Experiments

We report below the outcomes of two experiments we have conducted, applying the algorithm
LinAbs to two challenging systems taken from the literature. A third example (coupled spring-
mass system) is reported in Appendix C. In each case, we compare the results obtained analysing
the system S0 with unconstrained initial states to those obtained analysing a system S with
certain constraints imposed on the initial states. The execution times reported below are for an
implementation in Python 3, running under Windows 10 on a Core i5 machine6. A systematic
experimentation of the approximate linearization technique discussed in Section 4 is left for
future work.

6Code and examples available at http://local.disia.unifi.it/boreale/papers/LinAbs.py.
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Collision avoidance We consider the two-aircraft dynamics used to study collision avoid-
ance, discussed in many papers on hybrid systems [22, 10]. The model is described by the
equations below, where the variables have the following meaning: (x1, x2) and (y1, y2) represent
the cartesian coordinates of aircraft 1 and 2, respectively; (d1, d2) and (e1, e2) their velocities; we
also introduce the auxiliary variables (parameters, hence 0 derivative) ω1 and ω2, representing
the angular velocities of the aircrafts, and x10, x20, y10, y20, d10, d20, e10, e20, representing generic
initial values of the corresponding variables. Overall, the system’s vector field F1 consists of 18
polynomials over as many variables (including the auxiliary ones).

ẋ1 = d1 ẏ1 = e1 ḋ1 = −ω1d2 ė1 = −ω2e2
ẋ2 = d2 ẏ2 = e2 ḋ2 = ω1d1 ė2 = ω2e1 .

We consider a complete template π of degree 2 over all the system’s variables: π is a linear
combination of n = 190 monomials that uses as many parameters.

We first consider S0 = (F,R18), that is, we do not impose any constraint on the initial
states. We run LinAbs(π, J) with J = {0}, which terminates after m = 3 iterations and 15s,
yielding a result template π′, formed with 72 polynomial terms. As in this case V(J) = X0 and
J is trivially radical, Corollary 1 implies that these terms form the largest, in terms of spanned
space, linear abstraction of S0 of degree ≤ 2. Removing from π′ the trivial terms formed purely
by constants, leaves 6 nontrivial terms, all of which are in fact constant scale consecutions.

Consider now the system S = (F,X0), where X0 = V({x1−x10, x2−x20, ...}), that is, X0 just
equals each variable to the corresponding generic initial value. Using e.g. the method in [7], we
can find the invariant ideal J that contains all and only the invariant polynomials of degree ≤ 2
for all x0 ∈ X0. In particular, as for each x0 ∈ X0 and p ∈ J , p(t;x0)|t=0 = p(x0) = 0 (Lemma
1), we have X0 ⊆ V(J). A Gröbner basis of J consists of 12 polynomials and is described in
[7]. We run LinAbs(π, J), which terminates after m = 3 iterations and 20s, yielding a result
template π′ formed with 76 polynomial terms. As V(J) ⊇ X0, the first part of Corollary 1
implies that these terms form a linear abstraction of S. Removing from π′ the trivial terms
consisting purely of constants, leaves a nontrivial abstraction of 10 terms, so 4 more than in the
case of S0. As an example, p = y10e2 − y20e1 + e10y2 − e20y1 − y1e2 + y2e1 is a constant scale
consecution for S, but not for S0.

Airplanes vertical motion We consider the 6-th order longitudinal equations that capture
the vertical motion (climbing, descending) of an airplane [26, Chapter 5]. The system is given
by the equations below, where the variables have the following meaning: u = axial velocity,
w = vertical velocity, x = range, z = altitude, q = pitch rate, θ = pitch angle; we also have
two equations encoding cos θ and sin θ. We also introduce the following auxiliary variables
(parameters, hence 0 derivative): g = gravity acceleration, X/m, Z/m andM/Iyy whose meaning
is described in [26] (see also [10, 13]); and u0, w0, x0, z0, q0, standing for generic initial values
of the corresponding variables. Overall, the system’s vector field F2 consists of 17 polynomials
over as many variables.

u̇ = X
m − g sin θ − qw ż = −u sin θ + w cos θ

ẇ = Z
m + g cos θ + qu q̇ = M

Iyy

ẋ = u cos θ + w sin θ θ̇ = q

˙cosθ = −q sin θ ˙sinθ = q cos θ .

We consider a complete template π of degree 2 over all the original system’s variables, plus two
auxiliary variables for the monomials qu and qw. Here π is a linear combination of n = 207
monomials that uses as many parameters.

We first consider S0 = (F,R17), that is, we do not impose any constraint on the initial states.
We run LinAbs(π, J) with J = {0}, which terminates after m = 3 iterations and 29s, yielding
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a result template π′ formed with 80 polynomial terms. As in this case V(J) = X0 and J is
trivially radical, Corollary 1 implies that these summands form the largest, in terms of spanned
space, linear abstraction of S0 of degree ≤ 2 in the given variables. Removing from π′ the trivial
consecutions, consisting purely of constants or that are multiple of q or θ, leaves 2 nontrivial
terms, which are constant scale consecutions.

Consider now the system S = (F,X0), where X0 imposes θ = 0 and equals the remaining
variables to the corresponding (generic) initial values. In other words, X0 = V({θ, sin θ, cos θ −
1, u− u0, w−w0, x− x0, z− z0, q− q0}). Using e.g. the method in [7], we can find the invariant
ideal J that contains all and only the invariant polynomials of degree ≤ 2 for all x0 ∈ X0. In
particular, just like in the previous example, we have X0 ⊆ V(J). A Gröbner basis of J consists
of 4 polynomials and is described in [7]. We run LinAbs(π, J), which terminates after m = 3
iterations and about 37s, yielding a result template π′ formed with 81 polynomial terms. As
V(J) ⊇ X0, the first part of Corollary 1 implies that these summands form a linear abstraction
of S. The extra term is here p = z(M/Iyy) + cos θ(X/m) + sin θ(Z/m) + uq sin θ − wq cos θ,
which is a constant scale consecution for S, but not for S0.

6 Conclusion and further work

We have proposed a complete method to find all linear abstractions given by polynomial changes
of bases that fit a user-specified template. Existence of full abstractions has been characterized.
An approximate and computationally cheaper linearization method has also been proposed. A
preliminary experimentation, conducted on challenging systems drawn from the literature, has
given encouraging results.

As for future work, it would be interesting to extend the present approach to a method
for finding (all) Darboux polynomials of a system, as they naturally generalize constant scale
consecutions. We note that the invariant ideals returned by the algorithm in [7] already contain
all polynomial consecutions (fitting a given template); however, it is not obvious how such
consecutions can be extracted from the ideal’s Gröbner basis returned by the algorithm.
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A Proofs of Section 3

Proof of Lemma 3 . We first show that π[Vm] is closed under L and J . Note that ri = L(i)J (π)
for i = 0, 1, .... Using the fact that for any π and v we have L(π[v]) = L(π)[v] and Lemma 2
above, it is easy to check that, for each v and i ≥ 0

L(i)
J (π[v]) = (L(i)

J (π))[v] = ri[v] . (18)

Now consider v ∈ Vm and p = π[v]. We first show that r0[v] = p mod J ∈ π[Vm]. By assumption
on v, r0[v] ∈ π[RM ], hence r0[v] = π[w], for some w ∈ RM . To prove that π[w] ∈ π[Vm], it is
enough to prove that w ∈ Vm. This is in turn equivalent to r0[w], ..., rm[w] ∈ π[RM ]. Now, for

each i ≥ 0, using the definition of ri = L(i)J (π) and (18), we have

ri[w] = (L(i)
J (π))[w]

= L(i)
J (π[w])

= L(i)
J (r0[v])

= L(i)
J (r0)[v]

= ri[v] . (19)

Since v ∈ Vm, we have that ri[w] = ri[v] ∈ π[RM ] for i = 0, ...,m, which is the wanted claim for
this case.

Consider now the Lie derivative modulo J , LJ(π[v]) = r1[v]. We show that r1[v] ∈ π[Vm]. By
assumption, r1[v] ∈ π[RM ], hence r1[v] = π[w], for some w. We have to prove that π[w] ∈ π[Vm],
for which it is enough to prove that w ∈ Vm. This is in turn equivalent to r0[w], ..., rm[w] ∈
π[RM ]. We can repeat the reasoning above replacing r0 with r1 and the last step (19) with the

equality L(i)J (r1)[v] = ri+1[v]. Noting that v ∈ Vm = Vm+1, we therefore have that ri+1[v] ∈
π[RM ] for i = 0, ...,m, which is the wanted claim for this case. This proves the second part of
the statement.

The first part of the statement, that is Vm = Vm+1 = Vm+2 = · · · , is now a consequence of
the first part. Indeed, consider any v ∈ Vm and j ≥ 1. By the closure properties proven above,
r0[v], r1[v], ..., rm+j [v] ∈ π[Vm] ⊆ π[RM ]. This implies v ∈ Vm+j . 2

Proof of Theorem 2 . Concerning the first part of the statement, we observe that
R[x] mod J is spanned by P as a vector space (see [9, Ch.5,Sect.3,Prop.1]). Hence, if P is
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finite, for each p ∈ R[x], we can write p = q + r, where q ∈ J and r ∈ span(P ). Then for each
x0 ∈ X0 we have, around t = 0, p(t;x0) = q(t;x0) + r(t;x0). But as x0 ∈ V(J) and q ∈ J , we
have that q(t;x0) is identically 0 (Lemma 1).

Conversely, assume that V(J) ⊆ X0, that J is a real radical and that P is infinite. Suppose
by contradiction there is a full linear abstraction (p1, ..., pk)

T ; note we can assume w.l.o.g. that
pi mod J = pi, otherwise we can consider (p1 mod J, ..., pk mod J)T , which also forms a full
abstraction. Take a monomial α ∈ P of degree higher than the maximum degree of the pi’s in the
abstraction. Note that α mod J = α. By definition of full abstraction, there are real coefficients
λj ’s such that for each x0 ∈ V(J), we have that α(t;x0) =

∑k
j=1 λjpj(t;x0), in particular for

t = 0 this equality implies α(x0) =
∑k

j=1 λjpj(x0). Hence the polynomial s
4
= α −

∑k
j=1 λjpj

vanishes on V(J), that is s ∈ I(V(J)) = J , where the last equality follows from the fact that J
is a real radical. In other words, s mod J = 0, or equivalently α = α mod J =

∑k
j=1 λjpj . But

this is a contradiction, as deg(α) > deg(pi) for each i. 2

B Proofs of Section 4

Proof of Theorem 3 . Consider any function φi in the basis φ, for 1 ≤ i ≤M . Recalling the
definition of φi(t;x0) and the relation between time and Lie derivatives from Section 2, we have
that

d

dt
φi(t;x0) = L(φi)(t;x0)

=

M∑
j=1

aijφj(t;x0) +

k∑
j=1

bijψj(t;x0)

where the last equality stems from (8) and the definition of φ, ψ,A and B. But, when considered
for all 1 ≤ i ≤M , this is just the equality (9). Moreover, φ(t;x0)|t=0 = φ(x0), so that also (10)
is satisfied. Uniqueness in a suitable open interval follows from the Picard-Lindelöf theorem. 2

Proof of Theorem 4 .Consider the m× 1 vector function

δ(t;x0)
4
= V Tφ(t;x0)− y(t;x0)

which is defined and analytic for t in some open interval including [a, b]; moreover, δ(0;x0) =
0. We have the following equalities for the derivative of δ(t;x0), where we abbreviate
φ(t;x0), ψ(t;x0) and y(t;x0) as φ, ψ and y, respectively.

δ̇(t;x0) = V T φ̇− ẏ

= V T (Aφ+Bψ)−HT
my (20)

= (φTATV )T + V TBψ −HT
my

= (φTV Hm + φTR)T + V TBψ −HT
my (21)

= HT
mV

Tφ+RTy + V TBψ −HT
my

= HT
mδ(t;x0) + V TBψ +RTφ (22)

where: (20) follows from Theorem 3 and (12); (21) follows from ATV = V V TATV +R and the
definition of Hm (11); (22) follows from the definition of δ(t;x0). We have therefore obtained

a linear inhomogeneous equation for δ(t;x0), that is δ̇(t;x0) = HT
mδ(t;x0) + V TBψ(t;x0) +

RTφ(t;x0), together with the initial condition δ(0;x0) = 0.The unique solution of the resulting
initial value problem satisfies [8, Prop.2.67]

δ(t;x0) =

∫ t

0

e(t−τ)H
T
m
(
V TBψ(τ ;x0) +RTφ(τ ;x0)

)
dτ . (23)

17



As δ(t;x0) is analytic, equation (23) is valid in the whole open interval of definition of δ(t;x0),
which includes [a, b]. As by hypothesis v ∈ Km and v is orthogonal to vj for j > 1, we can write
vT = vTV V T . Therefore, denoting by δ1 the first component of δ, we have:

ε(t;x0) = vTφ(t;x0)− vTV y(t;x0)

= vTV V Tφ(t;x0)− vTV y(t;x0))

= vTV δ(t;x0)

= vT v1 · δ1(t;x0)

= vT v1 ·
∫ t

0

e1(t− τ)HT
m

(
V TBψ(τ ;x0) +RTφ(τ ;x0)

)
dτ .

As a consequence, we have, by applying basic properties of norms and integrals, and taking into
account how ρ(x0) > 0 has been chosen:

|ε(t;x0)| = |vT v1| ·
∣∣∣∣∫ t

0

e
(t−τ)HT

m
1

(
V TBψ(τ ;x0) +RTφ(τ ;x0)

)
dτ

∣∣∣∣
≤ |vT v1| ·

∫ t

0

∣∣∣e(t−τ)HT
m

1

(
V TBψ(τ ;x0) +RTφ(τ ;x0)

)∣∣∣dτ
≤ |vT v1| ·

∫ t

0

{
|e(t−τ)H

T
m

1 V TBψ(τ ;x0)| + |e(t−τ)H
T
m

1 RTφ(τ ;x0)|
}

dτ

≤ |vT v1| ·
∫ t

0

{
||e(t−τ)H

T
m

1 V TB|| · ||ψ(τ ;x0)|| + ||e(t−τ)H
T
m

1 RT || · ||φ(τ ;x0)||
}

dτ

≤ ρ(x0) · |vT v1| ·
∫ t

0

{
||e(t−τ)H

T
m

1 V TB|| + ||e(t−τ)H
T
m

1 RT ||
}

dτ .

This is the wanted inequality, which holds for t in the interval of definition of δ(t;x0), including
[a, b]. 2

Proof of Theorem 5 . Under the given hypotheses, it is easy to see, using (8), that
d(j)

dtj
g(t;x0)|t=0 = L(j)(g)(x0) = vTAjφ(x0) = vTAjz0 = zT0 (AT )jv, for 0 ≤ j < m. The

last term, using the decomposition z0 = V V T z0 + w0 for some w0 ∈ K⊥m, can be written as
(V V T z0)

T (AT )jv, because (AT )jv ∈ Km hence w0⊥(AT )jv. Now, using the definition (11) of
Hm and orthonormality of V , we can prove that (AT )jv = V Hj

mV T v for 0 ≤ j < m. Using this
equation, we get (V V T z0)

T (AT )jv = (V V T z0)
TV Hj

mV T v. Taking the transpose, the last term
equals vTV (HT

m)jV TV V T z0 = vTV (HT
m)jV T z0 = vTV (HT

m)jy0. But the last term is seen to be,
from (12), the j-th derivative at t = 0 of vTV y(t;x0). Therefore the first m terms in the Taylor
expansion from t = 0 of g(t;x0) and of vTV y(t;x0) do coincide, which means that the difference
between the two is O(tm).

If additionally Km is AT -invariant, then we can extend the equality (AT )jv = V Hj
mV T v,

hence the subsequent reasoning, to all j ≥ 0, thus proving that g(t;x0) = vTV y(t;x0). 2

C Experiments with coupled spring-mass system

We consider a coupled spring-mass system, consisting of two bodies of masses m1 and m2 that
are connected to each other and to a fixed end using springs of constants k1 and k2, respec-
tively. See e.g. [22]. The system described by the differential equations below, where the
variables x1, x2, v1, v2 represent the two bodies’ positions and velocities; moreover, we represent
the constants k1, k2,m1,m2, 1/m1, 1/m2 and the generic initial values of the positions and ve-
locities, x10, x20, v10, v20, as constant (0 derivative) functions. Overall, the system’s vector field
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F3 consists of 14 polynomials over as many variables.

ẋ1 = v1 v̇1 = −(1/m1)(k1x1 − k2(x1 − x2))
ẋ2 = v2 v̇2 = (k2/m2)(x1 − x2)

We consider a complete template π of degree 3 over all the variables: π is a linear combination
of n = 680 monomials that uses as many parameters.

We first consider S0 = (F,R14), that is, we do not impose any constraint on the initial
states. We run LinAbs(π, J) with J = {0}, which terminates after m = 4 iterations and 182.6s,
yielding a result template π′ formed with 286 polynomial terms, all of which are trivial, i.e.
formed purely by constants. As in this case V(J) = X0 and J is trivially radical, Corollary 1
implies that these are all the linear abstractions for S0 of degree ≤ 3.

Consider now the system S = (F,X0), where X0 imposes mi · (1/mi) = 1 for i = 1, 2
and assigns (generic) initial values to the remaining variables. In other words, X0 = V({x1 −
x10, x2 − x20, v1 − v10, v2 − v20,m1 · (1/m1) − 1,m2 · (1/m2) − 1}). Using e.g. the method in
[7], we can find the invariant ideal J that contains all and only the invariant polynomials of
degree ≤ 3 for all x0 ∈ X0; a Gröbner basis G of J consists of 3 polynomials, and is reported
below. We then run LinAbs(π, J), which terminates after m = 6 iterations and 264s, yielding
a result template π′ formed with 295 polynomial terms, of which the only nontrivial one is
p = k1x

2
1 + k2x

2
1 − 2k2x1x2 + k2x

2
2 +m1v

2
1 +m2v

2
2. As in this case V(J) ⊇ X0, the first part of

Corollary 1 implies that p is a linear abstraction of S, indeed a constant scale consecution.
For the sake of completeness, a Gröbner basis G of J is reported below. Lexicographic

ordering is assumed.

G = {x210k1 + x210k2 − 2x10x20k2 + x220k2 +m1v
2
10

+m2v
2
20 − k1x21 − k2x21 + 2k2x1x2 − k2x22

−m1v
2
1 −m2v

2
2 , m1(1/m1)− 1, m2(1/m2)− 1} .
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