

UNIVERSITÀ DEGLI STUDI FIRENZE

DISIA

DIPARTIMENTO DI STATISTICA, INFORMATICA, APPLICAZIONI "GIUSEPPE PARENT|"

Crawling, (pretty) printing and graphing the OEIS

Massimo Nocentini, Donatella Merlini

DISIA WORKING PAPER 2018/06

© Copyright is held by the author(s).

Crawling, (pretty) printing and graphing the OEIS

Massimo Nocentini and Donatella Merlini
Dipartimento di Statistica, Informatica, Applicazioni
Università di Firenze

October 30, 2018

Abstract

In this paper we present a suite of software tools that allows us to interact with the Online Encyclopedia of Integer Sequences; in particular, (i) a crawler fetches sequences recursively with respect to their relations, (ii) a pretty printer represents the same data stored in the archive using two different formats, namely the old console and modern Jupyter notebooks, (iii) a grapher shows connections among sequences by using graph structures.

1 Introduction

The Online Encyclopedia of Integer Sequences [Sloane] is an online database of sequences of numbers that collects any kind of data regarding them, available at https://oeis.org/ It was founded by N. J. A. Sloane in 1964 and since then has been, and continue to be, updated constantly by contributions of many users. Despite of its powerful searching mechanisms, shown in Figure 1 which reports results about the well known sequence of Fibonacci numbers (see e.g. Graham et al., 1989]), we design a parallel suite of software tools that satisfies the necessities (i) to search the OEIS offline by downloading repeated searches, (ii) to work in the console to use programming facilities to manipulate contents more effectively and (iii) to interface with third-party libraries to visualize networks encoding connections among sequences.

Looking for similar approaches in the recent literature, (Nguyen and Taggart 2013] mines the OEIS for new mathematical identities, discussing how to store, compare and match integer sequences toward the formalization of some conjectures; on the other hand, searching the word "oeis" in GitHub returns one hundred repositories, the majority of them host simple implementations of scripts that download data about a given sequence, targeting all major programming languages. Moreover, [Weidmann] is a project that identifies number sequences given a list of numbers and gives a formula that generates them.

Our approach complements the former ones because it provides a recursive and asynchronous fetching process, vanilla data storage in JSON files and visualization of sequences' relations; the description of each tool is addressed in the following sections, respectively.

The present suite of tools had been shown at an open school on Combinatorial Method in the analysis of Algorithms and Data Structures in Korea [Nocentini, 2017]; moreover, all the sources that implements the applications can be found online in the repository https://github. com/massimo-nocentini/oeis-tools

2 The Crawler

The script crawling.py implements a bot that given a sequence identifier in the form $A x x x x x x$, where x s are digits, issues an HTTP request to the main OEIS server and waits for a response; once

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES ${ }^{\circledR}$

founded in 1964 by N. J. A. Sloane
$0,1,1,2,3,5,8,13,21,34$
(Greetings from The On-Line Encyclopedia of Integer Sequences!) Search Hints

Figure 1: The OEIS search page: the present snapshot shows search results about the sequence of Fibonacci numbers
it is received, the bot stores it locally and, looking into the response's xref section that contains a set of other sequences identifiers, repeats its behaviour on each one of them, recursively. Such a bot is commonly known as crawler.

Our implementation features neither threads nor race conditions nor data sync; on the contrary, it targets pure asynchronous computation by using async/await Python primitives only. The approach is educational and we strive to create a simple but elegant codebase which boils down to 300 lines of Python code; eventually, it allows us to cache portions of the OEIS to speed up repeated lookups and to restart the fetching process from the cache already downloaded.

The script presents a help message to explain itself:

```
$ python3.6 crawling.py -h
usage: crawling.py [-h] [--clear-cache] [--restart] [--workers WORKERS]
    [--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
    [--cache-dir CACHE_DIR] [--progress-mark PROGRESS_MARK]
    [S [S ...]]
OEIS Crawler.
positional arguments:
    S
    Sequence to fetch, given in the form Axxxxxx
optional arguments:
    -h, --help show this help message and exit
    --clear-cache Clear cache of sequences, according to --cache-dir
    --restart Build fringe from cached sequences (defaults to False)
    --workers WORKERS Degree of parallelism (defaults to 10)
    --log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
                            Logger verbosity (defaults to ERROR)
    --cache-dir CACHE_DIR
                            Cache directory (defaults to ./fetched/)
    --progress-mark PROGRESS_MARK
                    Symbol for fetched event (defaults to
```

Example 1. We illustrate a typical session where we start from scratch. First of all, we want to download the OEIS content about two important and nice sequences, namely those corresponding to the Fibonacci and Catalan numbers (see e.g. [Graham et al. 1989 . Stanley. 2015]), known in the OEIS by identifiers A000045 and A000108, respectively:
\$ python3.6 crawling.py A000045 A000108

fetched 30 new sequences:
\{'A006480', 'A000045', 'A032443', 'A046161', 'A002390',
'A137697', 'A000142', 'A000736', 'A094639', 'A176137',
'A120303', 'A000344', 'A032357', 'A000753', 'A048990',
'A003519', 'A000108', 'A009766', 'A211611', 'A120274',
'A008276', 'A129763', 'A094216', 'A106566', 'A003518',
'A098597', 'A099039', 'A014137', 'A000245', 'A264663'\}
After stopping the crawler, we check the content of cache with the commands

```
$ python3.6 crawling.py
3 0 \text { sequences in cache ./fetched/}
2 8 9 \text { sequences in fringe for restarting}
$ ls fetched/
A000045.json A000245.json A000753.json A003519.json
A009766.json A032443.json A094216.json A099039.json
A120303.json Al76137.json A000108.json A000344.json
```

A002390.json	A006480.json	A014137.json	A046161.json
A094639.json	A106566.json	A129763.json	A211611.json
A000142.json	A000736.json	A003518.json	A008276.json
A032357.json	A048990.json	A098597.json	A120274.json
A137697.json	A264663.json		

which tell us that 30 sequences had been fetched and stored in the default directory ./fetched/. Moreover, we can restart the crawler from where it was interrupted with the command
\$ python3.6 crawling.py --restart


```
fetched 20 new sequences:
{'A000165', 'A001044', 'A003517', 'A027914', 'A214292', 'A152063',
    'A014138', 'A062103', 'A003422', 'A238717', 'A045520', 'A064062',
    'A144107', 'A045525', 'A007004', 'A002057', 'A244230', 'A099731',
    'A033552', 'A121839'}
```

and we check that new sequences are actually collected,
\$ python3. 6 crawling.py
50 sequences in cache ./fetched/
354 sequences in fringe for restarting
as desired.
Having contents stored in JSON files allows us to inspect and manipulate them using every tool available in our working environment, as the next example shows.

Example 2. Combining the cat command with the Python module json. tool, that prints JSON files with respect to indentation, we can visualize data about the sequence of Fibonacci numbers as follows

```
$ cat fetched/A000045.json | python3.6 -m json.tool
{
    "greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/",
    "query": "id:A000045",
    "count": 1,
    "start": 0,
    "results": [
        {
            "number": 45,
            "id": "M0692 N0256",
            "data": "0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,
                                    17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269,2178309,
                                    3524578,5702887,9227465,14930352,24157817,39088169,63245986,102334155',
            "name": "Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.",
            "comment": [
                    "Also sometimes called Lam\u00e9's sequence.",
                    "F(n+2) = number of binary sequences of length n that have no consecutive 0's.",
                    "F(n+2) = number of subsets of {1,2,\ldots.,n} that contain no consecutive integers.",
                    "F(n+1) = number of tilings of a 2 X n rectangle by 2 X 1 dominoes.",
                    ... # more comments here
            ]
            ... # more sections here
        }
    ]
}
```

Our implementation takes strong inspiration from van Rossum and Davis and provides the following main abstractions:
reader objects, that have the responsibility to be asynchronous iterators, having to respond to the message __anext__ where the computation waits asynchronously for incoming data from the self. read coroutine. The code

```
class reader:
        def __init__(self, read):
            self.read = read
        def __aiter__(self):
        return self
        async def __anext__(self):
        chunk = await self.read()
        if chunk: return chunk
        else: raise StopAsyncIteration
```

implements the description precisely.
fetcher objects have the responsibilities to (i) create a socket with OEIS server, (ii) establish a working connection, (iii) send an HTTP GET request for the desired sequence, (iv) wait for the fetching process completes and (v) close the socket and signal that the work ends successfully.

```
class fetcher:
    def __init__( self, url,
                                    resource_key=lambda resource: resource,
                                    done=lambda url, content: print(content)):
        self.url = url
        self.response = b''
        self.sock = None
        self.done = done
        self.resource_key=lambda: resource_key(self.url.resource)
        def encode_request(self, encoding='utf8'):
            request = 'GET {} HTTP/1.0\r\nHost: {}\r\n\r\n'.format(
                self.resource_key(), self.url.host)
        return request.encode(encoding)
        async def fetch(self):
            self.sock = socket.socket()
            self.sock.setblocking(False)
            await loop.sock_connect(self.sock, address=(self.url.host, self.url.port))
            logger.info('Connection established with {} asking resource {}'.format(
                        self.url.host, self.url.resource))
            await loop.sock_sendall(self.sock, self.encode_request())
            self.response = await self.read_all()
            self.sock.close()
```

```
        return self.done(self.url, self.response.decode('utf8'))
async def read(self, nbytes=4096):
    chunk = await loop.sock_recv(self.sock, nbytes)
        return chunk
async def read_all(self):
response = [chunk async for chunk in reader(self.read)]
return b''.join(response)
```

crawler objects have the responsibilities (i) to keep a queue of task, one for each candidate sequence,
(ii) to put each ready task into the scheduling process and (iii) to reclaim memory for completed task and, eventually, (iv) to deque them.

```
class crawler:
    def __init__(self, resources, fetcher_factory, max_tasks):
            self.resources = resources
            self.max_tasks = max_tasks
            self.fetcher_factory = fetcher_factory
            self.q = asyncio.Queue()
        async def crawl(self):
            for res in self.resources: self.q.put_nowait(res)
            tasks = [loop.create_task(coro=self.work()) for _ in range(self.max_tasks)]
            await self.q.join()
            for t in tasks: t.cancel()
        async def work(self):
            while True:
            resource = await self.q.get()
                await self.fetcher_factory(resource, appender=self.q.put_nowait).fetch()
                self.q.task_done()
```


3 The (Pretty) Printer

The script pprinting.py provides a proxy for searching into the OEIS, therefore it shows exactly the same contents you see from usual web interface on http://oeis.org, additionally, it provides (i) tabular representations of data sections in one and two dimensions using list and matrix notations, respectively, (ii) filtering capabilities on most response's sections and (iii) interoperability with the crawler tool by taking advantage of cached sequences.

The script presents a help message to explain itself:

```
$ python3.6 pprinting.py -h
usage: pprinting.py [-h]
    (--id ID | --seq SEQ | --query QUERY | --most-recents M)
    [--force-fetch] [--cache-dir CACHE_DIR] [--tables-only]
    [--start-index S] [--max-results R] [--data-only]
    [--upper-limit U] [--comment-filter C]
    [--formula-filter F] [--xrefs-filter X] [--link-filter L]
    [--cite-filter R] [--console-width W]
OEIS Pretty Printer.
optional arguments:
    -h, --help show this help message and exit
    --id ID Sequence id, given in the form Axxxxxx
    --seq SEQ Literal sequence, ordered '[...]' or presence '{...}'
    --query QUERY Open query for plain search, in the form '...'
    --most-recents M Print the most recent sequences ranking by M in ACCESS
    or MODIFY, looking into --cache-dir, at most --max-
    results (defaults to None)
    --force-fetch Bypass cache fetching again, according to --cache-dir
    (defaults to False)
    --cache-dir CACHE_DIR
    Cache directory (defaults to ./fetched/)
    _-tables-only Print matrix sequences only (defaults to False)
    --start-index S Start from result at rank position S (defaults to 0)
    --max-results R Pretty print the former R <= 10 results (defaults to 10)
    --data-only Show only data repr and preamble (defaults to False)
    --upper-limit U Upper limit for data repr: U is a dict '{"list":i,
        "table":(r, c)}" where i, r and c are ints (defaults
        to i=15, r=10 and c=10), respectively)
    --comment-filter C Apply filter C to comments, where C is Python `lambda`
        predicate 'lambda i,c: ...' referring to i-th comment c
    --formula-filter F Apply filter F to formulae, where F is Python `lambda`
        predicate 'lambda i,f: ...' referring to i-th formula f
    --xrefs-filter X Apply filter X to cross refs, where X is Python
        `lambda` predicate 'lambda i,x: ...' referring to i-th xref x
    --link-filter L Apply filter L to links, where L is Python `lambda`
    predicate 'lambda i,l: ...' referring to i-th link l
    --cite-filter R Apply filter R to citation, where R is Python `lambda
    predicate 'lambda i,r: ...' referring to i-th citation r
    --console-width W Console columns (defaults to 72)
```

In the next examples we show how pprinting's facilities can be used to apply filters, to print data-only visualization and to search by an open query, respectively.

Example 3. Typing the following command into a shell, it outputs on the stdout the pretty-printed contents about the sequence of Fibonacci numbers, with two filters applied that show comments made by prof. Barry and the first 5 formulae only,

```
$ python3.6 pprinting.py ।
    --id A000045 ।
    --comment-filter 'lambda i,c: "Barry" in c' ।
    --formula-filter 'lambda i,f: i < 5'
A000045 - Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and
    F(1) = 1.
```

by _N. J. A. Sloane_, 1964

```
_Keywords_: `nonn,core,nice,easy,hear,changed`
_Data_:
[0 1 1 1 2 2 3 5
_Comments_:
    - F(n+2) = Sum_{k=0..n} binomial(floor((n+k)/2),k), row sums of
        A046854. - _Paul Barry_, Mar 11 2003
_Formulae_:
    - G.f.: x / (1 - x - x^2).
    - G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1 + k*x). - _Paul
        D. Hanna_, Oct 26 2013
    - F(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)).
    - Alternatively, F(n) = ((1/2+sqrt(5)/2)^n -
        (1/2-sqrt(5)/2)^n)/sqrt(5).
    - F(n) =F(n-1) +F(n-2) = -(-1)^n F(-n).
_Cross references_:
    - Cf. A039834 (signed Fibonacci numbers), A001690 (complement),
        A000213, A000288, A000322, A000383, A060455, A030186, A020695,
        A020701, A071679, A099731, A100492, A094216, A094638, A000108,
        A101399, A101400, A001611, A000071, A157725, A001911, A157726,
        A006327, A157727, A157728, A157729, A167616, A059929, A144152,
        A152063, A114690, A003893, A000032, A060441, A000930, A003269,
        A000957, A057078, A007317, A091867, A104597, A249548, A262342,
        A001060, A022095, A072649.
    - First row of arrays A103323, A234357. Second row of arrays
        A099390, A048887, and A092921 (k-generalized Fibonacci numbers).
    - a(n) = A094718(4, n). a(n) = A101220(0, j, n).
    - a(n) = A090888(0, n+1) = A118654(0, n+1) = A118654(1, n-1) =
        A109754(0, n) = Al09754(1, n-1), for n > 0.
    - Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829,
        A105809, A109906, A111006, A114197, A162741, A228074.
    - Boustrophedon transforms: A000738, A000744.
    - Powers: A103323, A105317, A254719.
    - Numbers of prime factors: A022307 and A038575.
    - Cf. Al63733.
```

other sections, such as reference and link, are hidden by default to provide a cleaner output.
Example 4. The following command pretty prints (i) the first 3 sequences from our current cache -the result may vary if you try on your own machine-, (ii) ranking them according to the most recent access time, (iii) reporting data only and (iv) limiting up to 10 coefficients for linear sequences:

```
$ python3.6 pprinting.py
    --most-recent ACCESS
    --data-only
    --max-results 3 |
    --upper-limit '{"list":10}'
A001044-a(n) = (n!)^2.
```

```
by _N. J. A. Sloane_, _R. K. Guy_
```

```
_Keywords_: `nonn,easy,nice`
_Data_:
[1 1 4 4 36 576 14400 518400 25401600 1625702400 131681894400]
```

```
A048990 - Catalan numbers with even index (A000108(2*n), n >= 0): a(n)
    = binomial(4*n, 2*n)/(2*n+1).
by _Wolfdieter Lang_
_Keywords_: `easy,nonn`
_Data_:
[1 [1 2 14 132 1430
```

A014138 - Partial sums of (Catalan numbers starting 1, 2, 5, ...).
by _N. J. A. Sloane_
Keywords: `nonn,nice`
Data:
$\left[\begin{array}{llllllllll}{[0} & 1 & 3 & 8 & 22 & 64 & 196 & 625 & 2055 & 6917\end{array}\right]$

Example 5. The following command pretty prints (i) response about the open query "pascal triangle", (ii) using 2-dimension representation for matrices in data sections and (iii) reports the first 2 sequences in the returned list only,

```
$ python3.6 pprinting.py
    --query 'pascal triangle'
    _-tables-only I
    --data-only
    --max-results 2
A007318 - Pascal's triangle read by rows: C(n,k) = binomial(n,k) =
    n!/(k!*(n-k)!), 0 <= k <= n.
```

by _N. J. A. Sloane_ and _Mira Bernstein_, Apr 281994
Keywords: `nonn,tabl,nice,easy,core,look,hear,changed`

Data_:								
$\mid 1$	0	0	0	0	0	0	0	0
$\mid 1$	1	0	0	0	0	0	0	0
$\mid 1$	2	1	0	0	0	0	0	0
\mid	$0 \mid$							
1	3	3	1	0	0	0	0	0
$\mid 1$	4	6	4	1	0	0	0	0
\mid	$0 \mid$							

$\left|\begin{array}{lllllcllll}1 & 5 & 10 & 10 & 5 & 1 & 0 & 0 & 0 & 0 \mid \\ \mid 1 & 6 & 15 & 20 & 15 & 6 & 1 & 0 & 0 & 0 \mid \\ \mid 1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 & 0 & 0 \\ \mid 1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1 & 0 \\ 1 & 9 & 36 & 84 & 126 & 126 & 84 & 36 & 9 & 1\end{array}\right|$

A047999 - Sierpiński's [Sierpinski's] triangle (or gasket): triangle, read by rows, formed by reading Pascal's triangle mod 2.
by _N. J. A. Sloane_
Keywords: `nonn,tabl,easy,nice`
Data:
$\left\lceil\begin{array}{llllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

$\left|\begin{array}{llllllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right|$
$\left|\begin{array}{llllllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right|$

1	0	0	0	1	0	0	0	0	0

$\left.\begin{array}{|llllllllll|}1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array} \right\rvert\,$
$\left|\begin{array}{llllllllll|}1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0\end{array}\right|$

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

$\left|\begin{array}{llllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right|$
$\left\lfloor\begin{array}{llllllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1\end{array}\right\rfloor$

In parallel of the textual interface, we develop pretty printing functions that integrates in Jupyter notebooks. The aim remains the same, namely to present contents taken from the OEIS targeting a different environment that accepts their representation; this is the time of a dynamic web interface that allows us to evaluate Python code on the fly. Using Jupyter's Markdown language to write textual content, we propose another view of the same data, as shown in Figures 2, 3] and 4, in particular, we take advantage of (i) hyper-references to make sequences labels clickable to quickly visit them in a new tab, (ii) font styles to emphasize words in italics and (iii) bold-face and to render math notations properly such as 2-dimensional array representation for matrices.

```
In [11]: searchable = search(A_id='A000045', cache_info={'cache_dir':'./fetched/', 'cache_first':False})
```

In [12]: searchable(comment=lambda i,c: "binomial" in c, formula=lambda i,f:False)
Out [12] : Results for query: https://oeis.org/search?fmt=json\&start=0\&q=id\%3AA000045

A000045: Fibonacci numbers: $F(n)=F(n-1)+F(n-2)$ with $F(0)=0$ and $F(1)=1$.
by N. J. A. Sloane, 1964
Keywords: nonn, core, nice, easy, hear, changed
Data:

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$A 000045(n)$	0	1	1	2	3	5	8	13	21	34	55	89	144	233	377

Comments:

- $\mathrm{F}(\mathrm{n}+2)=$ Sum_\{k=0..n\} binomial(floor((n+k)/2),k), row sums of A046854. - Paul Barry, Mar 112003
- The sequence $F(n)$ is the binomial transformation of the alternating sequence $(-1)^{\wedge}(n-1) F(n)$, whereas the sequence $F(n+1)$ is the binomial transformation of the alternating sequence $(-1)^{\wedge} n F(n-1)$. Both of these facts follow easily from the equalities $a(n ; 1)=F(n+1)$ and $b(n ; 1)=F(n)$ where $\mathrm{a}(\mathrm{n} ; \mathrm{d})$ and $\mathrm{b}(\mathrm{n} ; \mathrm{d})$ are so-called "delta-Fibonacci" numbers as defined in comments to A014445 (see also the papers of Witula et al.). - Roman Witula, Jul 242012
- Let $P(x)=x /(1+x)$ with comp. inverse $\operatorname{Pinv}(x)=x /(1-x)=-P[-x]$, and $C(x)=[1-\operatorname{sqrt}(1-4 x)] / 2$, an o.g.f. for the shifted Catalan numbers A000108, with inverse $\operatorname{Cinv}(x)=x^{*}(1-x)$.
- $\operatorname{Fin}(x)=P[C(x)]=C(x) /[1+C(x)]$ is an o.g.f. for the Fine numbers, $\underline{A 000957}$ with inverse Fin^(-1)(x) $=\operatorname{Cinv}[\operatorname{Pinv}(x)]=\operatorname{Cinv}[-P(-x)]$
- $\operatorname{Mot}(x)=C[P(x)]=C[-P i n v(-x)]$ gives an o.g.f. for shifted $\underline{A 005043}$, the Motzkin or Riordan numbers with comp. inverse $\operatorname{Mot} \wedge(-1)(x)=$ $\operatorname{Pinv}[\operatorname{Cinv}(x)]=\left(x-x^{\wedge} 2\right) /\left(1-x+x^{\wedge} 2\right)$ (cf. A057078).
- $B T C(x)=C[\operatorname{Pinv}(x)]$ gives $\underline{A 007317}$, a binomial transform of the Catalan numbers, with $B T C \wedge(-1)(x)=P[\operatorname{Cinv}(x)]$.
- $\operatorname{Fib}(x)=-\operatorname{Fin}[\operatorname{Cinv}(\operatorname{Cinv}(-x))]=-P[\operatorname{Cinv}(-x)]=x+2 x^{\wedge} 2+3 x^{\wedge} 3+5 x^{\wedge} 4+\ldots=\left(x+x^{\wedge} 2\right) /\left[1-x-x^{\wedge} 2\right]$ is an o.g.f. for the shifted Fibonacc sequence A 000045 , so the comp. inverse is $\operatorname{Fib} \wedge(-1)(x)=-C[\operatorname{Pinv}(-x)]=-B T C(-x)$ and $\operatorname{Fib}(x)=-\operatorname{BTC}^{\wedge}(-1)(-x)$.
- Generalizing to $\mathrm{P}(\mathrm{x}, \mathrm{t})=\mathrm{x} /(1+\mathrm{tx})$ and $\operatorname{Pinv}(x, t)=x /(1-t x)=-P(-x, t)$ gives other relations to lattice paths, such as the o.g.f. for A091867, $\mathrm{C}[\mathrm{P}[\mathrm{x}, 1-\mathrm{t}] \mathrm{l}$, and that for A 104597 , $\operatorname{Pinv}[\operatorname{Cinv}(\mathrm{x}), \mathrm{t}+1]$.

Cross references

Figure 2: This screenshot shows search results about the Fibonacci numbers where (i) the section about comments is filtered such that the word "binomial" has to appear in their text and (ii) the section about formulae is hidden.

```
In [20]: searchable = search(seq=[1,1,2,5,14,42, 132, 429], max_results=4)
In [24]: searchable(data_only=True)
Out [24]: Results for query: https://oeis.org/search?fmt=json&start=0&q=1%2C+1%2C+2%2C+5%2C+14%2C+42%2C+132%2C+429
A000108: Catalan numbers: C(n)= binomial(2n,n)/(n+1)=(2n)!/(n!(n+1)!). Also called Segner numbers.
by N. J. A. Sloane
Keywords: core, nonn, easy, eigen, nice
Data:
\begin{tabular}{c|ccccccccccccccc}
\(n\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline\(A 000108(n)\) & 1 & 1 & 2 & 5 & 14 & 42 & 132 & 429 & 1430 & 4862 & 16796 & 58786 & 208012 & 742900 & 2674440
\end{tabular}
\[
\text { A120588: G.f. satisfies: } 3^{\star} A(x)=2+x+A(x)^{\wedge} 2 \text {, with } a(0)=1 .
\]
by Paul D. Hanna, Jun 16 2006, Jan 242008
Keywords: nonn, easy
Data:
\begin{tabular}{c|ccccccccccccccc}
\(n\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline\(A 120588(n)\) & 1 & 1 & 1 & 2 & 5 & 14 & 42 & 132 & 429 & 1430 & 4862 & 16796 & 58786 & 208012 & 742900
\end{tabular}
```

Figure 3: This screenshot shows search results of a query using a subsequence, showing data sections only.

In [28]: searchable = search(query="pascal", table=True)

In [30]: searchable(comment=lambda i,c: i in range(5))
Out [30]: Results for query: https://oeis.org/search?fmt=json\&start=0\&q三pascal+keyword\%3Atab/

A007318: Pascal's triangle read by rows: $C(n, k)=$ binomial(n,k) $=n!/(k!*(n-k)!), 0<=k<=n$.
by N. J. A. Sloane and Mira Bernstein, Apr 281994
Keywords: nonn, tabl, nice, easy, core, look, hear
Data:

n, k	0	1	2	3	4	5	6	7	8	9
0	1									
1	1	1								
2	1	2	1							
3	1	3	3	1						
4	1	4	6	4	1					
5	1	5	10	10	5	1				
6	1	6	15	20	15	6	1			
7	1	7	21	35	35	21	7	1		
8	1	8	28	56	70	56	28	8	1	
9	1	9	36	84	126	126	84	36	9	1

Comments:

- $C(n, k)=$ number of k-element subsets of an n-element set.
- Row n gives coefficients in expansion of $(1+x)^{\wedge} n$.
- Binomial($n+k-1, n-1$) is the number of ways of placing k indistinguishable balls into n boxes (the "bars and stars" argument - see Feller)
- Binomial $(\mathrm{n}-1, \mathrm{k}-1)$ is the number of compositions (ordered partitions) of n with k summands.
- Binomial($\mathrm{n}+\mathrm{k}-1, \mathrm{k}-1$) is the number of weak compositions (ordered weak partitions) of n into exactly k summands. - Juergen Will, Jan 232016

Figure 4: This screenshot shows search results of an open query using the "pascal" keyword, representing the data section as a 2-dimensional array.

4 The Grapher

The script graphing. py allows us to represent networks where vertices are sequences and edges are connections among them, according to xref sections in their JSON encodings. It integrates with the crawler tool by parsing the fetched files and creates Graph objects, defined in the Python module networkx, having different layouts according to a set of drawing algorithms.

It presents a help message to explain itself:

```
$ python3.6 graphing.py -h
usage: graphing.py [-h] [--directed] [--cache-dir CACHE_DIR]
    [--graphs-dir GRAPHS_DIR] [--dpi DPI] [--layout LAYOUT]
    F
OEIS grapher.
positional arguments:
    F Save image in file F.
optional arguments:
    -h, --help show this help message and exit
    --directed Draw directed edges
    --cache-dir CACHE_DIR
                            Cache directory (defaults to ./fetched/)
    --graphs-dir GRAPHS_DIR
                            Graphs directory (defaults to ./graphs/)
    _-dpi DPI Resolution in DPI (defaults to 600)
    --layout LAYOUT Graph layout, choose from: {RANDOM, CIRCULAR, SHELL,
    FRUCHTERMAN-REINGOLD, SPRING, SPECTRAL} (defaults to
    SHELL)
```

Example 6. The following command draws the graph shown in Figure 5] where the width of each vertex grows according to the number of its incoming connections,

```
$ python3.6 graphing.py --layout FRUCHTERMAN-REINGOLD graph.png
```

in order to emphasize most referenced sequences.
Moreover, it can extract essential data from the whole set of JSON files, such as the list of vertices and edges, to interface with third-party software tools that provide different visualizations; in particular, libraries using the Javascript programming language are very powerful and the output they produce are very expressive. For our purposes, we use the arborjs library (freely available at http://arborjs.org/) to display two additional graphs described in the next two examples, respectively.

Example 7. Figure 6 reports a new unlabeled graph that shows the underlying structure of sequences connections. Here, the layout spreads vertices such that the ones having many outgoing connections are centered, while those having poor connectivity are left on borders.

Under the hood, the Fibonacci and Catalan numbers are the two central sequences and both of them have an orbit which contains a set of highly connected sequences.

Example 8. On the other hand, Figure 7 adds labels and colors to vertices in order to spot their identity and their relevance according to a combination of their properties. In particular, each color is represented by an RGB tuple that gets weigths (i) the number of comments and formulae for red, (ii) the number of references and links for green and (iii) the number of incoming and outgoing connections for blue, respectively. Moreover, we get the complement to 255 of each component because many sequences have not so many details and this manipulation allows us to obtain cleaner and more expressive graphs.

Figure 5: Sequences network where vertices are emphasized according to the number of incoming connections.

Figure 6: Sequences network abstracting over identifier to spot the underlying structure.

For the sake of clarity, the two sequences in evidence are the Fibonacci and Catalan numbers, the former has the color $(006100)_{16}$ and its complement (FFFFFF) $)_{16}-(006100)_{16}=(\text { FF9EFF })_{16}$ means that it has many comments, formulae and connections; the latter has the color $(7 \mathrm{COOE} 5)_{16}$ and its complement $(\mathrm{FFFFFF})_{16}-(7 \mathrm{COOE} 5)_{16}=(83 \mathrm{FF} 1 \mathrm{~A})_{16}$ means that it has lots of comments, links and references.

Remark 9. Recall that the interpretations given in the previous examples concern a subset of the OEIS only, in particular the one fetched in our session; finally, the more we crawl, the more graphs are effective and accurate.

Example 10. Finally, crawling for a while to get more sequences, we represent their connections in Figure 8 arranging them using a circular layout and we emphasize vertices in the dominating set using the red color.

Conclusions

This paper presents a suite of tools that interacts with the Online Encyclopedia of Integer Sequences, whose primary goal is to automate simple and repetitive operations such as (i) crawling sequences to hold a local copy stored in JSON files, (ii) pretty printing data with filtering capabilities, both in the terminal and in Jupyter (http://jupyter.org/) notebooks and (iii) to visualize connections among sequences using graphs.

In parallel, this suite has been though to be open to extension and to interface with the hosting environment, UNIX in particular. For instance, the printer can be used in pipe with the less command to gain scroll and search features for free or the grapher can be augmented to generate more detailed graph descriptions to be processed by visualization tools.

An additional work direction is to make graphs interactive, namely to tie together the crawler and the grapher in a web-browser interface such that a click on a vertex triggers the execution of the

Figure 7: Sequences network with labelel vertices, here we see that the sequence of Fibonacci numbers (https://oeis.org/A000045) and of Catalan numbers (https://oeis.org/A000108) are the two central sequences, respectively.

Figure 8: A bigger sequences network composed of 419 sequences; here the sequence of Fibonacci numbers is denoted by α and the sequence of Catalan numbers is denoted by β, respectively.
fetching process (unless it has been downloaded already) and the new connections are added to the network dynamically.

We wish to point out that the suite of tools presented in this work, the grapher in particular, could be used to mine the graph structures for study regularities and patterns among sequences which looks an interesting research activity.

References

R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete mathematics. Addison-Wesley, Reading, MA, 1989.
H. D. Nguyen and D. Taggart. Mining the Online Encyclopedia of Integer Sequences, 2013. Preprint.
M. Nocentini. OEIS Tools. Open School on Combinatorial Method in the analysis of Algorithms and Data Structures, SKKU University, Korea, 2017. URLhttp://massimo-nocentini.github.io/ PhD/skku-aorc-2017/oeistools.html.
N. J. A. Sloane. The Encyclopedia of Integer Sequences. URL http://oeis.org/.
R. Stanley. Catalan Numbers. Cambridge University Press, 1st edition, 2015.
G. van Rossum and J.J. Davis. A Web Crawler With asyncio Coroutines. URLhttp://www. aosabook. org/en/500L/a-web-crawler-with-asyncio-coroutines.html.
P. E. Weidmann. Sequencer. URL https://github.com/p-e-w/sequencer.

