

© Copyr ight is held by the author(s) .

D I S I A W O R K I N G P A P E R
2 0 1 8 / 0 6

Crawling, (pretty) printing
and graphing the OEIS

Massimo Nocentini, Donatella Merlini

Crawling, (pretty) printing and graphing the OEIS

Massimo Nocentini and Donatella Merlini

Dipartimento di Statistica, Informatica, Applicazioni
Università di Firenze

October 30, 2018

Abstract

In this paper we present a suite of software tools that allows us to interact with the Online
Encyclopedia of Integer Sequences; in particular, (i) a crawler fetches sequences recursively with
respect to their relations, (ii) a pretty printer represents the same data stored in the archive using
two different formats, namely the old console and modern Jupyter notebooks, (iii) a grapher shows
connections among sequences by using graph structures.

1 Introduction
The Online Encyclopedia of Integer Sequences [Sloane] is an online database of sequences of numbers
that collects any kind of data regarding them, available at https://oeis.org/. It was founded
by N. J. A. Sloane in 1964 and since then has been, and continue to be, updated constantly by
contributions of many users. Despite of its powerful searching mechanisms, shown in Figure 1
which reports results about the well known sequence of Fibonacci numbers (see e.g. [Graham et al.,
1989]), we design a parallel suite of software tools that satisfies the necessities (i) to search the OEIS
offline by downloading repeated searches, (ii) to work in the console to use programming facilities
to manipulate contents more effectively and (iii) to interface with third-party libraries to visualize
networks encoding connections among sequences.

Looking for similar approaches in the recent literature, [Nguyen and Taggart, 2013] mines the
OEIS for new mathematical identities, discussing how to store, compare and match integer sequences
toward the formalization of some conjectures; on the other hand, searching the word "oeis" in GitHub
returns one hundred repositories, the majority of them host simple implementations of scripts that
download data about a given sequence, targeting all major programming languages. Moreover,
[Weidmann] is a project that identifies number sequences given a list of numbers and gives a formula
that generates them.

Our approach complements the former ones because it provides a recursive and asynchronous
fetching process, vanilla data storage in JSON files and visualization of sequences’ relations; the
description of each tool is addressed in the following sections, respectively.

The present suite of tools had been shown at an open school on Combinatorial Method in
the analysis of Algorithms and Data Structures in Korea [Nocentini, 2017]; moreover, all the
sources that implements the applications can be found online in the repository https://github.

com/massimo-nocentini/oeis-tools.

2 The Crawler
The script crawling.py implements a bot that given a sequence identifier in the form Axxxxxx,
where xs are digits, issues an HTTP request to the main OEIS server and waits for a response; once

1

https://oeis.org/
https://github.com/massimo-nocentini/oeis-tools
https://github.com/massimo-nocentini/oeis-tools

Figure 1: The OEIS search page: the present snapshot shows search results about the sequence of
Fibonacci numbers

2

it is received, the bot stores it locally and, looking into the response’s xref section that contains a set
of other sequences identifiers, repeats its behaviour on each one of them, recursively. Such a bot is
commonly known as crawler.

Our implementation features neither threads nor race conditions nor data sync; on the contrary, it
targets pure asynchronous computation by using async/await Python primitives only. The approach
is educational and we strive to create a simple but elegant codebase which boils down to 300 lines of
Python code; eventually, it allows us to cache portions of the OEIS to speed up repeated lookups and
to restart the fetching process from the cache already downloaded.

The script presents a help message to explain itself:
$ python3.6 crawling.py -h

usage: crawling.py [-h] [--clear-cache] [--restart] [--workers WORKERS]

[--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}]

[--cache-dir CACHE_DIR] [--progress-mark PROGRESS_MARK]

[S [S ...]]

OEIS Crawler.

positional arguments:

S Sequence to fetch, given in the form Axxxxxx

optional arguments:

-h, --help show this help message and exit

--clear-cache Clear cache of sequences, according to --cache-dir

--restart Build fringe from cached sequences (defaults to False)

--workers WORKERS Degree of parallelism (defaults to 10)

--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}

Logger verbosity (defaults to ERROR)

--cache-dir CACHE_DIR

Cache directory (defaults to ./fetched/)

--progress-mark PROGRESS_MARK

Symbol for fetched event (defaults to ●)

Example 1. We illustrate a typical session where we start from scratch. First of all, we want to
download the OEIS content about two important and nice sequences, namely those corresponding to
the Fibonacci and Catalan numbers (see e.g. [Graham et al., 1989, Stanley, 2015]), known in the
OEIS by identifiers A000045 and A000108, respectively:

$ python3.6 crawling.py A000045 A000108

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●^C

fetched 30 new sequences:

{'A006480', 'A000045', 'A032443', 'A046161', 'A002390',

'A137697', 'A000142', 'A000736', 'A094639', 'A176137',

'A120303', 'A000344', 'A032357', 'A000753', 'A048990',

'A003519', 'A000108', 'A009766', 'A211611', 'A120274',

'A008276', 'A129763', 'A094216', 'A106566', 'A003518',

'A098597', 'A099039', 'A014137', 'A000245', 'A264663'}

After stopping the crawler, we check the content of cache with the commands

$ python3.6 crawling.py

30 sequences in cache ./fetched/

289 sequences in fringe for restarting

$ ls fetched/

A000045.json A000245.json A000753.json A003519.json

A009766.json A032443.json A094216.json A099039.json

A120303.json A176137.json A000108.json A000344.json

3

A002390.json A006480.json A014137.json A046161.json

A094639.json A106566.json A129763.json A211611.json

A000142.json A000736.json A003518.json A008276.json

A032357.json A048990.json A098597.json A120274.json

A137697.json A264663.json

which tell us that 30 sequences had been fetched and stored in the default directory ./fetched/.
Moreover, we can restart the crawler from where it was interrupted with the command

$ python3.6 crawling.py --restart

●●●●●●●●●●●●●●●●●●●●^C

fetched 20 new sequences:

{'A000165', 'A001044', 'A003517', 'A027914', 'A214292', 'A152063',

'A014138', 'A062103', 'A003422', 'A238717', 'A045520', 'A064062',

'A144107', 'A045525', 'A007004', 'A002057', 'A244230', 'A099731',

'A033552', 'A121839'}

and we check that new sequences are actually collected,

$ python3.6 crawling.py

50 sequences in cache ./fetched/

354 sequences in fringe for restarting

as desired.

Having contents stored in JSON files allows us to inspect and manipulate them using every tool
available in our working environment, as the next example shows.

Example 2. Combining the cat command with the Python module json.tool, that prints JSON files
with respect to indentation, we can visualize data about the sequence of Fibonacci numbers as follows

$ cat fetched/A000045.json | python3.6 -m json.tool

{

"greeting": "Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/",

"query": "id:A000045",

"count": 1,

"start": 0,

"results": [

{

"number": 45,

"id": "M0692 N0256",

"data": "0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,

17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269,2178309,

3524578,5702887,9227465,14930352,24157817,39088169,63245986,102334155",

"name": "Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.",

"comment": [

"Also sometimes called Lam\u00e9's sequence.",

"F(n+2) = number of binary sequences of length n that have no consecutive 0's.",

"F(n+2) = number of subsets of {1,2,...,n} that contain no consecutive integers.",

"F(n+1) = number of tilings of a 2 X n rectangle by 2 X 1 dominoes.",

... # more comments here

]

... # more sections here

}

]

}

Our implementation takes strong inspiration from [van Rossum and Davis] and provides the
following main abstractions:

4

reader objects, that have the responsibility to be asynchronous iterators, having to respond to the
message __anext__ where the computation waits asynchronously for incoming data from the
self.read coroutine. The code
class reader:

def __init__(self, read):

self.read = read

def __aiter__(self):

return self

async def __anext__(self):

chunk = await self.read()

if chunk: return chunk

else: raise StopAsyncIteration

implements the description precisely.
fetcher objects have the responsibilities to (i) create a socket with OEIS server, (ii) establish a

working connection, (iii) send an HTTP GET request for the desired sequence, (iv) wait for the
fetching process completes and (v) close the socket and signal that the work ends successfully.
class fetcher:

def __init__(self, url,

resource_key=lambda resource: resource,

done=lambda url, content: print(content)):

self.url = url

self.response = b''

self.sock = None

self.done = done

self.resource_key=lambda: resource_key(self.url.resource)

def encode_request(self, encoding='utf8'):

request = 'GET {} HTTP/1.0\r\nHost: {}\r\n\r\n'.format(

self.resource_key(), self.url.host)

return request.encode(encoding)

async def fetch(self):

self.sock = socket.socket()

self.sock.setblocking(False)

await loop.sock_connect(self.sock, address=(self.url.host, self.url.port))

logger.info('Connection established with {} asking resource {}'.format(

self.url.host, self.url.resource))

await loop.sock_sendall(self.sock, self.encode_request())

self.response = await self.read_all()

self.sock.close()

5

return self.done(self.url, self.response.decode('utf8'))

async def read(self, nbytes=4096):

chunk = await loop.sock_recv(self.sock, nbytes)

return chunk

async def read_all(self):

response = [chunk async for chunk in reader(self.read)]

return b''.join(response)

crawler objects have the responsibilities (i) to keep a queue of task, one for each candidate sequence,
(ii) to put each ready task into the scheduling process and (iii) to reclaim memory for completed
task and, eventually, (iv) to deque them.
class crawler:

def __init__(self, resources, fetcher_factory, max_tasks):

self.resources = resources

self.max_tasks = max_tasks

self.fetcher_factory = fetcher_factory

self.q = asyncio.Queue()

async def crawl(self):

for res in self.resources: self.q.put_nowait(res)

tasks = [loop.create_task(coro=self.work()) for _ in range(self.max_tasks)]

await self.q.join()

for t in tasks: t.cancel()

async def work(self):

while True:

resource = await self.q.get()

await self.fetcher_factory(resource, appender=self.q.put_nowait).fetch()

self.q.task_done()

3 The (Pretty) Printer
The script pprinting.py provides a proxy for searching into the OEIS, therefore it shows exactly
the same contents you see from usual web interface on http://oeis.org; additionally, it provides
(i) tabular representations of data sections in one and two dimensions using list and matrix notations,
respectively, (ii) filtering capabilities on most response’s sections and (iii) interoperability with the
crawler tool by taking advantage of cached sequences.

The script presents a help message to explain itself:

6

http://oeis.org

$ python3.6 pprinting.py -h

usage: pprinting.py [-h]

(--id ID | --seq SEQ | --query QUERY | --most-recents M)

[--force-fetch] [--cache-dir CACHE_DIR] [--tables-only]

[--start-index S] [--max-results R] [--data-only]

[--upper-limit U] [--comment-filter C]

[--formula-filter F] [--xrefs-filter X] [--link-filter L]

[--cite-filter R] [--console-width W]

OEIS Pretty Printer.

optional arguments:

-h, --help show this help message and exit

--id ID Sequence id, given in the form Axxxxxx

--seq SEQ Literal sequence, ordered '[...]' or presence '{...}'

--query QUERY Open query for plain search, in the form '...'

--most-recents M Print the most recent sequences ranking by M in ACCESS

or MODIFY, looking into --cache-dir, at most --max-

results (defaults to None)

--force-fetch Bypass cache fetching again, according to --cache-dir

(defaults to False)

--cache-dir CACHE_DIR

Cache directory (defaults to ./fetched/)

--tables-only Print matrix sequences only (defaults to False)

--start-index S Start from result at rank position S (defaults to 0)

--max-results R Pretty print the former R <= 10 results (defaults to 10)

--data-only Show only data repr and preamble (defaults to False)

--upper-limit U Upper limit for data repr: U is a dict '{"list":i,

"table":(r, c)}' where i, r and c are ints (defaults

to i=15, r=10 and c=10), respectively)

--comment-filter C Apply filter C to comments, where C is Python `lambda`

predicate 'lambda i,c: ...' referring to i-th comment c

--formula-filter F Apply filter F to formulae, where F is Python `lambda`

predicate 'lambda i,f: ...' referring to i-th formula f

--xrefs-filter X Apply filter X to cross refs, where X is Python

`lambda` predicate 'lambda i,x: ...' referring to i-th xref x

--link-filter L Apply filter L to links, where L is Python `lambda`

predicate 'lambda i,l: ...' referring to i-th link l

--cite-filter R Apply filter R to citation, where R is Python `lambda`

predicate 'lambda i,r: ...' referring to i-th citation r

--console-width W Console columns (defaults to 72)

In the next examples we show how pprinting’s facilities can be used to apply filters, to print data-only
visualization and to search by an open query, respectively.

Example 3. Typing the following command into a shell, it outputs on the stdout the pretty-printed
contents about the sequence of Fibonacci numbers, with two filters applied that show comments made
by prof. Barry and the first 5 formulae only,

$ python3.6 pprinting.py \

--id A000045 \

--comment-filter 'lambda i,c: "Barry" in c' \

--formula-filter 'lambda i,f: i < 5'

A000045 - Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and

F(1) = 1.

7

by _N. J. A. Sloane_, 1964

Keywords: `nonn,core,nice,easy,hear,changed`

Data:

[0 1 1 2 3 5 8 13 21 34 55 89 144 233 377]

Comments:

● F(n+2) = Sum_{k=0..n} binomial(floor((n+k)/2),k), row sums of

A046854. - _Paul Barry_, Mar 11 2003

Formulae:

● G.f.: x / (1 - x - x^2).

● G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1 + k*x). - _Paul

D. Hanna_, Oct 26 2013

● F(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)).

● Alternatively, F(n) = ((1/2+sqrt(5)/2)^n -

(1/2-sqrt(5)/2)^n)/sqrt(5).

● F(n) = F(n-1) + F(n-2) = -(-1)^n F(-n).

Cross references:

● Cf. A039834 (signed Fibonacci numbers), A001690 (complement),

A000213, A000288, A000322, A000383, A060455, A030186, A020695,

A020701, A071679, A099731, A100492, A094216, A094638, A000108,

A101399, A101400, A001611, A000071, A157725, A001911, A157726,

A006327, A157727, A157728, A157729, A167616, A059929, A144152,

A152063, A114690, A003893, A000032, A060441, A000930, A003269,

A000957, A057078, A007317, A091867, A104597, A249548, A262342,

A001060, A022095, A072649.

● First row of arrays A103323, A234357. Second row of arrays

A099390, A048887, and A092921 (k-generalized Fibonacci numbers).

● a(n) = A094718(4, n). a(n) = A101220(0, j, n).

● a(n) = A090888(0, n+1) = A118654(0, n+1) = A118654(1, n-1) =

A109754(0, n) = A109754(1, n-1), for n > 0.

● Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829,

A105809, A109906, A111006, A114197, A162741, A228074.

● Boustrophedon transforms: A000738, A000744.

● Powers: A103323, A105317, A254719.

● Numbers of prime factors: A022307 and A038575.

● Cf. A163733.

other sections, such as reference and link, are hidden by default to provide a cleaner output.

Example 4. The following command pretty prints (i) the first 3 sequences from our current cache
–the result may vary if you try on your own machine–, (ii) ranking them according to the most recent
access time, (iii) reporting data only and (iv) limiting up to 10 coefficients for linear sequences:

$ python3.6 pprinting.py \

--most-recent ACCESS \

--data-only \

--max-results 3 \

--upper-limit '{"list":10}'

A001044 - a(n) = (n!)^2.

8

by _N. J. A. Sloane_, _R. K. Guy_

Keywords: `nonn,easy,nice`

Data:

[1 1 4 36 576 14400 518400 25401600 1625702400 131681894400]

__

A048990 - Catalan numbers with even index (A000108(2*n), n >= 0): a(n)

= binomial(4*n, 2*n)/(2*n+1).

by _Wolfdieter Lang_

Keywords: `easy,nonn`

Data:

[1 2 14 132 1430 16796 208012 2674440 35357670 477638700]

__

A014138 - Partial sums of (Catalan numbers starting 1, 2, 5, ...).

by _N. J. A. Sloane_

Keywords: `nonn,nice`

Data:

[0 1 3 8 22 64 196 625 2055 6917]

Example 5. The following command pretty prints (i) response about the open query "pascal triangle",
(ii) using 2-dimension representation for matrices in data sections and (iii) reports the first 2 se-
quences in the returned list only,

$ python3.6 pprinting.py

--query 'pascal triangle' \

--tables-only \

--data-only \

--max-results 2

A007318 - Pascal's triangle read by rows: C(n,k) = binomial(n,k) =

n!/(k!*(n-k)!), 0 <= k <= n.

by _N. J. A. Sloane_ and _Mira Bernstein_, Apr 28 1994

Keywords: `nonn,tabl,nice,easy,core,look,hear,changed`

Data:

⎡1 0 0 0 0 0 0 0 0 0⎤

⎢1 1 0 0 0 0 0 0 0 0⎥

⎢1 2 1 0 0 0 0 0 0 0⎥

⎢1 3 3 1 0 0 0 0 0 0⎥

⎢1 4 6 4 1 0 0 0 0 0⎥

9

⎢1 5 10 10 5 1 0 0 0 0⎥

⎢1 6 15 20 15 6 1 0 0 0⎥

⎢1 7 21 35 35 21 7 1 0 0⎥

⎢1 8 28 56 70 56 28 8 1 0⎥

⎣1 9 36 84 126 126 84 36 9 1⎦

__

A047999 - Sierpiński's [Sierpinski's] triangle (or gasket): triangle,

read by rows, formed by reading Pascal's triangle mod 2.

by _N. J. A. Sloane_

Keywords: `nonn,tabl,easy,nice`

Data:

⎡1 0 0 0 0 0 0 0 0 0⎤

⎢1 1 0 0 0 0 0 0 0 0⎥

⎢1 0 1 0 0 0 0 0 0 0⎥

⎢1 1 1 1 0 0 0 0 0 0⎥

⎢1 0 0 0 1 0 0 0 0 0⎥

⎢1 1 0 0 1 1 0 0 0 0⎥

⎢1 0 1 0 1 0 1 0 0 0⎥

⎢1 1 1 1 1 1 1 1 0 0⎥

⎢1 0 0 0 0 0 0 0 1 0⎥

⎣1 1 0 0 0 0 0 0 1 1⎦

In parallel of the textual interface, we develop pretty printing functions that integrates in Jupyter
notebooks. The aim remains the same, namely to present contents taken from the OEIS targeting a
different environment that accepts their representation; this is the time of a dynamic web interface
that allows us to evaluate Python code on the fly. Using Jupyter’s Markdown language to write textual
content, we propose another view of the same data, as shown in Figures 2, 3 and 4; in particular, we
take advantage of (i) hyper-references to make sequences labels clickable to quickly visit them in a
new tab, (ii) font styles to emphasize words in italics and (iii) bold-face and to render math notations
properly such as 2-dimensional array representation for matrices.

10

Figure 2: This screenshot shows search results about the Fibonacci numbers where (i) the section about
comments is filtered such that the word "binomial" has to appear in their text and (ii) the section about
formulae is hidden.

11

Figure 3: This screenshot shows search results of a query using a subsequence, showing data sections
only.

Figure 4: This screenshot shows search results of an open query using the "pascal" keyword, representing
the data section as a 2-dimensional array.

12

4 The Grapher
The script graphing.py allows us to represent networks where vertices are sequences and edges are
connections among them, according to xref sections in their JSON encodings. It integrates with
the crawler tool by parsing the fetched files and creates Graph objects, defined in the Python module
networkx, having different layouts according to a set of drawing algorithms.

It presents a help message to explain itself:
$ python3.6 graphing.py -h

usage: graphing.py [-h] [--directed] [--cache-dir CACHE_DIR]

[--graphs-dir GRAPHS_DIR] [--dpi DPI] [--layout LAYOUT]

F

OEIS grapher.

positional arguments:

F Save image in file F.

optional arguments:

-h, --help show this help message and exit

--directed Draw directed edges

--cache-dir CACHE_DIR

Cache directory (defaults to ./fetched/)

--graphs-dir GRAPHS_DIR

Graphs directory (defaults to ./graphs/)

--dpi DPI Resolution in DPI (defaults to 600)

--layout LAYOUT Graph layout, choose from: {RANDOM, CIRCULAR, SHELL,

FRUCHTERMAN-REINGOLD, SPRING, SPECTRAL} (defaults to

SHELL)

Example 6. The following command draws the graph shown in Figure 5, where the width of each
vertex grows according to the number of its incoming connections,

$ python3.6 graphing.py --layout FRUCHTERMAN-REINGOLD graph.png

in order to emphasize most referenced sequences.

Moreover, it can extract essential data from the whole set of JSON files, such as the list of
vertices and edges, to interface with third-party software tools that provide different visualizations;
in particular, libraries using the Javascript programming language are very powerful and the output
they produce are very expressive. For our purposes, we use the arborjs library (freely available
at http://arborjs.org/) to display two additional graphs described in the next two examples,
respectively.

Example 7. Figure 6 reports a new unlabeled graph that shows the underlying structure of sequences
connections. Here, the layout spreads vertices such that the ones having many outgoing connections
are centered, while those having poor connectivity are left on borders.

Under the hood, the Fibonacci and Catalan numbers are the two central sequences and both of
them have an orbit which contains a set of highly connected sequences.

Example 8. On the other hand, Figure 7 adds labels and colors to vertices in order to spot their
identity and their relevance according to a combination of their properties. In particular, each color
is represented by an RGB tuple that gets weigths (i) the number of comments and formulae for red,
(ii) the number of references and links for green and (iii) the number of incoming and outgoing
connections for blue, respectively. Moreover, we get the complement to 255 of each component
because many sequences have not so many details and this manipulation allows us to obtain cleaner
and more expressive graphs.

13

http://arborjs.org/

Figure 5: Sequences network where vertices are emphasized according to the number of incoming
connections.

14

Figure 6: Sequences network abstracting over identifier to spot the underlying structure.

For the sake of clarity, the two sequences in evidence are the Fibonacci and Catalan numbers,
the former has the color (006100)16 and its complement (FFFFFF)16 − (006100)16 = (FF9EFF)16
means that it has many comments, formulae and connections; the latter has the color (7C00E5)16
and its complement (FFFFFF)16 − (7C00E5)16 = (83FF1A)16 means that it has lots of comments,
links and references.

Remark 9. Recall that the interpretations given in the previous examples concern a subset of the
OEIS only, in particular the one fetched in our session; finally, the more we crawl, the more graphs
are effective and accurate.

Example 10. Finally, crawling for a while to get more sequences, we represent their connections in
Figure 8, arranging them using a circular layout and we emphasize vertices in the dominating set
using the red color.

Conclusions
This paper presents a suite of tools that interacts with the Online Encyclopedia of Integer Sequences,
whose primary goal is to automate simple and repetitive operations such as (i) crawling sequences to
hold a local copy stored in JSON files, (ii) pretty printing data with filtering capabilities, both in the
terminal and in Jupyter (http://jupyter.org/) notebooks and (iii) to visualize connections among
sequences using graphs.

In parallel, this suite has been though to be open to extension and to interface with the hosting
environment, UNIX in particular. For instance, the printer can be used in pipe with the less command
to gain scroll and search features for free or the grapher can be augmented to generate more detailed
graph descriptions to be processed by visualization tools.

An additional work direction is to make graphs interactive, namely to tie together the crawler
and the grapher in a web-browser interface such that a click on a vertex triggers the execution of the

15

http://jupyter.org/

Figure 7: Sequences network with labelel vertices, here we see that the sequence of Fibonacci numbers
(https://oeis.org/A000045) and of Catalan numbers (https://oeis.org/A000108) are the two central
sequences, respectively.

16

https://oeis.org/A000045
https://oeis.org/A000108

Figure 8: A bigger sequences network composed of 419 sequences; here the sequence of Fibonacci
numbers is denoted by α and the sequence of Catalan numbers is denoted by β, respectively.

17

fetching process (unless it has been downloaded already) and the new connections are added to the
network dynamically.

We wish to point out that the suite of tools presented in this work, the grapher in particular, could
be used to mine the graph structures for study regularities and patterns among sequences which looks
an interesting research activity.

References
R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete mathematics. Addison-Wesley, Reading, MA,

1989.

H. D. Nguyen and D. Taggart. Mining the Online Encyclopedia of Integer Sequences, 2013. Preprint.

M. Nocentini. OEIS Tools. Open School on Combinatorial Method in the analysis of Algorithms and
Data Structures, SKKU University, Korea, 2017. URL http://massimo-nocentini.github.io/

PhD/skku-aorc-2017/oeistools.html.

N. J. A. Sloane. The Encyclopedia of Integer Sequences. URL http://oeis.org/.

R. Stanley. Catalan Numbers. Cambridge University Press, 1st edition, 2015.

G. van Rossum and J.J. Davis. A Web Crawler With asyncio Coroutines. URL http://www.aosabook.

org/en/500L/a-web-crawler-with-asyncio-coroutines.html.

P. E. Weidmann. Sequencer. URL https://github.com/p-e-w/sequencer.

18

http://massimo-nocentini.github.io/PhD/skku-aorc-2017/oeistools.html
http://massimo-nocentini.github.io/PhD/skku-aorc-2017/oeistools.html
http://oeis.org/
http://www.aosabook.org/en/500L/a-web-crawler-with-asyncio-coroutines.html
http://www.aosabook.org/en/500L/a-web-crawler-with-asyncio-coroutines.html
https://github.com/p-e-w/sequencer

	Crawling the OEIS new.pdf
	Introduction
	The Crawler
	The (Pretty) Printer
	The Grapher

