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Abstract

In this paper, we reconsider the issue of measurement errors affecting the estimates
of a dynamic model for the conditional expectation of realized variance arguing that
heteroskedasticity of such errors may be adequately represented with a multiplicative
error model. Empirically we show that the significance of quarticity/quadratic terms
capturing attenuation bias is very important within an HAR model, but is greatly
diminished within an AMEM, and more so when regime specific dynamics account for
a faster mean reversion when volatility is high. Model Confidence Sets confirm such
robustness both in— and out—of-sample.

Keywords: Realized volatility, Forecasting, Measurement errors, HAR, AMEM, Markov
switching, Volatility of volatility
JEL codes: C22, C51, C53, C58

*Address correspondence to: Giampiero M. Gallo, Corte dei conti, Sezione regionale di controllo per la
Lombardia, Via Marina 5, 20121 Milan, Italy, Email: giampiero.gallo@nyu.edu. The views expressed
in the article are those of the authors and do not involve the responsibility of the Corte dei conti. The
authors thank Fulvio Corsi.



1 Introduction

Financial market volatility exhibits persistence, be it implicit in option prices (as in VIX
Whaley|, 2009), estimated through ultra—high frequency data (UHFD — any of the several
flavors of realized variance and daily range, cf. Andersen et al., [ 2006; Alizadeh et al., 2002),
or derived as the conditional (one-step ahead) variance of returns in a GARCH-type model
(cf.  [Terasvirta, 2009). While in the GARCH modeling, measurement and prediction
coincide, when volatility measurement is UHFD-based, a separate modeling strategy has
to be set up, invariably grounded on some sort of an autoregressive scheme. The choice
is by now abundant: in general, models aim at capturing empirical regularities in the
series, mainly persistence, a slowly moving average level of volatility, jumps, the presence
of regimes, and possible long memory features.

Whatever the method used to derive it, realized volatility is but an estimator of inte-
grated volatility, and, in spite of it being consistent, the measurement error involved has an
impact on the modeling phase. This point is forcefully pursued by Bollerslev et al.| (2016)
(henceforth, BPQ) who illustrate the theoretical consequences of modeling and forecasting
realized variance in the presence of additive errors—in—variables, shown to be proportional
to the sqrt-integrated quarticity (HARQ). They suggest to remedy an attenuation bias in
the Heterogeneous Autoregressive model (HAR, (Corsi, [2009)) by inserting an interaction
term between the lagged realized variance and the (square root of) realized quarticity. A
negative sign of the related coefficient ensures that the higher the measurement error, the
lower the persistence of the past into the presentE]

In an empirical perspective, we argue that the sqrt-realized quarticity is strongly corre-
lated with the realized variance (in our panel of 29 assets, the median is 0.938). This has
two consequences: measurement errors can be heuristically assumed proportional to the
integrated variance and, as such, have a multiplicative representation; next to the HARQ
extension to the HAR, substituting the interaction term between the sqrt-realized quarticity
and the realized variance with a curvature term, i.e. the square of the realized variance,
provides a model (HAR2) with a very similar performance.

Modeling the error heteroskedasticity mitigates the attenuation bias: we show a drastic
reduction in the statistical significance of the extra terms (either interaction or curvature)
both in a HAR-GARCH (Corsi et al., |2008) and in an Asymmetric Multiplicative Error
Model (AMEM, Englel 2002).

While correcting for the presence of measurement errors, both HARQ and HAR2 empir-
ically improve upon a base HAR implying a faster rate of mean reversion in the presence of
high volatility. This suggests a model which takes volatility regimes into consideration may
mitigate measurement error effects even more. |Maheu and McCurdy| (2002)) use a Markov
Switching ARMAX model where regime dependency is found both in the conditional mean
and the conditional variance of the realized volatility]

'Recently, Buccheri and Corsi (2019) address the issue of the relationship between the log of realized
variance and the log of integrated variance, resorting to a Kalman filter technique for prediction purposes.
2More in general, similar paths have been followed, by Brownlees and Gallo| (2010) or Brownlees and
Gallo| (2011)) for splines, and |Gallo and Otranto| (2015)) for Smooth Transition (ST-AMEM) MEMs. Further
refinements in HAR present in the literature consider jumps (Andersen et al.}|2007)); smooth transition dy-
namics (McAleer and Medeiros, [2008)); the possibility of combining HAR and MEMs with Markov Switching



We find that combining both multiplicative error structure and a regime—specific dy-
namics in a MS-AMEM (Gallo and Otranto, 2015) reduces the relevance of the interac-
tion/curvature terms even more. These results are strenghtened by the analysis of predic-
tion results both in— and out—of-sample which show that, while HAR-GARCH is a com-
petitive model, AMEM, but more so, MS-AMEM provide better realized variance forecasts
than HAR. This better out—of-sample performance is not a trivial result, also in view of
the Hansen! (2010) discussion about the trade-off between prediction ability and complexity
of the model.

The structure of the paper is as follows: in Section [2] we report the high correlation
between the sqrt-realized quarticity and realized variance and we heuristically justify a
multiplicative measurement error structure for the relationship between realized and inte-
grated variance. In Section |3| we document that augmenting the HAR with an interaction
term involving (sqrt-) quarticity or with a curvature term (the square of realized variance)
provides very similar results, confirming the proportionality of the measurement errors to
the level of volatility. In Section {4 we propose to refine the specification of the model
involving heteroskedasticity, asymmetric behavior in the presence of negative past returns,
and regimes: we present three classes of models, the HAR-GARCH, the AMEM, and the MS-
AMEM, which variously address these issues. A simulation study (Section [5)) shows that
when data are generated with multiplicative errors with or without regimes but without
extra terms, estimation by HAR generally gives significant interaction or curvature terms,
while for the HAR-GARCH it does not. Section |§] provides evidence both in— (6.1]) and
out—of-sample across all models. Concluding remarks follow.

2 Multiplicative Measurement Errors in Realized Vari-
ance

As noted by BPQ, within a standard framework for the evolution of prices as a diffusion
process in continuous time, the Integrated Variance (IV};) is not directly observable but
can be measured by one of the several versions of realized variance (RV;) using ultra—
high frequency data (Andersen and Benzoni, [2009) with an empirical intra-daily interval
A for sampling returns (e.g. 5 minutes). This implies the measurement error relationship
(cf. Barndorft-Nielsen and Shephard| (2002) for definitions and details)

RVy =1V, +m (1)

where, conditional on the Integrated Quarticity 1Q;, (m://Q;) has a distribution with mean
zero and variance equal to 2A1Q), or, which is the same, the 7,’s are conditionally het-
eroskedastic with a dependence on the level of 1Q);. Since Integrated Quarticity and Inte-
grated Variance are both functions of the spot volatility, one can say that the measurement
error is dependent on the integrated variance itself, i.e. the measurement errors are more
relevant, the higher the variance of the returns.

For practical purposes, 1Q); can be consistently estimated by Realized Quarticity RQ),

(Gallo and Otrantol, 2015]).



which is built from the fourth power of intradaily returns in A intervals and, as such,
intuitively related to the squared realized variance. As an empirical evidence of this claim,
a scatterplot of the realized quarticity and the squared realized variance in reference to the
SPY ETF (Figure , in log—log scale to enhance readability) shows that the two series are
really close to each other: the Pearson correlation in log-log is 0.983, in levels is 0.909 and
between the square roots thereof is 0.954.

Figure 1: SPY over the period Jan. 3, 2003 to Dec. 31, 2015. Scatterplot of Realized
Quarticity versus Squared Realized Variance (calculated at 5—minutes intervals) — log—log
scale to enhance readability (Pearson correlation=0.983).

log(RVZ)

log(RQ)

This association is further confirmed in Table where (across all 29 tickers in Appendix
A) we summarize the five statistics on the distribution of: a. in the first column, the
Pearson correlations between In RQ) and In RV?; b. in the second column, of the Spearman
correlations between R(Q) and RV?; c. in the third column, the Pearson correlations between
RQ and RV?; d. in the last column, the Pearson correlations between RQ'/? and RV. All
statistics point to very high values, evidencing that, from a practical point of view, R(Q)
proves to be proportional to RV2, or, which will be relevant in what follows, the square
root of R() proportional to RV.

Table 1: Fivenumber summary of the distributions of calculated Pearson (pp) and Spear-
man (pg) correlations across the 29 series, for various pairs of functions of realized quarticity
and realized variance.

pp(RQ.RV?)  ps(RQ,RV?) pp(RQ.RV?) pp(RQ'2 RV)
min 0.965 0.959 0.619 0.846
Q1 0.968 0.962 0.797 0.926
median 0.972 0.966 0.864 0.938
Q3 0.974 0.969 0.943 0.954
max 0.985 0.980 0.986 0.975




The empirical evidence shown in the last column of Table (1] suggests that, for the
respective theoretical quantities, /Q%? can be heuristically assumed proportional to IV,
ie. IQY? ~ IV, with § very close to 1. As a consequence, an alternative representation
of the measurement error relationship in Equation is possible:

RV, = IV, 4+, = IV, + V2AIQ, %z ~ IV, + V2AS§IV,z, = IV, (1 + V2A6z),  (2)
—————
€t
where 2; is an iid error term with mean zero and unit variance. This convenient manipula-
tion provides an expression which highlights the proportional (i.e. heteroskedastic) nature
of the measurement errors’

3 The HAR Approach Extended

When modeling IV, on the basis of observable past values of RV;, BPQ discuss the at-
tenuation bias in the first order autoregressive coefficient induced by measurement errors
in the HAR framework (Corsi, |2009). BPQ suggest an augmented HAR, labeled HARQ,
where a component dependent on the square root of the quarticity is aimed at capturing
the measurement error:

R‘/t =w + (?ZD + OZERQ,Z%J)RW—I + aWWt_(2:5) —+ OéMWt_(G:QQ) + &¢. (3)
alt—1

Wt_(h;k) is the mean of t — h to t — k lagged RV Values ag is assumed to be non-positive,

so that a;;-1 < ap and non-increasing in RQ;K 21 An interpretation of how this model
works in practiceE] is that the information in the past RV,_; is purposedly given less weight
in days where the R(Q) is high, a feature which is related to the heteroskedasticity in the
measurement errors.

The heart of this model lies on the extra term RQt1 / 21 RV;_, with a coefficient o expected
to be negative. This means that the reaction to the lagged realized variance is smaller (less
persistence) in the presence of an interaction term between (the square root of) the realized
quarticity and the realized variance.

The high correlation between RQY? and RV motivates the HAR2 alternative specifica-
tion

R‘/t =w + (OéD + O./ERV;_l)RV%_l + OéwRVt_(z;g)) + OéMRVt_(G;Qg) + & (4)

a1 t—1

Comparison between and shows that the empirical behavior of the two models would

3Multiplicative measurement errors are discussed by (Carroll et al.| (2006)) in a different context sharing
the similarity that the errors are proportional to the latent variable.

4For better interpretation purposes, we prefer to avoid overlaps among regressors, and hence lag 1 is
not included in the weekly average, and lags 1 to 5 are not included in the monthly one.

°In their empirical results obtained on data for the S&P500 and 27 constituents of the Dow Jones Index,
BPQ find evidence of negative significant ag, and of an improved forecasting performance of the HARQ
over HAR.



be close to one another. Even though both models correct for the presence of measurement
errors in the base HAR,

e the Q specification highlights such a presence with the interpretation that lagged
volatility observations with high quarticity are more affected by measurement errors
and should receive less weight in forecasting;

e the 2 specification highlights the idea that volatility dynamics is linkable to market
behavior: bursts of volatility are shortly lived, hence, in the presence of high lagged
volatility, the model would hasten the mean reversion by paying less attention, so—
to—speak, to those observations.

We examine 28 components of the DJ30 Industrial Index plus the SPY ETF [f| over the
period Jan. 3, 2003 to Dec. 31, 2015 (3273 observations total). We build the series of realized
variances from TAQ data, cleaned according to the [Brownlees and Gallo| (2006) procedure.
The first 2015 observations (up to Dec. 31, 2010) serve for the in—sample analysis, while we
use the rest for an out—of-sample rolling analysis: we estimate on a 8—year period (starting
from 2003-2010) and we produce one-step ahead predictions for the following year. As a
leading example we will work on the SPY ETF which mimics the behavior of the Standard
and Poor’s 500.

In Table [2| we report the estimates of the base HAR, the HARQ and the HAR2 for three
different choices of sampling intervals in the construction of the realized variance of SPY
ETF, as a robustness check on the sensitivity of the curvature effect to the construction
of the series. The results show the significance of the ap parameters across the Q and
2 specifications, confirming the need to augment the base HAR model. An improvement
in Mean Square Error (MSE) is noticeable and substantially equivalent across the two
augmented specifications, accompanied by the disappearance of significance of the monthly
coefficient arpy. An opposite behavior is shown by the Quasi-Likelihood (QL) statistics,
which increases in the augmented specifications. The results are consistent across sampling
interval choices.

The observational equivalence between the two models HARQ and HAR2, and the char-
acteristic behavior relative to the HAR model are shown in Figure [f] for the October 6-17,
2008 highly turbulent period. The left-hand side panel shows the behavior of the time-
varying coefficient oy ¢~ (including the constant level for HAR), which clearly drops in the
presence of the burst of volatility on October 10 (a Friday) which reflects on the model
predictions for Oct. 13; the right—hand side panel shows how the fitted behavior is modified
accordingly in the augmented models, avoiding the HAR overprediction.

When the analysis is repeated across the panel of DJ30 components we get similar
results, in the sense that (including the S&P500) we get 25 out of 29 cases in which
ap is significant (at 1% significance level) in the HARQ model and 26 out of 29 in the

6Cf. Table|8|in the Appendix for the list of tickers of realized variances available over the entire sample
period. Two components currently present in the index were excluded, Travelers and Visa, because of
incomplete data.

"We mirror Figure 2 (center and right panels) of Bollerslev et al| (2016).



Table 2: Estimates of the HAR, HARQ and HAR2 on the realized variance of the Standard
& Poor’s SPY ETF. Estimation period: Jan. 3, 2003 — Dec. 31, 2010. The estimates are
repeated across the intra—daily sampling periods to construct the realized variance series.
Newey—West HAC standard errors in parenthesis. The rows MSE% and QL% show the

corresponding error measures in percentage of the value reported by the base HAR.

1 minute 5 minutes 10 minutes
Q 2 Q 2 Q 2
w 0.274 -0.173 -0.227 | 0.228 -0.167 -0.231 0.213  -0.228 -0.228
(0.146) (0.137) (0.175) | (0.106) (0.123) (0.176) | (0.091) (0.167) (0.167)
ap 0.285 0.931 0.895 0.331 0.856 0.843 0.367 0.851 0.879
(0.119) (0.130) (0.158) | (0.092) (0.106) (0.149) | (0.081) (0.157) (0.175)
ag -0.350  -0.456 -0.382  -0.527 -0.447  -0.522
(0.066) (0.089) (0.051) (0.114) (0.123) (0.148)
aw 0.470 0.273 0.315 0.443 0.284 0.314 0.398 0.271 0.256
(0.161) (0.096) (0.098) | (0.148) (0.089) (0.093) | (0.132) (0.054) (0.065)
oy 0.154  -0.060 -0.051 0.144 0.002 0.015 0.154 0.047 0.037
(0.084) (0.118) (0.123) | (0.062) (0.092) (0.111) | (0.058) (0.052) (0.066)
MSFE 54.8 46.2 46.6 42.1 36.8 37.8 38.8 35.1 35.0
QL 0.159 0.182 0.223 0.171 0.190 0.219 0.176 0.335 0.444
MSE% | 100.0 84.3 85.0 100.0 87.4 89.8 100.0 90.5 90.2
QL% 100.0 114.5 140.3 100.0 111.1 128.1 100.0 190.3 252.3

HAR2 specification for the five-minute sampling interval. | One may note that when the
realized variance is made available but not the underlying ultra-high frequency data a
HAR2 model may be a good patch for the HAR; cases in point are the well-known Realized
Library (Heber et al., [2009), or alternatives such as the range derived measures (Garman
and Klass, [1980).

Focusing on model diagnostics, though, we find that all three specifications have sub-
stantial residual correlation. Still summarizing across the 29 variances, we find significance
of the Ljung—Box joint test statistic at lag 5 for residuals, absolute residuals and squared
residuals in a number of cases reported in Table This finding is consistent with the
findings by |Corsi et al.| (2008) about the presence of clustering in the residuals of HAR.

4 Heteroskedasticity, Asymmetry and Regimes

4.1 The HAR-GARCH

The issue of volatility of volatility playing a role in modeling volatility was recognized in
the HAR family by |Corsi et al.| (2008) who refined the features of the HAR model adding a
GARCH structure on the innovation term: such a HAR-GARCH model has the advantage
of accounting for clustering in the residuals, which is indeed capturing the time-varying

8Results change only slightly at different sampling frequency, being 29 and 28, respectively, in the
one-minute case, and 27, respectively, 24 in the ten-minute case.



Figure 2: SPY: Examples of estimated «;,; for different HAR models (left panel) and
corresponding actual values (open dots) and volatility forecasts (right panel). October
2008, cf. Fig 2 in BPQ.
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features of volatility of volatility. In the context of the discussion here, considering a general
specification which can be augmented for interaction/curvature terms, such a model can
be written as

RV, =w+ (ap + apX;_1)RVi_1 + aWWt—(ZS) + aMWt—(G:QZ) + V wz, (5)

where ¢, = v/hu; has the usual structure for the innovation under GARCH where h;, =
E(e?|Z;_,) provided that z ~ (0,1), and h; has the usual conditionally autoregressive
(with variants) specification. The base model corresponds to X;_; = 0, while the HARQ-
GARCH has X, ; = RQ;”> and the HAR2-GARCH has X,_; = RVj_;, the latter two being
the augmented models which allow for a time-varying coefficient on RV, 1, as before.

In Table {4, we report results for the HAR-GARCH model. After accounting for het-
eroskedasticity in the residuals, the striking result is the statistical insignificance of the
interaction/curvature terms, confirmed by a very small gain in terms of loss functions.
Comparing the simpler versions of either model, we notice a higher relevance given to the
daily term, and smaller coefficients for the weekly and monthly terms. We keep that in
mind when interpreting the relative performance both in— and out—of-sample between the
two models.



Table 3: Number of assets for which the Ljung-Box statistics at lag 5 turns out to be
statistically significant at 1% significance level. Estimation period: Jan. 3, 2003 — Dec. 31,
2010. The estimates are repeated across the intra—daily sampling frequency at which the
realized variance series is built. LBj is calculated on residuals, LBas on absolute residuals,
and LB25 on squared residuals.

1 minute 5 minutes 10 minutes
HAR HARQ HAR2 | HAR HARQ HAR2 | HAR HARQ HAR2
L Bs 27 27 26 27 26 26 26 26 25
LBas | 28 28 28 29 29 29 29 29 29
LB2s | 20 17 16 27 22 21 24 22 21

4.2 The AMEM

Equation [2] shows that a model with multiplicative errors captures the heteroskedastic
nature of the measurement errors in the realized volatility. A suitable approach to modeling
RV} in a forecasting perspective (i.e. conditioning on the information set I, 1 at t — 1, as
before) is the MEM(Engle, 2002). A quite general formulation for RV} is
iid.
RV, =pe,  pu=pT-1;0) e "= D"(1,0%.
Here, ¢; is an i.i.d. innovation term following a generic distribution over a non-negative

support with unit mean and variance o?. The model has the important feature (in this
context) that the dependent variable is conditionally heteroskedastic:

E(RV(|Li-1) = e V(RVi|Li1) = 0’1t

In what follows, we will adopt an Asymmetric MEM (AMEM) specification for u, (Engle
and Gallo|, 2006|), where past values of RV;_; have a different impact on the current RV,
according to the sign of past returns on that asset. Following Engle and Gallo| (2006]) we
adopt a Gamma distribution for ¢; dependent on just one parameter a, as implied by the
unit expectation constraint. We have

pe = w + Prpy—1 + (a1 + apXy—1)RVi_1 + ’YlRV;(:l)
et|Zi—1 ~ Gamma(a,1/a)

Again, the base AMEM model corresponds to X;_; = 0, setting X;_; = RQ,}Q delivers the
AMEMQ), while X; ; = RV, _; corresponds to the AMEM2 | with the latter two having the
interaction/curvature terms, respectively.

4.3 The MS-AMEM

In all augmented models the main feature is a faster mean reversion behavior: thus an
additional question arises as to whether the mean reversion occurs to a constant level or
to a time—varying level. To that end, among the many possible specifications which allow



Table 4: Coefficient estimates on SPY realized variance for the HAR-GARCH models. The
rows MSE% and QL% show the corresponding error measures in percentage of the value
reported by the base HAR-GARCH. Sample period: Jan. 3, 2003-Dec. 31, 2010.

HAR-GARCH
Q 2
w 0.100  0.096  0.099
(0.034) (0.034) (0.034)
ap 0.439 0444  0.439
(0.036) (0.038) (0.037)
ap -0.067 -0.006
(0.086)  (0.187)
oy 0.363  0.361  0.363
(0.030)  (0.030) (0.030)
an 0.103  0.103  0.103

(0.037)  (0.036) (0.036)
Const 0.039  0.029  0.029
(0.011) (0.011) (0.011)
ARCH | 0236 0234 0.236
(0.030) (0.030) (0.030)
GARCH | 0.763  0.765  0.763
(0.004)  (0.004) (0.004)

MSE 42.5 40.5 42.4
QL 0.165  0.164  0.165
MSE% 100.0 95.3 99.8
QL% 100.0 99.4 100.0
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for a low frequency component which slowly evolves through time (cf., for example, Engle
and Rangel, 2008 Brownlees and Gallo, 2010 Barigozzi et al., [2014; Gallo and Otranto),
2017), we choose the Markov Switching AMEM (cf. |Gallo and Otranto, 2015, for details)
again allowing for all three versions, the base MS-AMEM, and the augmented ones, MS-
AMEMQ and MS-AMEM?2.

Mt,st - wst + Bst,ut—l,stfl + (ast + aEXt—l)R‘/t—l + %tRVt(:l)
el s, Z—1 ~ Gamma(as,, 1/as,)

where s; € {1,2,3}|and P(s; = j|s;—1 =4) = pi; (3, pij = 1), and X, is defined as before.

The estimation results from the AMEM, AMEMQ, AMEM2 and MS-AMEM (with three
states) are reported in Table B} to be noticed the insignificance of the interaction and
curvature effects (coefficient ag), leading to a substantial equivalence of the three models,
while the asymmetric effects play an important role from a statistical point of view. For
the MS-AMEMQ and MS-AMEM2, for this sample period and this asset, the estimation
converged to &g being numerically equal to zerom hence we do not report the estimation
results in the table. In terms of MSE, AMEMQ shows some improvement over the base
model, despite the non significant ag; MS-AMEM shows better performance than the other
models for both loss functions.

5 A Simulation Study

To further the discussion about the behavior of these models, we want to see how the
interaction/curvature effects behave in the presence of heteroskedasticity and slow moving
low frequency component. We have performed a simple simulation exercise in which the
data are generated by an AMEM or by an MS-AMEM[M] In view of the BPQ results
on measurement errors, the AMEM and the MS-AMEM are not the true models, but in
practical applications they result in good diagnostics for the estimated residuals and so
they lend themselves to be good benchmarks.

We test how many times the ag coefficient turns out to be significantly negative at two
different significance levels, using both OLS standard errors and HAC (Newey and West],
1987) in estimated HAR2 models for different sample periods 7.

The results, reported in Table[0] show fairly clearly that in the presence of heteroskedas-
ticity, and even more so when also regimes are introduced, one is very likely to get a signifi-
cant dg coefficient, even using HAC robust standard errors. The results on the importance
of a proper inclusion of heteroskedasticity are confirmed when considering the results ob-
tained estimating with HAR-GARCH (bottom panel of the same table). Also in this case,

9We adopt three states as they proved suitable to capture the features of the data for similar sample
periods (cf. the results in |Gallo and Otranto, 2015)).

10T his is not always true across assets and estimation periods, hence we can still evaluate the performance
of the augmented models in terms of in— and out—of-sample prediction.

"The coefficients were set at values of the estimated for SPY — cf. Table We performed 1000
replications for each combination of T' and DGP. The results are similar for the HARQ model and are not
reported here.
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Table 5: Coefficient estimates for SPY realized variance within the AMEM and MS-
AMEM groups. The rows MSE% and QL% show the corresponding error measures in
percentage of the value reported by the base AMEM. Sample period: Jan. 3, 2003-Dec. 31,
2010.

AMEM AMEMQ AMEM2 MS(3)-AMEM
w 0.177 0.176 0.177 0.138
(0.008)  (0.008)  (0.008) (0.009)
ks 0.945
(0.093)
o 0.482 0.485 0.482 0.155
(0.033)  (0.033)  (0.033) (0.018)
o3 0.005
(0.016)
ap -0.059 -0.0002
(0.082)  (0.004)
Joi 0.332 0.330 0.332 0.562
(0.032)  (0.032)  (0.032) (0.025)
Bo 0.884
(0.019)
Bs 0.875
(0.013)
oG 0.189 0.190 0.189 0.128
(0.031)  (0.032)  (0.031) (0.021)
Yo 0.116
(0.019)
3 0.114
(0.027)
P11 0.938
(0.019)
Do 0.049
(0.018)
Pa1 0.059
(0.022)
Pos 0.919
(0.020)
D31 0.071
(0.006)
Pao 0.078
(0.016)
ay 3.777 3.777 3.777 5.809
(0.232)  (0.232)  (0.231) (0.331)
as 7.213
(0.406)
as 2.020
(0.476)
MSE 45.1 41.7 45.1 39.0
QL 0.155 0.154 0.155 0.103
MSE% | 100.0 92.5 100.0 86.5
QL% 100.0 99.4 100.0 66.5
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Table 6: Simulation results. Percentage of times the &g coefficient turns out to be signifi-
cantly negative at different significance levels in an HAR2 model (top panel with OLS and
HAC standard errors) and in an HAR2-GARCH model (bottom panel with ML and Sand-
wich based standard errors). Data simulated under AMEM and MS-AMEM DGPs (with
estimated SPY coefficients — cf. Table . 1000 replications each.

Model DGP T a=005 a=001 a=005 a=0.01
OLS HAC
1000 83.0 78.8 63.9 45.8
AMEM 2000 85.8 81.9 63.8 47.6
3000 86.0 82.9 64.3 48.0
HAR? 1000 98.5 97.3 90.5 80.5
MS-AMEM 2000 99.1 98.4 92.2 82.2
3000 99.2 98.6 92.9 84.1
ML Sandwich
1000 15.5 4.6 12.7 3.7
AMEM 2000 17.0 6.2 14.2 4.6
3000 15.3 6.4 13.2 5.1
HAR2-GARCH 1000 39.2 25.3 23.6 9.9
MS-AMEM 2000 45.5 29.8 27.7 10.6
3000 51.6 33.6 31.1 13.3

we distinguish between calculations of standard errors according to the inverse of the Hes-
sian (ML), or robust (sandwich estimator). The rates of failures to reject are much lower,
less so when the data are generated according to the MS-AMEM, signifying in both cases
that the presence of regimes in a multiplicatively heteroskedastic model may be mistaken
for the significance of curvature (or interaction) terms.

6 Comparing Model Performances

6.1 In—sample

When brought to the evaluation of their empirical performance, the models presented above
which somehow correct for heteroskedasticity are estimated on all our tickers (cf. the Ap-
pendix for a list), with results synthesized in Table out of the 29 assets considered,
we report the number of statistically significant (one—sided, 1% as before) ap coefficients
entering the equations for the realized variances, as well as the times the Ljung Box diag-
nostics (at lag 5) on residuals (respectively in levels, in absolute values and squared) are
significant at 1%. The behavior across models is fairly similar, in that we notice a much
lower presence of significant &g and an overall better performance in terms of residual
diagnostics relative to the base HAR specifications discussed before[l?]

120mne could think that the presence of significant interaction/curvature terms may actually signal some
remaining mis-specification in the models, in a way reminiscent of a |White (1980)—type test equation for
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Table 7: Summary of the estimation results for the HAR-GARCH, AMEM and MS-AMEM in
their base and augmented versions. In—-sample period: Jan. 3, 2003-Dec. 31., 2010. Num-
ber of assets for which the estimated ap coefficients are significant (one-sided test, 1%
significance) across the 29 asset realized variances, and for which the 5-lag Ljung-Box
statistics on residuals (LBjs), absolute residuals (LBas), and squared residuals (LB25) are
statistically significant at 1%.

HAR- HARQ- HAR2- MS- MS- MS-
GARCH GARCH GARCH AMEM AMEMQ AMEM2 AMEM AMEMQ AMEM2
o 8 3 7 2 3 0
LBs 7 7 9 2 2 2 9 7 7
LBas ) 3 4 3 3 3 2 3 3
LB2; 0 0 0 0 0 0 0 0 0

The models can be compared in reference to the Model Confidence Set (MCS) procedure
of Hansen et al.| (2003) and Hansen et al.| (2011), on the basis of the Mean Squared Error
(MSE) and the Quasi-Likelihood (QL), which are consistent loss functions in the sense of
Patton| (2011). The test statistic used to calculate the MCS is the semi-quadratic Tsq (less
conservative with respect to the range statistic |(Clements et al., [2009):

72

var(li;)

(6)

TSQ =
i#jeM

where [;; is the mean of the loss differentials between model i and model j belonging to
the set of models M, and its variance is obtained from the bootstrap procedure (10,000
replications) described in |Hansen et al.| (2003).

In Figure [3] we report the graphs by asset showing the values of the MSE for each
model, visually enclosing the set of models with the best in—sample prediction performance
according to the MCS procedure; note that scaling the loss differential by its variance may
lead at times to models with a lower loss function not being included in the MCS.

For most assets the MS class of models shows a lower MSE (excluding just two tickers,
Goldman Sachs — GS, where the HARQ model is the best one, and Intel — INTC, where
the HAR and HAR-GARCH families have a better performance){f_g] this is expected, given
its richer parameterization. As far as the MCS is concerned, for all tickers does the MS
class enter in the MCS: 14 out of 29 times without competitors, and, with just one ex-
ception (Apple — AAPL), the MS model without interaction/curvature term has the same
performance as with. By contrast, for 11 assets all the models belong to the best MCS.

A similar graph, Figure [4] reports the results for the QL loss function showing a more
clear—cut behavior in the performance of the models: at least one member of the MS—
AMEM family enters the MCS, with the base model entering the best set for 14 assets,

model diagnostics.
13Being based on LS-type estimation, it is not surprising to find a good MSE performance of HAR (and
also of HAR-GARCH).
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Figure 3: In—sample MSE loss function for 12 models and 29 assets. The enclosures contain,
for each asset, the models belonging to the MCS at 5% significance level. Models are
represented by short acronyms in this order: H for HAR, HQ for HARQ, H2 for HAR2,
HG for HAR-GARCH, HGQ for HARQ-GARCH, HG2 for HAR2-GARCH, AM for AMEM,
AMQ for AMEMQ, AM2 for AMEM2 , MS for MS-AMEM, MSQ for MS-AMEMQ, MS2 for
MS-AMEM?2.
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just the two models with interaction/curvature term together for 6 assets, with the Q model
by itself in 4 cases and the 2 model in 5 cases.

Overall these results seem to suggest that the effects of a measurement error in the
realized variance show up in—sample even with more sophisticated models, although an ex-
plicitly heteroskedastic model (allowing for a time—varying local average level of volatility)
is able to mitigate such effects.

6.2 Out—of—sample

The model comparison is performed similarly for the out—of-sample forecasting capability.
As mentioned before, we estimate models starting from 2003-2010 and produce one—step
ahead forecasts for the following year; we then move the sample period ahead by one year
(i.e. 2004-2011) and we forecast the year 2012, repeating the procedure until we estimate
over 2007-2014 and we forecast over 2015.

Working with these forecast errors, analogously to what we presented in the in—sample
case, we build MSE and QL loss functions, reported in Figure [5| respectively, Figure [6]
which give a somewhat different outlook on the nature of the results. The higher variability
of the results for the MSE is confirmed also in this exercise. For the MSE, although a few
MCS include all models, all of them include the three MS models: we have 18 instances
in which they are the only ones in the set, 1 (DD) in which the base MS is in the set by
itself, 1 (MCD) in which only the MS models with additional terms significantly improve
the set; moreover, 22 MCS’s exclude the HAR models. The picture is sharper for QL in
Figure [0] since no HAR models enter the MCS, with the loss function values of the three
MS models being consistently the lowest: in 20 out of 29 cases all three appear in the MCS,
in the remaining nine, 2 involve the base MS model by itself (IBM and UTX), 4 the MS
model with the Q term (BA, CAT , GS and MCD), 2 the MS model with the 2 term (MRK
and UNH), and 1 the MS models with either additional term, but with values of the loss
functions no better than the base model. Moreover, within the HAR family higher loss
functions are present for the HARQ and the HAR2 than the HAR in 13 cases for the MSE
(see, e.g. GS, JPM and VZ). These findings are more apparent in terms of QL with 18
cases where the introduction of the interaction/curvature term worsens the out—of-sample
performance of the model (see, e.g., JPM, UTZ, and VZ) and in most others does not
improve substantially the base HAR model.

The introduction of heteroskedasticity in HAR, or adopting AMEM models with or
without MS dynamics produces similar values of MSE and QL within each model family,
with the latter class models always showing their dominance in both exercises, in some
cases with non significant differences with respect to other models when the loss function is
MSE. The cases of MRK and XOM in Figure |5| are interesting: in this case the presence of
measurement error terms improve the forecasting performance, but a MS-AMEM without
them has the same performance. In Figure[6 only the MS family enters in the best set; in 20
cases the best set contains all three models, whereas only in 7 cases there is an improvement
due to the measurement error terms.

It may be important to stress that the superiority of MS models is not a trivial result
in out—of-sample terms and cannot be attributed to overparameterization: the better per-
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Figure 4: In-sample QL loss function for 12 models and 29 assets. The enclosures contain,
for each asset, the models belonging to the MCS at 5% significance level. Models are
represented by short acronyms in this order: H for HAR, HQ for HARQ, H2 for HAR2,
HG for HAR-GARCH, HGQ for HARQ-GARCH, HG2 for HAR2-GARCH, AM for AMEM,
AMQ for AMEMQ, AM2 for AMEM2 , MS for MS-AMEM, MSQ for MS-AMEMQ, MS2 for
MS-AMEM?2.
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Figure 5: Out-of-sample MSE loss function for 12 models and 29 assets. The enclosures
contain, for each asset, the models belonging to the MCS at 5% significance level. Models
are represented by short acronyms in this order: H for HAR, HQ for HARQ, H2 for HAR2,
HG for HAR-GARCH, HGQ for HARQ-GARCH, HG2 for HAR2-GARCH, AM for AMEM,
AMQ for AMEMQ, AM2 for AMEM2 , MS for MS-AMEM, MSQ for MS-AMEMQ, MS2 for

MS-AMEM2.
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formance of simple (perhaps linear) models with respect to more sophisticated models is
an empirical regularity, with also a theoretical justification (Hansen, 2010)).

7 Concluding Remarks

Dynamic modeling of realized variance behavior is important to forecast conditional return
variance, taking full advantage of the better properties of the ultra—high frequency—based
estimates of variance. Since these are estimates they are affected by measurement errors, as
long recognized in the realized variance literature recalled earlier. The variance estimates
are less accurate when quarticity is high. In this paper, we stressed that the (square root
of) quarticity has a high correlation with realized variance itself: this means that realized
variance estimates are less accurate the higher the variance itself, or that measurement
errors are heteroskedastic.

The important point made by [Bollerslev et al.| (2016) is that when predicting variance
based on an HAR model, a term can be inserted to capture such an estimation bias in the
coefficient of the lagged realized variance. This interaction effect (i.e. a stronger mean
reversion when quarticity is high) is shown in a variety of instances to be statistically
significant: the practical implication is that the augmented model pays smaller attention,
so to speak, to lagged values of realized variance when quarticity is high.

Starting from the consideration that quarticity and realized variance (under a number
of transformations or correlation measures) are strongly correlated, the model may be
augmented by allowing the dynamics of volatility to depend on a curvature effect, i.e. on
the square of the variance. Interaction and curvature effects prove to be observationally
equivalent, in that they deliver very similar results within the HAR model, both in terms
of numerical values and in terms of statistical significance across a representative sample
of US market assets (the S&P500 plus 28 components of the Dow Jones index). As a
consequence, we argue that in the measurement relationship between realized variance and
the integrated variance, the measurement error may be represented as proportional to the
latter, and, as such, heteroskedasticity is a factor to be made explicit.

We have explored several directions, all pointing to the importance of adopting a het-
eroskedastic model which gives different importance to observations: the HAR-GARCH mo-
del of |Corsi et al.| (2008) where HAR is enriched by a GARCH-type structure to account
for the volatility of volatility (related to quarticity), the AMEM model of [Engle and Gallo
(2006)), where a multiplicative error structure makes the variance of realized variance pro-
portional to the square of its expectation. In a further extension of the AMEM, the MS-
AMEM of |Gallo and Otranto (2015), dynamics is regulated by regime—specific coefficients
(both the speed of mean reversion, and the level of the mean to which the model reverts
change). We find that making the realized variance sensitive to the sign of past returns
adds an important driver of the dynamics.

In all these models, the statistical significance of the interaction/curvature terms is
greatly reduced, and more strongly so for the MS-AMEM, providing evidence that ac-
counting for heteroskedasticity provides robustness to measurement errors. This result is
confirmed by a simulation study where generating observations considering multiplicative
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Figure 6: Out—of-sample QL loss function for 12 models and 29 assets. The enclosures
contain, for each asset, the models belonging to the MCS at 5% significance level. Models
are represented by short acronyms in this order: H for HAR, HQ for HARQ, H2 for HAR2,
HG for HAR-GARCH, HGQ for HARQ-GARCH, HG2 for HAR2-GARCH, AM for AMEM,
AMQ for AMEMQ, AM2 for AMEM2 , MS for MS-AMEM, MSQ for MS-AMEMQ, MS2 for
MS-AMEM2.
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errors, and/or with the AMEM and the MS-AMEM (without interaction/curvature terms)
and when HAR is estimated with either of those terms, it turns up being statistically
significant.

The analysis we performed both in— and out—of-sample shows that the MS-AMEM is
by far the best performing model, with a good second-best performance of the HAR-
GARCH model (even over AMEM). The augmented versions of the models show no sign
of improved performance in these cases, while such better performance is confirmed for
HARQ and HAR2 over HAR.

The documented presence of measurement errors in estimating realized variance is un-
questionable, but the fact that such errors are proportional to the variance itself can be
turned to the advantage of an improved specification for its conditional expectation. Since,
in general, we should pay less attention to high values of variance when modeling its dy-
namics for prediction purposes, heteroskedastic models, such as HAR-GARCH and AMEM
are equipped to do so, the latter from the outset. However, the issue of the presence of
a low frequency volatility component in the data is unrelated to measurement errors and
needs to be adequately and separately addressed. In some cases, moreover, quarticity may
not be available, as it happens when daily realized variances are made available without
the underlying intra daily data, or when range measures are an alternative choice instead.

All analysis here is conducted for the realized variance. In the HAR model this is a
natural choice because of the additivity of the variance when aggregating at the weekly
and monthly levels. An alternative, not analyzed here, is to model volatility directly, rather
than variance as in [Cipollini et al.| (2013)) and |Gallo and Otranto (2015), in view of the
fact that the volatility has less severe peaks in correspondence to volatility bursts. As a
matter of fact, Cipollini et al.| (2013) show that there is a definite improvement in the
forecasting performance of the (multivariate) modeling of realized volatility over realized
variance. Finally, the HARQ model has been recently extended to the multivariate case
by Bollerslev et al.| (2018)). The challenge would be to develop a similar exercise, dealing
with multivariate MEM (Cipollini et al., 2013; Taylor and Xu| 2017) with and without
the presence of Markov Switching dynamics in the time-varying covariance matrix (see, for
example, |Otranto, [2010)).
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Appendix — List of tickers

Table 8: List of tickers of the realized variance series

AAPL | Apple

AXP | American Express
BA Boeing

CAT | Caterpillar

CSCO | Cisco

CVX | Chevron

DD DuPont

DIS Disney

GE General Electric

GS Goldman Sachs

HD Home Depot

IBM IBM

INTC | Intel

JNJ Johnson and Johnson
JPM | J.P. Morgan Chase
KO Coca Cola

MCD | McDonald’s

MMM | 3M

MRK | Merck

MSFET | Microsoft

NKE | Nike

PFE Pfizer

PG Procter and Gamble
SPY SPY ETF

UNH | United Health

UTX | United Technologies
V7 Verizon

WMT | Walmart

XOM | Exxon Mobil

25






	CGO_paper-20190624.pdf
	Introduction
	Multiplicative Measurement Errors in Realized Variance
	The HAR Approach Extended
	Heteroskedasticity, Asymmetry and Regimes
	The HAR-GARCH
	The AMEM
	The MS-AMEM

	A Simulation Study
	Comparing Model Performances
	In–sample
	Out–of–sample

	Concluding Remarks


