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1 Introduction

The technical capability of recording and storing intradaily data has given a

tremendous boost to the literature both on measurement issues (various forms of

aggregation of ultra–high frequency data into a daily value) and on modeling their

dynamics (extending the autoregressive flavor behind the GARCH class of models).

There exist recent refinements within a somewhat consolidated menu of realized vari-

ance choices (plain vanilla, robustness to market microstructure noise, jumps, etc.;

cf. Park and Linton, 2012, for a survey); in this work we focus on the realized kernel

variance (Barndorff-Nielsen et al., 2008) to investigate a series of aspects related to

modeling and forecasting. We will take it either as such, or as its square root, or yet

as its logarithm, but for the sake of simplicity we generically talk here about realized

variance modeling.

In this paper we consider that evaluating forecasts out-of-sample (OOS) is a mat-

ter of subjective taste about how to judge the distance between a predicted outcome

and the actual value. In this respect, several examples of forecasting loss functions are

considered, with the idea that a particular a priori choice is a consequence of individ-

ual preferences, hence it is not subject to qualitative assessment. In order to produce

forecasts, two other elements are important: the model specification (the equation

reproducing conditional variance dynamics), and the in-sample (IS) estimation cri-

terion, i.e. the distance between observed and fitted values delivering parameter

estimates. As for the adoption of a model specification and of an estimation crite-

rion, we take the view that there are no natural a priori choices, but they must be

geared toward obtaining the best results in terms of the given forecasting loss. In this

respect, we argue that the choice of the latter should not force the same function to

be repeated as the estimation criterion.

A first contribution of the paper is to explore whether, for a given forecasting

loss, the IS estimation criterion with the same functional form produces the best

OOS results by specification or, rather, other estimation criteria are to be preferred.

A second contribution is to investigate the capability of a popular model selection

tool such as the BIC to identify the best OOS specification. Third, we compare

the benchmark HAR specifications of Corsi (2009) and Andersen et al. (2007) to

several realized variance models inspired by the functionals of successful GARCH

parameterizations which, for the most part, correspond to the simple ARMA modeling

of either realized variance, its square root or its logarithm. Across classes, here
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we focus on the core specifications that could be extended to accommodate several

refinements (asymmetry, see Engle and Gallo (2006), jumps, see Andersen et al.

(2007), measurement errors, see Bollerslev et al. (2016), etc.).

We explore these issues on a panel of 28 constituents of the Dow Jones 30 Index

using daily realized kernel variance observations from January 2005 to December

2015. The sample is split into six 5-year IS periods; we estimate all combinations of

specifications and estimation criteria on the first IS period, generating OOS static

forecasts for the ensuing 1-year period, then we move the IS window by one year

and repeat the procedure. Our results may be summarized as follows: there are

forecasting loss functions not particularly apt to be repeated as estimation criteria;

we find encouraging results for the BIC ability to identify ex-ante the best OOS

specification; the ARMA modeling of the log realized variance provides the best IS

and OOS results. In general, we identify the (2,1) structure with a negative lag-2

coefficient to be a good parameterization. As a reading key to these results, we find it

informative to relate the goodness of the OOS forecasts to the structure’s capability

to mimic long memory features: as a matter of fact, these specifications deliver a long

memory approximation which is equivalent to that of the HAR family, but overall

superior OOS forecasts across assets.

The paper is structured as follows. Section 2 discusses the forecasting losses em-

ployed to compare model forecasts and the estimation criteria used to estimate pa-

rameters. Section 3 presents the specifications for the variance dynamics and Section

4 the information criteria used for model selection. Data are introduced in Section

5 and results are presented in Section 6. In Section 7 we provide a general discus-

sion on the estimation criteria and the (2,1) parameterizations and their ability to

approximate long memory. Section 8 concludes.

2 Forecasting Loss and Estimation Criterion

A loss function maps events onto real numbers according to an individual’s prefer-

ence orderings. When estimating, values of the unknown coefficients of a parametric

model are obtained from the minimization of a loss function IS. When forecasting, the

quality of a specification is assessed through the calculation of a loss function based

on the distance between the predicted outcomes and the actual values, OOS. In what

follows, we argue that the priority given to forecasting requires to define separately

the forecasting loss and the estimation criterion.
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With the expression forecasting loss (henceforth FL) we refer to the loss func-

tion used to evaluate the model performance OOS. Due to its subjective nature, the

forecasting loss does not satisfy any criteria other than representing an individual’s

preferences. With the term estimation criterion (henceforth EC) we refer to the ob-

jective function used to obtain the parameter estimates. In general, the choice of this

function responds to some features: theoretical properties of the resulting estimator,

tractability, etc. Distinguishing between forecast evaluation and model estimation

allows us to investigate, empirically and in the context of variance modeling, whether

the EC that coincides with the FL produces the best OOS results. For FL and

EC we consider some of the most common functionals adopted in the literature to

measure the distance between observed and predicted values. Prevailing measures

are quadratic, which corresponds to least-squares estimation, and Kullback-Leibler,

which corresponds to quasi-maximum likelihood estimation when the chosen density

function is linear-exponential.

2.1 Quadratic Distance

We characterize the general quadratic forecasting loss by:

T2
ÿ

t“T1`1

“

fpRVtq ´ fpσ
2
t q
‰2

where t “ T1 ` 1, . . . , T2 is the OOS period and fpσ2
t q ” Et´1rfpRVtqs. Common

choices for the monotonic function fp¨q are the identity, the square-root and the

logarithm, which lead to what we define as the LS, SDLS and LNLS forecasting losses,

respectively. As an example, for the square-root function we have that the forecasting

loss synthesizes the distance between RV
1{2
t and σt ” Et´1rRV

1{2
t s, t “ T1`1, . . . , T2.

We define the quadratic estimation criterion in the same way but without con-

straining it to have the same functional fp¨q of the FL:

T1
ÿ

t“1

“

gpRVtq ´ gpσ
2
t q
‰2

where t “ 1, . . . , T1 is the IS period and gp¨q is a monotonic function. Choosing

gp¨q from the f -menu of identity, square-root and logarithmic functions, leads to LS,

SDLS and LNLS estimation criteria, respectively. Since they allow for the simple OLS

estimation of the models’ parameters, LS is the estimation criterion of choice for the

HAR of Corsi (2009) and LNLS for the LOG´ HAR of Andersen et al. (2007). Do notice
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that σ2
t in the EC is that defined by the forecasting loss: σ2

t “ f´1pEt´1rfpRVtqsq.

Therefore, unless g “ f , there is a misalignment between what the model parameters

are trained to predict, Et´1rgpRVtqs, and the object of interest Et´1rfpRVtqs.

2.2 Kullback-Leibler Distance

Of the many density functions that may characterize a Kullback-Leibler distance

we focus on the Gaussian density to generate the QML forecasting loss:

T2
ÿ

t“T1`1

„

lnσ2
t `

RVt
σ2
t



where t “ T1 ` 1, . . . , T2 is the OOS period and σ2
t is the conditional expectation

Et´1rRVts of realized variance. Similarly, the QML estimation criterion is given by:

T1
ÿ

t“1

„

lnσ2
t `

RVt
σ2
t



(1)

where t “ 1, . . . , T1 is the IS period and σ2
t “ f´1pEt´1rfpRVtqsq, as defined by the

FL. Since the Gaussian belongs to the family of linear-exponential distributions, min-

imization of the QML estimation criterion is in fact a quasi-maximum-likelihood esti-

mation with associated properties: Gourièroux et al. (1984). If intraday observations

are normally distributed, Gaussian QML is maximum likelihood. Although differently

motivated, the EC in equation (1) is the estimator of choice for the univariate MEM

of Brownlees et al. (2012).

3 Variance Modeling

In this section we present the cores of the HAR and several other models inspired

by successful GARCH parameterizations, which nest various specifications that have

been put forward in the literature on realized variance modeling. Motivated by the

stylized facts of GARCH modeling, we focus on the p1, 1q and p2, 1q parameterizations

where the former is found to be well suited to generate good forecasts, as highlighted

by Hansen and Lunde (2005), while the latter occasionally provided better fit and

forecasts.

We present all models as parameterizing σ2
t . Although this is non-standard, it is

consistent with our setup in which the model parameters are chosen IS to generate

the best predictions Et´1rgpσ
2
t qs but are ultimately used to produce OOS forecasts
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Et´1rfpσ
2
t qs. While our empirical analysis focuses on one-step ahead forecasts, k-step-

ahead forecasts Et´1rfpσ
2
t`k´1qs may be generated for any of the following parameter-

izations, granting that in general their calculation requires numerical integration for

k ą 1.

3.1 HAR Specifications

The HAR, introduced by Corsi (2009), has rapidly achieved the status of bench-

mark specification for the modeling of realized variances. Features that contribute to

its role as a point of reference are the simplicity with which its parameters may be

estimated and its ability to reproduce long memory features: “[. . . ] the mixing of rel-

atively few volatility components is capable of reproducing a remarkably slow volatility

autocorrelation decay that is almost indistinguishable from that of a hyperbolic pat-

tern over most empirically relevant forecast horizons” (Andersen et al., 2007). The

HAR models σ2
t as a function of past realizations over daily, weekly and monthly time

intervals:

σ2
t “ ω ` α1 ¨RVt´1 ` α2 ¨

1

5

5
ÿ

i“1

RVt´i ` α3 ¨
1

22

22
ÿ

i“1

RVt´i (2)

corresponding to an ARp22q process for RVt with parameter constraints. Its parame-

ters may be estimated by ordinary least squares when the criterion used in estimation

is LS, whereas for different choices of the EC the estimates are not available in closed

form. Necessary and sufficient conditions for the positivity of σ2
t are ω ą 0, α3 ě 0,

α2{5` α3{22 ě 0 and α1 ` α2{5` α3{22 ě 0.

The LOG´ HAR, introduced by Andersen et al. (2007), is an alternative specifi-

cation linear in the logarithms:

σ2
t “ exp

#

ω ` α1 ¨ lnRVt´1 ` α2 ¨ ln

˜

1

5

5
ÿ

i“1

RVt´i

¸

` α3 ¨ ln

˜

1

22

22
ÿ

i“1

RVt´i

¸+

(3)

Notice that the presence of the logarithms of averages places the LOG´ HAR outside

the class of AR processes. Its parameters may be estimated by ordinary least squares

for LNLS estimation criterion, while for different choices of the EC the estimates are

not available in closed form.

3.2 MVAR Specification

With MVAR we indicate the parameterization of σ2
t in terms of its lags and lags

of RVt or, equivalently, the ARMA modeling of realized variance RVt. It is inspired
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by the GARCH(p, q) of Bollerslev (1986) from which it may be obtained by substi-

tuting the more precise realized variances for the squared open-to-close returns. This

GARCH would arise as the limiting case of MVAR when the number of intradaily ob-

servations is one and realized variance collapses to the squared open-to-close return.

The MVARp2, 1q specification is given by:

σ2
t “ ω ` α1 ¨RVt´1 ` α2 ¨RVt´2 ` β1 ¨ σ

2
t´1. (4)

Necessary and sufficient conditions for the positivity of σ2
t are ω ą 0, α1, β1 ě 0 and

α2 ě ´α1β1. MVAR estimated by QML coincides with the MEM of Cipollini et al.

(2013) while associated to the LS criterion it reduces to standard ARMA modeling

and estimation.

3.3 MVOL Specification

With MVOL we denote the the parameterization of σt in terms of its lags and

lags of RV
1{2
t or, equivalently, the ARMA modeling of realized volatility RV

1{2
t . It is

related to the TGARCH(p, q) of Zakoian (1994), but without the asymmetric term,

from which it may be obtained by substituting realized volatilities for the absolute

value of the returns. Alternatively, the TGARCH may be seen as the limiting case

of MVOL when there is one intradaily observation and realized volatility collapses to

the absolute open-to-close return. The symmetric MVOLp2, 1q specification is given

by:

σ2
t “

!

ω ` α1 ¨RV
1{2
t´1 ` α2 ¨RV

1{2
t´2 ` β1 ¨ σt´1

)2

(5)

Although σ2
t is positive by construction, the marginal effects of its determinants do

not exhibit abrupt sign changes if and only if σt is also positive. Necessary and

sufficient conditions for the positivity of σt are ω ą 0, α1, β1 ě 0 and α2 ě ´α1β1.

QML estimation of MVOL coincides with the MEM in Brownlees et al. (2012) while

adopting the SDLS criterion reduces to standard ARMA modeling and estimation.

3.4 MLOG Specification

MLOG is the ARMA modeling of the log realized variances lnRVt or, equivalently,

the parameterization of lnσ2
t in terms of its lags and lags of lnRVt. It may be seen

as the analogue to the log-GARCH(p, q) of Geweke (1986) from which it may be

obtained by substituting log realized variances for log squared residuals. Similarly,

log-GARCH is the limiting case of MLOG when the log realized variance reduces to
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log squared residual for a single intradaily observation. The MLOGp2, 1q specification

is given by:

σ2
t “ exp

 

ω ` α1 ¨ lnRVt´1 ` α2 ¨ lnRVt´2 ` β1 ¨ lnσ
2
t´1

(

(6)

When associated to the LNLS criterion it reduces to standard ARMA modeling and

estimation. QML, on the other hand, would be the natural estimator within the MEM

framework. Dynamic specifications analogous to the MLOG are not uncommon in the

context of Autoregressive Conditional Durations, among which Bauwens et al. (2008)

and Taylor and Xu (2017) are examples of QML1 and LNLS estimates, respectively.

3.5 MEXP Specification

Inspired by the EGARCH(p, q) parameterization of Nelson (1991), but without the

asymmetric term, the MEXPp2, 1q specification is obtained by substituting realized

volatilities for the absolute value of the return. Like for the other GARCH-inspired

parameterizations, in the limiting case of a single intraday observation, MEXP repro-

duces the symmetric EGARCH:

σ2
t “ exp

#

ω ` α1 ¨
RV

1{2
t´1

σt´1

` α2 ¨
RV

1{2
t´2

σt´2

` β1 ¨ lnσ
2
t´1

+

(7)

Notice how the presence of lags of the dependent variable at the denominator places

MEXP outside the class of ARMA processes.

4 Model Evaluation

We perform IS model evaluation and selection by means of the Bayes (Schwarz)

Information Criterion BIC. For the quadratic estimation criteria of Section 2.1 we

construct the BIC by treating the generalized residuals gpRVtq ´ gpσ
2
t q as Gaussian:

BIC “ T1 ln

˜

1

T1

T1
ÿ

t“1

“

gpRVtq ´ gppσ
2
t q
‰2

¸

` k lnT1

where k is the number of parameters, T1 the sample size and pσ2
t the model’s prediction.

For the Kullback-Leibler estimation criterion of Section 2.2, the BIC is immediately

1To be precise: Bauwens et al. (2008) estimate an ACD analogous to MLOG by minimizing the
Kullback-Leibler distance based on the exponential distribution. Since the exponential belongs to the
family of linear-exponential distributions, the resulting estimator is also quasi-maximum-likelihood.
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obtained from the log-likelihood function:

BIC “
T1
ÿ

t“1

ln pσ2
t ` k lnT1

where pσ2
t is the prediction from the QML-estimated model. Notice how the BIC is

calculated on the condensed estimation criterion in (1) from which the average of

RVt{σ
2
t is dropped on the grounds that deviations from its limiting value of one are

neither data nor model driven but only reflect initial value choices2.

Since, for equally parameterized specifications, every information criterion pro-

duces identical model rankings, Akaike’s and Hannan-Quinn’s may produce results

that differ from those we present only in the comparisons of differently parameterized

specifications. Furthermore, given that BIC is the most conservative of the three,

when it selects a richer parameterization so do Akaike’s and Hannan-Quinn’s.

We evaluate OOS forecasts directly from the forecasting loss functions of Sections

2.1 and 2.2. The reason why no penalties are needed is that, contrary to IS, OOS

measures of fit are not non-decreasing functions of the number of parameters k.

5 Data

The data used in this study pertains to 28 of the 30 constituents of the Dow

Jones 30 Index. The sample has 11 years of high-frequency daily observations from

01/03/2005 to 12/31/2015 for a total of 2768 days. The two series, with tickers TRV

and V, are not included in the study because they are not available for the full sample

period3. Tickers of the 28 included stocks are: AAPL, AXP , BA, CAT, CSCO, CVX,

DD, DIS, GE, GS, HD, IBM, INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT,

NKE, PFE, PG, UNH, UTX, VZ, WMT, XOM. The raw tick-by-tick TAQ data is

cleaned using the procedure of Brownlees and Gallo (2006) and the series of realized

variances calculated following Barndorff-Nielsen et al. (2011) with Parzen kernel. For

every stock the time series of realized variances have been Winsorized at the 99.9-

th percentile (3 observations) to eliminate the possibly disturbing effects of spurious

measures such as those recorded on the day of the Flash Crash of May 6, 2010.

The sample is split into six 5-year IS periods: 2005-2009 (1259 obs.), 2006-2010

(1259 obs.), 2007-2011 (1260 obs.), 2008-2012 (1259 obs.), 2009-2013 (1258 obs.) and

2In fact, for all the specifications considered, when the initial value σ2
0 is treated as an unknown

parameter and estimated, the average ratio RVt{σ
2
t is equal to one.

3TRV data are available only from 02/26/2007 while V data are missing from 08/04/2006 to
02/26/2007.
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2010-2014 (1258 obs.). All model combinations are estimated on each of the six IS

periods, and for each of them, OOS forecasts are generated for the following 1-year

period: 2010 (252 obs.), 2011 (252 obs.), 2012 (250 obs.), 2013 (252 obs.), 2014 (252

obs.) and 2015 (251 obs.).

6 Results

The first result we document is the poor performance of the MEXP specification

inspired by the successful EGARCH: Tables 9-12. It never provides the best IS

description of the data4 and it always generates the largest OOS forecasting losses:

300% and 50% increments with respect to LS and SDLS, respectively. Perhaps this is

due5 to the different nature of the shocks driving the processes: return shocks in the

case of the EGARCH against variance shocks in the MEXP. Due to these findings we

do not discuss the the MEXP specification any further in what follows.

6.1 Is the forecasting loss the best estimation criterion?

In Tables 1-8 we evaluate the conditional variance specifications (rows) for a given

FL when estimated by LS, SDLS, LNLS and QML estimation criteria (columns). From

Tables 1 and 2 it emerges that when the FL is LS or SDLS, the estimation criterion

that produces the best OOS results in most instances is LNLS. When the FL is LNLS,

Table 3 highlights that it should also be used as EC as it produces the best OOS

results in 86.90% to 94.64% of the instances. On the other hand, when the FL is

QML, Table 4 shows that overall QML is the preferred EC.

These results are confirmed in Tables 5-8 which, for every conditional variance

specification (rows) and estimation criterion (columns), report the average value of

the given FL over the OOS period and across assets. The lowest average OOS fore-

casting loss measured by LS, SDLS and LNLS are obtained, for every variance spec-

ification, when estimated using the LNLS estimation criterion. Similarly, the QML

estimation criterion produces the lowest OOS QML forecasting losses. Hence, while

the hypothesis that the functional form of FL provides the best EC has to be rejected

as a general statement, it cannot be rejected for the QML forecasting loss.

4The only exception is observed for the LS forecasting loss for which MEXPp2, 1q is the best IS
specification 1.79% of the instances, Table 9.

5While another possible explanation may be related to invertibility issues (see Wintenberger
(2013)), in our case it does not seems to be the driving force: focusing on one step-ahead fore-
casts strongly mitigates any ill behavior (even explosive processes do not explode) and imposing
invertibility constraints will further reduce the already poor IS performance of MEXP.
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6.2 Does BIC identify the best OOS specification?

From Tables 9-12: BIC selects the best OOS specification 26.00%, 30.00%, 38.00%

and 3.00% of the instances for LS, SDLS, LNLS and QML estimation criteria, respec-

tively. Hence, it clearly emerges that the ability of BIC to identify what will be the

best OOS specification is rather hopeless when associated to the QML estimation cri-

terion. This finding is a bit surprising since the BIC associated to the QML estimation

criterion follows directly from the EC itself as opposed to the other cases where BIC

is constructed by treating the generalized residuals, from the various measures of dis-

tance, as normally distributed. In Tables 9 and 12 the average OOS forecasting loss of

the specifications selected by BIC is no smaller than that of any of the specifications

considered. On the other hand, the average forecasting loss of the BIC selection for

the SDLS and LNLS forecasting loss functions is the second smallest, preceded only

by the MLOGp2, 1q: Tables 10 and 11.

Therefore, for big caps, the best OOS results are obtained by adopting the MLOG

specification for every asset. Clearly, it would be a hasty generalization to extend

such recommendation to medium and small caps or other asset classes. A judicious

approach would suggest to rely on model selection procedures unless the superiority

of a specific model for a given asset class is substantiated by empirical evidence.

Similarly, the performance of a maintained model should be monitored over time and

asset classes to detect significant changes and intervene when necessary.

6.3 Is there a best OOS specification?

Tables 9-12 provide further IS and OOS performance measures for when the FL

functional is used as EC. To begin, HAR does not emerge as the best OOS specification

for any of the FL considered. Specifically, HAR is the best OOS specification 13.69%,

8.93%, 10.71% and 21.43% of the instances for LS, SDLS, LNLS and QML, respectively.

Focusing on the average OOS forecasting losses generated by HAR it emerges that

its performance is in-between that of MVARp1, 1q and MVARp2, 1q, with all other

specifications exhibiting lower OOS forecasting losses.

LOG´ HAR produces the best OOS fit 16.07%, 8.33%, 10.71% and 6.55% of the

instances for LS, SDLS, LNLS and QML forecasting losses, respectively. Similarly to

HAR, it too does not emerge as the preferred OOS specification. In terms of average

OOS forecasting losses, LOG´ HAR performs better than HAR and MVAR but does

not do as well as MVOLp2, 1q and MLOG.
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Considering HAR and LOG´ HAR jointly doesn’t alter the picture as they provide

the best OOS fit 29.76%, 17.26%, 21.42% and 27.98% of the instances for LS, SDLS,

LNLS and QML forecasting losses, respectively. In contrast, MLOG produces the best

OOS specifications 47.02%, 64.88%, 64.88% and 54.16% of the times. In fact, what

emerges is that the specification producing the smallest average OOS values of the FL

considered is MLOGp2, 1q followed nearly ex aequo by MLOGp1, 1q and MVOLp2, 1q.

6.4 Is there a best IS specification?

Even though the main focus of this study is on OOS forecasts, we recognize that

there are instances where IS fit is of primary importance, e.g., a reduced form model

capturing most relevant data features to be used as auxiliary model in the indirect

estimation of a maintained model. In Tables 9-12, HAR does not emerge as the best

IS specification: it provides the best IS fit only 4.76%, 4.17%, 2.38% and 12.50% of

the instances for LS, SDLS, LNLS and QML estimation criteria, respectively.

LOG´ HAR provides the best IS fit 13.10%, 30.95%, 25.00% and 24.40% of the

instances for LS, SDLS, LNLS and QML estimation criteria, respectively. While there

are sizeable improvements with respect to HAR, LOG´ HAR is the preferred specifica-

tion (30.95% of the instances) only for the QML estimation criterion with MLOGp1, 1q

a very close second (30.36% of the times). On the other hand, with respect to the

other EC considered, MLOG is selected from two to five more times than LOG´ HAR

as best IS specification.

Jointly, HAR and LOG´ HAR are the preferred specifications 29.76%, 28.57%,

15.48% and 43.45% of the instances for LS, SDLS, LNLS and QML estimation criteria,

respectively. However, the corresponding performance of MLOG of 65.48%, 58.93%,

70.24% and 30.36% is substantially better (except for QML). Furthermore, if the HAR

and LOG´ HAR pair is compared to the MLOG and MVOL pair, the latter is found

to provide the best IS for any EC considered.

7 General Discussion

7.1 On the Estimation Criteria

A possible reading key to the empirical findings promoting LNLS and QML as pre-

ferred EC is that of their sensitivity to what we call relatively-extreme observations

to distinguish them from outliers. Outliers are those data points that are distant
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from the rest of the observations, according to some measure. In our context, out-

liers correspond to extreme measures of RVt which, in general, are relatively easy to

detect and to deal with6. Instead, by relatively-extreme observations we mean those

data points that, while not being intrinsically anomalous, are extreme with respect

to certain data features, e.g., with RVt´1 and RVt`1 in the 5-th percentile of magni-

tudes, for an otherwise persistent process, an RVt in the 90-th percentile constitutes

a relatively-extreme observation but not an outlier in the usual sense.

Focusing on the fact that parameters’ estimates respond to relatively-extreme ob-

servations by re-setting the estimators’ first order conditions to zero, we elicit the fol-

lowing two insights7. First, the impact of a relatively-extreme observation on the gen-

eralized residual, pεt “ gpRVtq´ gppσ
2
t q for the criteria of Section 2.1 and pεt “ RVt´ pσ2

t

for the criterion of Section 2.2, is smallest for LNLS followed by SDLS and the pair of

equals LS and QML. Secondly, the contribution of a relatively-extreme observation to

the first order conditions is proportional to pσ´nt where pσ2
t is the model’s prediction,

and n “ t0, 1, 2, 4u for LS, SDLS, LNLS and QML, respectively. It follows that inverse

powers of pσ2
t have a dampening effect on the generalized residuals which is strongest

for QML, followed by LNLS, SDLS and LS. Hence, SDLS and LS emerge as more

sensitive to relatively-extreme observations in line with the empirical findings which

don’t promote any of the two as preferred EC.

7.2 The p2, 1q Parameterizations

The positive performance of MLOG and MVOL may be ascribed, among others,

to the inclusion of the components associated with the coefficients β1 and α2. The

relevance of the moving-average coefficient β1 should not come as a surprise given

its ubiquitous presence in GARCH models. The p2, 1q parameterizations of MVAR,

MVOL and MLOG are found to produce better forecasts than their p1, 1q counterparts:

Tables 5-8. Figure 1 reports the distributions of the p2, 1q specifications’ parameters

estimated by LNLS and QML. The striking empirical regularity is the negative sign of

the pα2 coefficients for every specification, asset and sub-sample period. As shown by

Figure 2, the effect of α2 ă 0 is to reduce (increase) persistence at short (long) horizons

with respect to the geometrically decaying correlations of the p1, 1q parameterizations.

Analogously, the negative relation summarized by α2 ă 0 is not captured by the core

6In our study, the 99.9-th percentile Winsorization of the data effectively removes the few outliers
present such as that associated to the Flash Crash of May 6, 2010.

7For a detailed treatment of the robustness of M-estimators, see Hampel et al. (2005).
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HAR specifications.

7.3 Long Memory Approximation

Among the features that have made the HAR specifications popular is their ability

to approximate long memory processes and thus replicate the hyperbolic decay ob-

served in the autocorrelation of realized variances. The cross-sectional average (over

28 assets) of the empirical autocorrelations of realized variances (DATA), for the most

recent subsample (2010-2014), is plotted in Figure 2. Using the cross-sectional average

of the parameters’ estimates for the same subsample, 106 Monte Carlo simulations,

from the MVARp2, 1q, MVOLp2, 1q, MLOGp2, 1q, HAR and LOG´ HAR, are used to

plot the models’ autocorrelation functions in Figure 2. The decay of DATA autocor-

relations from lag-12 is well approximated by all specifications with the exception of

the LOG´ HAR, which reproduces the correct rate of decay but under-estimates the

magnitude of the autocorrelations. Most interestingly, all p2, 1q specifications have

autocorrelation structures that are indistinguishable from the HAR. Hence, replica-

tion of long-range dependence is not an exclusive feature of the HAR family but one

attainable by equally parsimonious specifications. Equally interesting are the results

for the autocorrelations up to lag-11. At lag-1, we find autocorrelations that are ap-

proximately 0.6 for the DATA, 0.67 and 0.5 for the HAR and LOG´ HAR, respectively,

but only 0.3-0.4 for the p2, 1q specifications.

These findings may be reconciled with the observed superior forecasts of MLOG

by realizing that replicating the autocorrelation function of the observables is not a

sufficient condition for a model to produce quality forecasts. Consider the following

counter-example in which RVt and two competing forecasts pσ2
1,t and pσ2

2,t are given by:

RVt “ σ2
t ` νt

pσ2
1,t “ σ2

t ` S1η1,t

pσ2
2,t “ σ2

t ` S2η2,t

with 1 ă S2 ă S1; νt and η2,t i.i.d. standardized random variables; σ2
t a unit

variance process with lag-j autocovariance γj; η1,t a standardized random variable

with lag-j autocovariance ψj “ 0.5S´2
1 pS2

1 ´ 1qγj. Then, the autocorrelations of the

three processes are ρjpRV q “ 0.5γj, ρjppσ
2
1q “ 0.5γj and ρjppσ

2
2q “ p1 ` S2

2q
´1γj, re-

spectively. The forecasting mean square errors of the competing specifications are:

ErpRVt ´ pσ2
1,tq

2s “ ErpRVt ´ σ2
t q

2s ` S2
1 and ErpRVt ´ pσ2

2,tq
2s “ ErpRVt ´ σ2

t q
2s ` S2

2 .

Therefore, for 1 ă S2 ă S1, the autocorrelation structure of pσ2
1,t is an exact match of
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that of RVt while pσ2
2,t exhibits lower autocorrelations. Nevertheless, the forecasting

mean square error of pσ2
2,t is lower than that of pσ2

1,t. It is therefore possible to have

alternative specifications producing more precise forecasts than HAR even though the

lag-1 autocorrelation of HAR is substantially higher as a result of larger misspecifi-

cation components.

This analysis is supported by the contemporaneous correlations between real-

ized variances and the models’ forecasts: 0.6153 for the MVARp2, 1q, 0.6219 for

the MVOLp2, 1q, 0.6231 for the MLOGp2, 1q, 0.5026 for the HAR and 0.6174 for the

LOG´ HAR. Hence, the similarity of the HAR correlation structure with that of real-

ized variance is not necessarily indicative of a good specification. With respect to the

latter, consider the limiting case of two independent processes yt and xt with identi-

cal model specifications and parameter values. By construction, the autocorrelation

function of xt is a perfect match for that of yt. However, because the two processes

are independent xt, Et´1rxts and xt´1 are worst forecasters of yt than y, which, with

i.i.d. innovations, has zero autocorrelations. Therefore, while the autocorrelation

structure of the true model matches that of the data, matching that structure is not

a sufficient condition for the identification of a good model.

8 Conclusions

In this paper we advance the idea that out-of-sample forecast evaluation relies

on the choice of a distance between predicted outcomes and actual values of realized

variance (as well as volatility and log-variance) that reflects subjective preferences.

Conditional on a specific OOS forecasting loss, we show that the same functional

form may not be the most appropriate choice as an IS estimation criterion in which

distance between actual and fitted values is used to deliver parameter estimates. To

this end, we have examined several models inspired by well known GARCH param-

eterizations alongside HAR specifications and we have handled several combinations

of IS estimation criteria and OOS forecasting losses.

We find the p2, 1q parameterizations to be best suited to model the dynamics

and forecast realized variances, volatilities and log-variances. In particular, in terms

of OOS forecasts: MVARp2, 1q does generally better than HAR; MVOLp2, 1q does

generally better than LOG´ HAR; MLOG does always better than LOG´ HAR. In-

terestingly, our empirical findings point to the presence of a negative lag-2 coefficient

in all estimated p2, 1q specifications. We interpret it as a dampening agent which, by
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limiting to one day most of the impact of a shock to variance, induces a mimicking

effect of long memory properties that are indistinguishable from those of the HAR

and more sustained than those of the LOG´ HAR.

With respect to the estimators considered, we find that for all quadratic forecasting

losses, models estimated using the LNLS estimation criterion provide the best OOS

forecasts. On the other hand, for the QML forecasting loss the QML estimation

criterion does better than LNLS, although marginally so. Our findings further suggest

a judicious approach to model selection which should rely on information criteria

unless the superiority of a specific model is substantiated by empirical evidence.

We leave the evaluation of models combining the elements of the HAR family with

those of a pp, qq parameterization to future research.
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Table 1:

LS forecasting loss for out-of-sample evaluations: for each of the four estimation criteria (LS, SDLS, LNLS and
QML), in each row we report the number of instances (and the percentages) when that criterion provides the best
performance (by row 28 tickers times 6 periods=168 possible instances). The χ2

3 column reports p-values under the
null hypothesis of a uniform best performance across the four estimation criteria.

Model LS SDLS LNLS QML χ2
3

MVAR (1,1) 18 10.71% 23 13.69% 115 68.45% 12 7.14% ă0.0001

(2,1) 22 13.10% 32 19.05% 98 58.33% 16 9.52% ă0.0001

MEXP (1,1) 20 11.90% 20 11.90% 99 58.93% 29 17.26% ă0.0001

(2,1) 35 20.83% 29 17.26% 45 26.79% 59 35.12% 0.0071

MVOL (1,1) 13 7.74% 30 17.86% 113 67.26% 12 7.14% ă0.0001

(2,1) 18 10.71% 36 21.43% 92 54.76% 22 13.10% ă0.0001

MLOG (1,1) 14 8.33% 43 25.60% 89 52.98% 22 13.10% ă0.0001

(2,1) 21 12.50% 46 27.38% 66 39.29% 35 20.83% ă0.0001

HAR 19 11.31% 23 13.69% 103 61.31% 23 13.69% ă0.0001

LOG-HAR 11 6.55% 40 23.81% 93 55.36% 24 14.29% ă0.0001

Table 2:

SDLS forecasting loss function for out-of-sample evaluations: for each of the four estimation criteria (LS, SDLS,
LNLS and QML), in each row we report the number of instances (and the percentages) when that criterion provides
the best performance (by row 28 tickers times 6 periods=168 possible instances). The χ2

3 column reports p-values
under the null hypothesis of a uniform best performance across the four estimation criteria.

Model LS SDLS LNLS QML χ2
3

MVAR (1,1) 14 8.33% 19 11.31% 134 79.76% 1 0.60% ă0.0001

(2,1) 6 3.57% 40 23.81% 122 72.62% 0 0.00% ă0.0001

MEXP (1,1) 12 7.14% 12 7.14% 131 77.98% 13 7.74% ă0.0001

(2,1) 18 10.71% 30 17.86% 75 44.64% 45 26.79% ă0.0001

MVOL (1,1) 4 2.38% 31 18.45% 130 77.38% 3 1.79% ă0.0001

(2,1) 2 1.19% 46 27.38% 118 70.24% 2 1.19% ă0.0001

MLOG (1,1) 2 1.19% 49 29.17% 116 69.05% 1 0.60% ă0.0001

(2,1) 5 2.98% 61 36.31% 99 58.93% 3 1.79% ă0.0001

HAR 5 2.98% 30 17.86% 132 78.57% 1 0.60% ă0.0001

LOG-HAR 3 1.79% 45 26.79% 117 69.64% 3 1.79% ă0.0001
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Table 3:

LNLS forecasting loss for out-of-sample evaluations: for each of the four estimation criteria (LS, SDLS, LNLS and
QML), in each row we report the number of instances (and the percentages) when that criterion provides the best
performance (by row 28 tickers times 6 periods=168 possible instances). The χ2

3 column reports p-values under the
null hypothesis of a uniform best performance across the four estimation criteria.

Model LS SDLS LNLS QML χ2
3

MVAR (1,1) 3 1.79% 19 11.31% 146 86.90% 0 0.00% ă0.0001

(2,1) 1 0.60% 13 7.74% 154 91.67% 0 0.00% ă0.0001

MEXP (1,1) 0 0.00% 10 5.95% 157 93.45% 1 0.60% ă0.0001

(2,1) 3 1.79% 24 14.29% 122 72.62% 19 11.31% ă0.0001

MVOL (1,1) 1 0.60% 18 10.71% 149 88.69% 0 0.00% ă0.0001

(2,1) 0 0.00% 9 5.36% 159 94.64% 0 0.00% ă0.0001

MLOG (1,1) 0 0.00% 17 10.12% 151 89.88% 0 0.00% ă0.0001

(2,1) 0 0.00% 18 10.71% 150 89.29% 0 0.00% ă0.0001

HAR 0 0.00% 15 8.93% 153 91.07% 0 0.00% ă0.0001

LOG-HAR 0 0.00% 15 8.93% 153 91.07% 0 0.00% ă0.0001

Table 4:

QML forecasting loss for out-of-sample evaluations: for each of the four estimation criteria (LS, SDLS, LNLS and
QML), in each row we report the number of instances (and the percentages) when that criterion provides the best
performance (by row 28 tickers times 6 periods=168 possible instances). The χ2

3 column reports p-values under the
null hypothesis of a uniform best performance across the four estimation criteria.

Model LS SDLS LNLS QML χ2
3

MVAR (1,1) 23 13.69% 45 26.79% 48 28.57% 52 30.95% 0.0036

(2,1) 27 16.07% 38 22.62% 32 19.05% 71 42.26% ă0.0001

MEXP (1,1) 18 10.71% 32 19.05% 32 19.05% 86 51.19% ă0.0001

(2,1) 16 9.52% 26 15.48% 17 10.12% 109 64.88% ă0.0001

MVOL (1,1) 33 19.64% 49 29.17% 35 20.83% 51 30.36% 0.1008

(2,1) 39 23.21% 36 21.43% 23 13.69% 70 41.67% ă0.0001

MLOG (1,1) 39 23.21% 38 22.62% 34 20.24% 57 33.93% 0.0700

(2,1) 49 29.17% 27 16.07% 26 15.48% 66 39.29% ă0.0001

HAR 25 14.88% 31 18.45% 34 20.24% 78 46.43% ă0.0001

LOG-HAR 49 29.17% 24 14.29% 23 13.69% 72 42.86% ă0.0001
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Table 5:

LS forecasting loss for out-of-sample evaluations: for each of the four estimation criteria (LS, SDLS, LNLS and
QML), in each row we report the average loss (by row 28 tickers times 6 periods=168 possible instances). For every
specification, the lowest loss (across estimation criteria) is reported in bold. The F3,8 column reports p-values
under the null hypothesis of a uniform average performance across the four estimation criteria.

Model LS SDLS LNLS QML F3,8

MVAR (1,1) 3.2112 3.1890 3.1537 3.3789 ă0.0001

(2,1) 3.1254 3.1060 3.1008 3.2990 ă0.0001

MEXP (1,1) 13.0124 58.6417 35.2893 70.0017 0.3240

(2,1) 12.7777 81.0910 78.6324 159.0144 0.2989

MVOL (1,1) 3.0772 2.9607 2.9150 3.0102 ă0.0001

(2,1) 3.0108 2.9170 2.8883 2.9610 ă0.0001

MLOG (1,1) 2.9830 2.8480 2.8407 2.8517 ă0.0001

(2,1) 2.9613 2.8201 2.8241 2.8120 ă0.0001

HAR 3.1432 3.1256 3.1085 3.3150 ă0.0001

LOG-HAR 3.0755 2.9114 2.8828 2.9347 ă0.0001

Table 6:

SDLS forecasting loss for out-of-sample evaluations: for each of the four estimation criteria (LS, SDLS, LNLS and
QML), in each row we report the average loss (by row 28 tickers times 6 periods=168 possible instances). For every
specification, the lowest loss (across estimation criteria) is reported in bold. The F3,8 column reports p-values
under the null hypothesis of a uniform average performance across the four estimation criteria.

Model LS SDLS LNLS QML F3,8

MVAR (1,1) 0.1164 0.1045 0.1029 0.1096 ă0.0001

(2,1) 0.1082 0.1003 0.0993 0.1055 ă0.0001

MEXP (1,1) 0.1503 0.1629 0.1552 0.2012 0.1121

(2,1) 0.1556 0.1710 0.1727 0.2170 0.1778

MVOL (1,1) 0.1128 0.0992 0.0975 0.1027 ă0.0001

(2,1) 0.1056 0.0961 0.0950 0.0994 ă0.0001

MLOG (1,1) 0.1084 0.0961 0.0950 0.0986 ă0.0001

(2,1) 0.1055 0.0939 0.0933 0.0960 ă0.0001

HAR 0.1082 0.1009 0.0997 0.1057 ă0.0001

LOG-HAR 0.1077 0.0968 0.0956 0.0997 ă0.0001
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Table 7:

LNLS forecasting loss for out-of-sample evaluations: for each of the four estimation criteria (LS, SDLS, LNLS and
QML), in each row we report the average loss (by row 28 tickers times 6 periods=168 possible instances). For every
specification, the lowest loss (across estimation criteria) is reported in bold. The F3,8 column reports p-values
under the null hypothesis of a uniform average performance across the four estimation criteria.

Model LS SDLS LNLS QML F3,8

MVAR (1,1) 0.2471 0.1955 0.1881 0.2074 ă0.0001

(2,1) 0.2215 0.1880 0.1824 0.2012 ă0.0001

MEXP (1,1) 0.2521 0.2042 0.1961 0.2170 ă0.0001

(2,1) 0.2613 0.2154 0.2075 0.2204 ă0.0001

MVOL (1,1) 0.2351 0.1885 0.1827 0.2004 ă0.0001

(2,1) 0.2145 0.1820 0.1776 0.1943 ă0.0001

MLOG (1,1) 0.2205 0.1847 0.1799 0.1954 ă0.0001

(2,1) 0.2114 0.1796 0.1756 0.1903 ă0.0001

HAR 0.2194 0.1885 0.1825 0.2009 ă0.0001

LOG-HAR 0.2113 0.1826 0.1786 0.1944 ă0.0001

Table 8:

QML forecasting loss for out-of-sample evaluations: for each of the four estimation criteria (LS, SDLS, LNLS and
QML), in each row we report the average loss (by row 28 tickers times 6 periods=168 possible instances). For every
specification, the lowest loss (across estimation criteria) is reported in bold. The F3,8 column reports p-values
under the null hypothesis of a uniform average performance across the four estimation criteria.

Model LS SDLS LNLS QML F3,8

MVAR (1,1) 1.1297 1.1184 1.1206 1.1181 ă0.0001

(2,1) 1.1236 1.1177 1.1199 1.1166 ă0.0001

MEXP (1,1) 1.1323 1.1244 1.1257 1.1218 ă0.0001

(2,1) 1.1362 1.1283 1.1290 1.1233 ă0.0001

MVOL (1,1) 1.1246 1.1167 1.1199 1.1165 ă0.0001

(2,1) 1.1198 1.1163 1.1193 1.1152 ă0.0001

MLOG (1,1) 1.1200 1.1164 1.1201 1.1157 ă0.0001

(2,1) 1.1184 1.1160 1.1196 1.1147 ă0.0001

HAR 1.1230 1.1179 1.1200 1.1166 ă0.0001

LOG-HAR 1.1191 1.1173 1.1207 1.1159 ă0.0001
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Table 9:

LS forecasting loss and estimation criterion. The first three columns report the percentage a specification is best:
IS, in-sample (based on BIC); OOS, out-of-sample (LS loss); OOS|IS, best out-of-sample, limiting to the best
in-sample. A-Loss and M-Loss are the average and median losses. The BIC row contains out-of-sample results for
the best specifications selected in-sample by the information criterion. Individual A-Losses are tested against the
corresponding value on the bottom row (a ˚, ˚˚, ˚˚˚ signifies a better performance - 10%, 5%, 1% significance -
the reverse for the corresponding ˚, ˚˚, ˚˚˚).

Model IS OOS OOS|IS A-Loss˚˚˚ M-Loss

MVAR (1,1) 0.00% 0.00% 0.00% 3.2112˚˚˚ 1.1267

(2,1) 0.00% 16.67% 0.00% 3.1254 1.0458

MEXP (1,1) 0.00% 0.60% 0.00% 13.0124 1.1750

(2,1) 1.79% 1.79% 0.00% 12.7777 1.2316

MVOL (1,1) 0.00% 0.00% 0.00% 3.0772 1.1160

(2,1) 2.98% 4.17% 0.00% 3.0108 1.0674

MLOG (1,1) 31.55% 10.12% 18.87% 2.9830 1.0741

(2,1) 33.93% 36.90% 38.60% 2.9613 1.0544

HAR 4.76% 13.69% 0.00% 3.1432 1.0221

LOG-HAR 25.00% 16.07% 30.95% 3.0755 1.0705

BIC 26.00% 3.2400 1.0731

Table 10:

SDLS forecasting loss and estimation criterion. The first three columns report the percentage a specification is
best: IS, in-sample (based on BIC); OOS, out-of-sample (SDLS loss); OOS|IS, best out-of-sample, limiting to the
best in-sample. A-Loss and M-Loss are the average and median losses. The BIC row contains out-of-sample results
for the best specifications selected in-sample by the information criterion. Individual A-Losses are tested against
the corresponding value on the bottom row (a ˚, ˚˚, ˚˚˚ signifies a better performance - 10%, 5%, 1% significance
- the reverse for the corresponding ˚, ˚˚, ˚˚˚).

Model IS OOS OOS|IS A-Loss˚˚˚ M-Loss

MVAR (1,1) 0.00% 0.00% 0.00% 0.1045˚˚˚ 0.0770

(2,1) 0.60% 7.74% 0.00% 0.1003˚˚˚ 0.0756

MEXP (1,1) 0.00% 2.38% 0.00% 0.1629˚ 0.0818

(2,1) 0.00% 0.60% 0.00% 0.1710˚ 0.0880

MVOL (1,1) 0.00% 0.00% 0.00% 0.0992˚˚˚ 0.0753

(2,1) 11.90% 7.14% 20.00% 0.0961 0.0743

MLOG (1,1) 7.74% 10.12% 15.38% 0.0961 0.0748

(2,1) 51.19% 54.76% 47.67% 0.0939˚˚˚ 0.0736

HAR 4.17% 8.93% 0.00% 0.1009˚˚˚ 0.0751

LOG-HAR 24.40% 8.33% 9.76% 0.0968˚ 0.0744

BIC 30.00% 0.0959 0.0736
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Table 11:

LNLS forecasting loss and estimation criterion. The first three columns report the percentage a specification is
best: IS, in-sample (based on BIC); OOS, out-of-sample (LNLS loss); OOS|IS, best out-of-sample, limiting to the
best in-sample. A-Loss and M-Loss are the average and median losses. The BIC row contains out-of-sample results
for the best specifications selected in-sample by the information criterion. Individual A-Losses are tested against
the corresponding value on the bottom row (a ˚, ˚˚, ˚˚˚ signifies a better performance - 10%, 5%, 1% significance
- the reverse for the corresponding ˚, ˚˚, ˚˚˚).

Model IS OOS OOS|IS A-Loss˚˚˚ M-Loss

MVAR (1,1) 0.00% 0.00% 0.00% 0.1881˚˚˚ 0.1809

(2,1) 0.00% 5.36% 0.00% 0.1824˚˚˚ 0.1759

MEXP (1,1) 0.00% 0.00% 0.00% 0.1961˚˚˚ 0.1808

(2,1) 0.00% 1.19% 0.00% 0.2075˚˚˚ 0.1966

MVOL (1,1) 0.00% 0.60% 0.00% 0.1827˚˚˚ 0.1770

(2,1) 14.29% 6.55% 8.33% 0.1776˚˚˚ 0.1724

MLOG (1,1) 1.79% 10.12% 0.00% 0.1799˚˚˚ 0.1741

(2,1) 68.45% 54.76% 51.30% 0.1756˚˚˚ 0.1699

HAR 2.38% 10.71% 0.00% 0.1825˚˚˚ 0.1754

LOG-HAR 13.10% 10.71% 18.18% 0.1786˚˚˚ 0.1739

BIC 38.00% 0.1765 0.1705

Table 12:

QML forecasting loss and estimation criterion. The first three columns report the percentage a specification is best:
IS, in-sample (based on BIC); OOS, out-of-sample (QML loss); OOS|IS, best out-of-sample, limiting to the best
in-sample. A-Loss and M-Loss are the average and median losses. The BIC row contains out-of-sample results for
the best specifications selected in-sample by the information criterion. Individual A-Losses are tested against the
corresponding value on the bottom row (a ˚, ˚˚, ˚˚˚ signifies a better performance - 10%, 5%, 1% significance -
the reverse for the corresponding ˚, ˚˚, ˚˚˚).

Model IS OOS OOS|IS A-Loss˚˚˚ M-Loss

MVAR (1,1) 8.33% 2.38% 0.00% 1.1181˚˚˚ 1.0965

(2,1) 0.00% 6.55% 0.00% 1.1166 1.0945

MEXP (1,1) 0.00% 1.19% 0.00% 1.1218˚˚˚ 1.0991

(2,1) 0.00% 1.19% 0.00% 1.1233˚˚˚ 1.0995

MVOL (1,1) 17.86% 1.19% 0.00% 1.1165 1.0939

(2,1) 0.00% 5.36% 0.00% 1.1152˚˚˚ 1.0917

MLOG (1,1) 30.36% 17.26% 3.92% 1.1157˚˚˚ 1.0933

(2,1) 0.00% 36.90% 0.00% 1.1147˚˚˚ 1.0908

HAR 12.50% 21.43% 9.52% 1.1166 1.0946

LOG-HAR 30.95% 6.55% 3.85% 1.1159˚˚ 1.0917

BIC 3.00% 1.1166 1.0951

22



Figure 1: Parameters’ density estimates over the six IS periods and all the assets con-
sidered. From left to right, the columns contain the densities of the parameters α1, α2

and β1 for the three specifications reported.
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Figure 2: Autocorrelation functions for the variance processes with parameters equal to
the cross-sectional averages of the LNLS estimates in the most recent subsample (2010-
2014). MVAR, MVOL and MLOG specifications refer to the p2, 1q parameterizations.
Autocorrelations are computed over 106 simulations with additive standardized Gaussian
innovations.
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Table 13:

Tantamount to Table 1 but with no Winsorization of IS data. LS forecasting loss for out-of-sample evaluations: for
each of the four estimation criteria (LS, SDLS, LNLS and QML), in each row we report the number of instances
(and the percentages) when that criterion provides the best performance (by row 28 tickers times 6 periods=168
possible instances). The χ2

3 column reports p-values under the null hypothesis of a uniform best performance across
the four estimation criteria.

Model LS SDLS LNLS QML χ2
3

MVAR (1,1) 26 15.48% 34 20.24% 95 56.55% 13 7.74% ă0.0001

(2,1) 21 12.50% 43 25.60% 81 48.21% 23 13.69% ă0.0001

MEXP (1,1) 31 18.45% 26 15.48% 81 48.21% 30 17.86% ă0.0001

(2,1) 33 19.64% 43 25.60% 32 19.05% 60 35.71% 0.0092

MVOL (1,1) 13 7.74% 29 17.26% 105 62.50% 21 12.50% ă0.0001

(2,1) 14 8.33% 39 23.21% 85 50.60% 30 17.86% ă0.0001

MLOG (1,1) 10 5.95% 37 22.02% 94 55.95% 27 16.07% ă0.0001

(2,1) 15 8.93% 35 20.83% 77 45.83% 41 24.40% ă0.0001

HAR 24 14.29% 39 23.21% 78 46.43% 27 16.07% ă0.0001

LOG-HAR 10 5.95% 33 19.64% 91 54.17% 34 20.24% ă0.0001

Table 14:

Tantamount to Table 2 but with no Winsorization of IS data. SDLS forecasting loss for out-of-sample evaluations:
for each of the four estimation criteria (LS, SDLS, LNLS and QML), in each row we report the number of instances
(and the percentages) when that criterion provides the best performance (by row 28 tickers times 6 periods=168
possible instances). The χ2

3 column reports p-values under the null hypothesis of a uniform best performance across
the four estimation criteria.

Model LS SDLS LNLS QML χ2
3

MVAR (1,1) 13 7.74% 23 13.69% 131 77.98% 1 0.60% ă0.0001

(2,1) 5 2.98% 39 23.21% 124 73.81% 0 0.00% ă0.0001

MEXP (1,1) 16 9.52% 24 14.29% 114 67.86% 14 8.33% ă0.0001

(2,1) 20 11.90% 47 27.98% 56 33.33% 45 26.79% 0.0002

MVOL (1,1) 3 1.79% 18 10.71% 143 85.12% 4 2.38% ă0.0001

(2,1) 1 0.60% 30 17.86% 134 79.76% 3 1.79% ă0.0001

MLOG (1,1) 2 1.19% 30 17.86% 132 78.57% 4 2.38% ă0.0001

(2,1) 4 2.38% 45 26.79% 111 66.07% 8 4.76% ă0.0001

HAR 4 2.38% 37 22.02% 126 75.00% 1 0.60% ă0.0001

LOG-HAR 2 1.19% 26 15.48% 131 77.98% 9 5.36% ă0.0001
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Table 15:

Tantamount to Table 3 but with no Winsorization of IS data. LNLS forecasting loss for out-of-sample evaluations:
for each of the four estimation criteria (LS, SDLS, LNLS and QML), in each row we report the number of instances
(and the percentages) when that criterion provides the best performance (by row 28 tickers times 6 periods=168
possible instances). The χ2

3 column reports p-values under the null hypothesis of a uniform best performance across
the four estimation criteria.

Model LS SDLS LNLS QML χ2
3

MVAR (1,1) 3 1.79% 17 10.12% 148 88.10% 0 0.00% ă0.0001

(2,1) 1 0.60% 12 7.14% 155 92.26% 0 0.00% ă0.0001

MEXP (1,1) 0 0.00% 15 8.93% 152 90.48% 1 0.60% ă0.0001

(2,1) 3 1.79% 28 16.67% 118 70.24% 19 11.31% ă0.0001

MVOL (1,1) 1 0.60% 16 9.52% 151 89.88% 0 0.00% ă0.0001

(2,1) 0 0.00% 8 4.76% 160 95.24% 0 0.00% ă0.0001

MLOG (1,1) 0 0.00% 14 8.33% 154 91.67% 0 0.00% ă0.0001

(2,1) 0 0.00% 16 9.52% 152 90.48% 0 0.00% ă0.0001

HAR 0 0.00% 15 8.93% 153 91.07% 0 0.00% ă0.0001

LOG-HAR 0 0.00% 12 7.14% 156 92.86% 0 0.00% ă0.0001

Table 16:

Tantamount to Table 4 but with no Winsorization of IS data. QML forecasting loss for out-of-sample evaluations:
for each of the four estimation criteria (LS, SDLS, LNLS and QML), in each row we report the number of instances
(and the percentages) when that criterion provides the best performance (by row 28 tickers times 6 periods=168
possible instances). The χ2

3 column reports p-values under the null hypothesis of a uniform best performance across
the four estimation criteria.

Model LS SDLS LNLS QML χ2
3

MVAR (1,1) 13 7.74% 33 19.64% 49 29.17% 73 43.45% ă0.0001

(2,1) 16 9.52% 28 16.67% 39 23.21% 85 50.60% ă0.0001

MEXP (1,1) 14 8.33% 36 21.43% 28 16.67% 90 53.57% ă0.0001

(2,1) 11 6.55% 29 17.26% 19 11.31% 109 64.88% ă0.0001

MVOL (1,1) 21 12.50% 42 25.00% 39 23.21% 66 39.29% ă0.0001

(2,1) 25 14.88% 34 20.24% 30 17.86% 79 47.02% ă0.0001

MLOG (1,1) 25 14.88% 52 30.95% 24 14.29% 67 39.88% ă0.0001

(2,1) 30 17.86% 44 26.19% 22 13.10% 72 42.86% ă0.0001

HAR 13 7.74% 28 16.67% 39 23.21% 88 52.38% ă0.0001

LOG-HAR 26 15.48% 50 29.76% 18 10.71% 74 44.05% ă0.0001
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Table 17:

Tantamount to Table 5 but with no Winsorization of IS data. LS forecasting loss for out-of-sample evaluations: for
each of the four estimation criteria (LS, SDLS, LNLS and QML), in each row we report the average loss (by row 28
tickers times 6 periods=168 possible instances). For every specification, the lowest loss (across estimation criteria)
is reported in bold. The F3,8 column reports p-values under the null hypothesis of a uniform average performance
across the four estimation criteria.

Model LS SDLS LNLS QML F3,8

MVAR (1,1) 3.2963 3.1822 3.1609 3.4345 ă0.0001

(2,1) 3.2135 3.1046 3.1072 3.3609 ă0.0001

MEXP (1,1) 7.2577 11.0253 32.8010 116.4256 0.0764

(2,1) 9.1616 17.8734 70.8608 15825.0020 0.3728

MVOL (1,1) 3.2137 2.9635 2.9166 3.0667 ă0.0001

(2,1) 3.1330 2.9307 2.8909 3.0208 ă0.0001

MLOG (1,1) 3.1247 2.8597 2.8423 2.9809 0.0020

(2,1) 3.1610 2.8436 2.8259 2.9072 ă0.0001

HAR 3.2463 3.1192 3.1141 3.3735 ă0.0001

LOG-HAR 3.4370 2.9193 2.8830 3.3062 0.0321

Table 18:

Tantamount to Table 6 but with no Winsorization of IS data. SDLS forecasting loss for out-of-sample evaluations:
for each of the four estimation criteria (LS, SDLS, LNLS and QML), in each row we report the average loss (by
row 28 tickers times 6 periods=168 possible instances). For every specification, the lowest loss (across estimation
criteria) is reported in bold. The F3,8 column reports p-values under the null hypothesis of a uniform average
performance across the four estimation criteria.

Model LS SDLS LNLS QML F3,8

MVAR (1,1) 0.1342 0.1056 0.1030 0.1110 ă0.0001

(2,1) 0.1246 0.1016 0.0993 0.1073 ă0.0001

MEXP (1,1) 0.1547 0.1316 0.1527 0.2303 0.0026

(2,1) 0.1686 0.1408 0.1701 9.0428 0.3789

MVOL (1,1) 0.1293 0.0996 0.0975 0.1042 ă0.0001

(2,1) 0.1211 0.0972 0.0951 0.1013 ă0.0001

MLOG (1,1) 0.1209 0.0965 0.0950 0.1009 ă0.0001

(2,1) 0.1222 0.0949 0.0933 0.0984 ă0.0001

HAR 0.1256 0.1022 0.0998 0.1073 ă0.0001

LOG-HAR 0.1344 0.0974 0.0955 0.1036 ă0.0001
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Table 19:

Tantamount to Table 7 but with no Winsorization of IS data. LNLS forecasting loss for out-of-sample evaluations:
for each of the four estimation criteria (LS, SDLS, LNLS and QML), in each row we report the average loss (by
row 28 tickers times 6 periods=168 possible instances). For every specification, the lowest loss (across estimation
criteria) is reported in bold. The F3,8 column reports p-values under the null hypothesis of a uniform average
performance across the four estimation criteria.

Model LS SDLS LNLS QML F3,8

MVAR (1,1) 0.3113 0.2031 0.1883 0.2105 ă0.0001

(2,1) 0.2891 0.1948 0.1827 0.2052 ă0.0001

MEXP (1,1) 0.3067 0.2079 0.1976 0.2228 ă0.0001

(2,1) 0.3247 0.2240 0.2140 0.6067 0.3283

MVOL (1,1) 0.2842 0.1905 0.1827 0.2036 ă0.0001

(2,1) 0.2663 0.1850 0.1776 0.1985 ă0.0001

MLOG (1,1) 0.2559 0.1850 0.1798 0.1990 ă0.0001

(2,1) 0.2559 0.1812 0.1756 0.1945 ă0.0001

HAR 0.2914 0.1961 0.1829 0.2048 ă0.0001

LOG-HAR 0.2889 0.1857 0.1785 0.1997 ă0.0001

Table 20:

Tantamount to Table 8 but with no Winsorization of IS data. QML forecasting loss for out-of-sample evaluations:
for each of the four estimation criteria (LS, SDLS, LNLS and QML), in each row we report the average loss (by
row 28 tickers times 6 periods=168 possible instances). For every specification, the lowest loss (across estimation
criteria) is reported in bold. The F3,8 column reports p-values under the null hypothesis of a uniform average
performance across the four estimation criteria.

Model LS SDLS LNLS QML F3,8

MVAR (1,1) 1.1520 1.1226 1.1206 1.1187 ă0.0001

(2,1) 1.1461 1.1211 1.1199 1.1175 ă0.0001

MEXP (1,1) 1.1502 1.1270 1.1275 1.1236 ă0.0001

(2,1) 1.1565 1.1321 1.1319 1.1659 0.3698

MVOL (1,1) 1.1408 1.1181 1.1199 1.1172 ă0.0001

(2,1) 1.1363 1.1176 1.1193 1.1161 ă0.0001

MLOG (1,1) 1.1310 1.1164 1.1201 1.1165 ă0.0001

(2,1) 1.1319 1.1162 1.1197 1.1156 ă0.0001

HAR 1.1468 1.1213 1.1200 1.1173 ă0.0001

LOG-HAR 1.1452 1.1174 1.1205 1.1172 ă0.0001
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Table 21:

Tantamount to Table 9 but with no Winsorization of IS data. LS forecasting loss and estimation criterion. The
first three columns report the percentage a specification is best: IS, in-sample (based on BIC); OOS, out-of-sample
(LS loss); OOS|IS, best out-of-sample, limiting to the best in-sample. A-Loss and M-Loss are the average and
median losses. The BIC row contains out-of-sample results for the best specifications selected in-sample by the
information criterion. Individual A-Losses are tested against the corresponding value on the bottom row (a ˚, ˚˚,
˚˚˚ signifies a better performance - 10%, 5%, 1% significance - the reverse for the corresponding ˚, ˚˚, ˚˚˚).

Model IS OOS OOS|IS A-Loss˚˚˚ M-Loss

MVAR (1,1) 0.00% 1.79% 0.00% 3.2963˚˚˚ 1.2859

(2,1) 0.00% 7.74% 0.00% 3.2135 1.1525

MEXP (1,1) 0.00% 0.60% 0.00% 7.2577 1.2632

(2,1) 0.60% 0.00% 0.00% 9.1616 1.3764

MVOL (1,1) 0.00% 1.19% 0.00% 3.2137 1.1717

(2,1) 0.00% 9.52% 0.00% 3.1330˚ 1.1243

MLOG (1,1) 44.05% 32.74% 31.08% 3.1247˚ 1.1647

(2,1) 39.29% 27.38% 16.67% 3.1610 1.1457

HAR 4.76% 7.74% 0.00% 3.2463 1.1433

LOG-HAR 11.31% 11.31% 42.11% 3.4370 1.1624

BIC 25.00% 3.4519 1.1554

Table 22:

Tantamount to Table 10 but with no Winsorization of IS data. SDLS forecasting loss and estimation criterion. The
first three columns report the percentage a specification is best: IS, in-sample (based on BIC); OOS, out-of-sample
(SDLS loss); OOS|IS, best out-of-sample, limiting to the best in-sample. A-Loss and M-Loss are the average and
median losses. The BIC row contains out-of-sample results for the best specifications selected in-sample by the
information criterion. Individual A-Losses are tested against the corresponding value on the bottom row (a ˚, ˚˚,
˚˚˚ signifies a better performance - 10%, 5%, 1% significance - the reverse for the corresponding ˚, ˚˚, ˚˚˚).

Model IS OOS OOS|IS A-Loss˚˚˚ M-Loss

MVAR (1,1) 0.00% 0.00% 0.00% 0.1056˚˚˚ 0.0817

(2,1) 0.00% 5.36% 0.00% 0.1016˚˚˚ 0.0776

MEXP (1,1) 0.00% 1.19% 0.00% 0.1316˚˚˚ 0.0878

(2,1) 0.00% 0.00% 0.00% 0.1408˚˚˚ 0.0953

MVOL (1,1) 0.00% 0.00% 0.00% 0.0996˚˚˚ 0.0775

(2,1) 5.95% 5.95% 0.00% 0.0972 0.0759

MLOG (1,1) 42.26% 11.90% 9.86% 0.0965 0.0757

(2,1) 30.95% 50.60% 55.77% 0.0949˚˚˚ 0.0752

HAR 4.17% 10.71% 0.00% 0.1022˚˚˚ 0.0775

LOG-HAR 16.67% 14.29% 7.14% 0.0974 0.0752

BIC 22.00% 0.0966 0.0757
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Table 23:

Tantamount to Table 11 but with no Winsorization of IS data. LNLS forecasting loss and estimation criterion. The
first three columns report the percentage a specification is best: IS, in-sample (based on BIC); OOS, out-of-sample
(LNLS loss); OOS|IS, best out-of-sample, limiting to the best in-sample. A-Loss and M-Loss are the average and
median losses. The BIC row contains out-of-sample results for the best specifications selected in-sample by the
information criterion. Individual A-Losses are tested against the corresponding value on the bottom row (a ˚, ˚˚,
˚˚˚ signifies a better performance - 10%, 5%, 1% significance - the reverse for the corresponding ˚, ˚˚, ˚˚˚).

Model IS OOS OOS|IS A-Loss˚˚˚ M-Loss

MVAR (1,1) 0.00% 0.00% 0.00% 0.1883˚˚˚ 0.1815

(2,1) 0.00% 6.55% 0.00% 0.1827˚˚˚ 0.1761

MEXP (1,1) 0.00% 0.00% 0.00% 0.1976˚˚˚ 0.1845

(2,1) 0.00% 1.79% 0.00% 0.2140˚˚˚ 0.1974

MVOL (1,1) 0.00% 0.60% 0.00% 0.1827˚˚˚ 0.1770

(2,1) 7.74% 5.36% 0.00% 0.1776˚˚˚ 0.1724

MLOG (1,1) 1.79% 10.12% 0.00% 0.1798˚˚˚ 0.1742

(2,1) 75.00% 54.76% 51.59% 0.1756˚˚˚ 0.1699

HAR 1.19% 8.33% 0.00% 0.1829˚˚˚ 0.1752

LOG-HAR 14.29% 12.50% 8.33% 0.1785˚˚˚ 0.1739

BIC 39.00% 0.1763 0.1709

Table 24:

Tantamount to Table 12 but with no Winsorization of IS data. QML forecasting loss and estimation criterion. The
first three columns report the percentage a specification is best: IS, in-sample (based on BIC); OOS, out-of-sample
(QML loss); OOS|IS, best out-of-sample, limiting to the best in-sample. A-Loss and M-Loss are the average and
median losses. The BIC row contains out-of-sample results for the best specifications selected in-sample by the
information criterion. Individual A-Losses are tested against the corresponding value on the bottom row (a ˚, ˚˚,
˚˚˚ signifies a better performance - 10%, 5%, 1% significance - the reverse for the corresponding ˚, ˚˚, ˚˚˚).

Model IS OOS OOS|IS A-Loss˚˚˚ M-Loss

MVAR (1,1) 6.55% 2.38% 0.00% 1.1187˚˚˚ 1.0961

(2,1) 0.00% 6.55% 0.00% 1.1175 1.0942

MEXP (1,1) 0.00% 1.19% 0.00% 1.1236˚˚˚ 1.0993

(2,1) 0.00% 1.19% 0.00% 1.1659 1.1048

MVOL (1,1) 16.07% 1.79% 0.00% 1.1172 1.0939

(2,1) 0.00% 4.76% 0.00% 1.1161˚˚˚ 1.0915

MLOG (1,1) 32.74% 17.86% 7.27% 1.1165˚˚˚ 1.0933

(2,1) 2.38% 34.52% 0.00% 1.1156˚˚˚ 1.0911

HAR 13.10% 22.62% 9.09% 1.1173 1.0942

LOG-HAR 29.17% 7.14% 4.08% 1.1172 1.0916

BIC 4.00% 1.1176 1.0933
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