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1 Introduction

A key aspect of active portfolio management is forecasting the weights that optimize

portfolio holdings with respect to some representative measure of the investor’s

preferences. Since Markowitz (1952), these forecasts of the optimal portfolio weights

are generally derived from the forecasts of conditional moments of asset returns. The

availability of realized measures from high-frequency data allows for model-based and

model-free forecasting of conditional variance-covariance (var-cov) matrices and, by

successive manipulation thereof, of optimal portfolio weights: see, e.g., Aı̈t-Sahalia

et al. (2010), Christensen et al. (2010), Barndorff-Nielsen et al. (2011), Zhang (2011)

and Bibinger et al. (2014), among others.

The model-based approaches are inspired by the logic behind Multivariate-GARCH

(MGARCH) models1 with the substantial difference that information is extracted

from realized measures rather than low-frequency estimates of the second moments,

such as the outer product of the vector of returns (or their residuals after some

filtration). Examples of these approaches are the fractionally integrated processes of

Chiriac and Voev (2011), the vector autoregressions of Callot et al. (2017) and the

specifications based on the Wishart distribution of Gourieroux et al. (2009), Golosnoy

et al. (2012), Noureldin et al. (2012) and Jin and Maheu (2010), among others. Within

this framework it is not uncommon to separately model conditional variances2 and

correlation matrices to achieve a good balance between parameter parsimony and

richness in the description of the second order dynamics.

On the other hand, model-free approaches, also referred to as nonparametric,

impose driftless random-walk dynamics to the conditional second moments, and

thus eliminate the parameter estimation problem altogether. However, for large

cross-sectional dimensions, the lag-1 realized var-cov matrices may result in extreme

portfolio weights, poor portfolio performance out-of-sample (OOS) and even positive-

semidefiniteness (psd). To mitigate this problem, various shrinkage approaches are

available: the most direct is to impose constraints on the portfolio weights3 as in

Jagannathan and Ma (2003), El Karoui (2010), Fan et al. (2012) and Gandy and

1For a review of MGARCH models see Bauwens et al. (2006).
2Amongst the various approaches to volatility modeling that make use of realized measures are the

Heterogeneous Autoregressive model (HAR) of Corsi (2009) and Corsi et al. (2012), the Multiplicative
Error Model (MEM) of Engle (2002b) and Brownlees et al. (2012) and the HEAVY of Shephard and
Sheppard (2010), as a particular case of the vector-MEM of Cipollini et al. (2013). For a survey see
Andersen et al. (2006) and Park and Linton (2012), among others.

3While the target is usually defined by portfolio weights with no short-sale (positivity) constraints,
other alternatives are also possible, i.e. equal weights.
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Veraart (2013). Shrinkage of the realized var-cov matrix has been proposed by Fan

et al. (2008), Fan et al. (2011), Ledoit and Wolf (2012), Tao et al. (2011), Tao et al.

(2013), Fan et al. (2016) and Äıt-Sahalia and Xiu (2017), to name a few. Ideas behind

these approaches may also be traced back to the MGARCH literature and consist

of imposing a factor structure to the returns and a sparse error var-cov matrix with

blocks defined by some characteristics of the assets such as sector, industry, etc.

In this paper we introduce the Dynamic Conditional Weights (DCW), an approach

which emerges when expressing the autoregressive representation of the portfolio-

variance optimization problem in terms of a time-independent weighting matrix. The

result is a specification in which the forecast of the conditional portfolio weights derives

from a linear function of past conditional weights and past realized (hence observable)

weights. When associated with suitable estimation procedures, the main advantage of

DCW with respect to standard model-based approaches is the circumvention of the

curse of dimensionality problem. With respect to the model-free approaches, DCW does

not require the imposition of particular var-cov matrix structures nor discretionary

choices about the level of shrinkage.

Focusing on the minimum-variance allocation, empirical results show that DCW

outperforms model-based and model-free approaches in terms of out-of-sample portfolio

variance, certainty equivalence and turnover (De Miguel et al., 2009). Since transaction

costs may significantly alter the outlook in the performance of the approaches, we

introduce the Break-Even Transaction Costs as a more comprehensive measure of

forecasting performance confirming the goodness of the DCW allocation in terms of

minimal portfolio variance and turnover. Furthermore, since the model-based and

model-free literatures have proceeded on somewhat parallel tracks,4 a contribution of

this paper is a comparison across approaches, assessing the quality of the respective

forecasts and portfolio allocations.

The paper is organized as follows. Section 2 introduces the optimal portfolio

allocation problem. The model-based and model-free approaches are discussed in

Section 3. Section 4 introduces the direct modeling of the portfolio weights. Measures

of performance, data and results are presented in Section 5. Section 6 concludes.

4For example, the most recent contributions to the model-free literature, such as Fan et al. (2016)
and Aı̈t-Sahalia and Xiu (2017), do not benchmark their approaches to any of the model-based.
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2 Minimum Variance Portfolio

Following Aı̈t-Sahalia and Xiu (2017), Fan et al. (2016), Behr et al. (2013) and

Fan et al. (2012), Fan et al. (2008), among others,5 we focus on minimizing portfolio

variance, which allows for a clean evaluation of the contribution of modeling and

forecasting second moments to the optimal allocation. Furthermore, the minimum-

variance portfolio has often been found to perform equally well as, if not better than,

the mean-variance portfolio, even when measured in terms of Sharpe ratios: see

De Miguel et al. (2009) and De Miguel et al. (2014).

Letting Ωt be the time (t−1)–conditional variance-covariance matrix of the (M×1)

vector of returns rt in excess of the risk-free rate, the optimal relative weights that

minimize portfolio variance are given by:

ωt =
ι′Ω−1

t ι

ι′Ω−1
t ι

(1)

where ι is the (M × 1) unit vector. Such weights are optimal for investors maximizing

the following quadratic utility:

Vt = −γ
2
ω′tΩtωt s.t. ι′ωt = 1 (2)

where γ is the investor’s risk-aversion. Although inconsequential in the utility specifi-

cation of equation (2), the level of risk-aversion γ becomes relevant in the presence of

transaction costs: see Section 5.5. While the model-based and the model-free literature

have focused on generating forecasts of Ωt to plug in equation (1), the proposed DCW

will model and forecast ωt directly.

Throughout the paper we consider the portfolio allocation problem of a day trader

type of investor who closes positions at the end of each trading day. By so doing, we

can ignore pre–market or after–hours exchanges which follow different price formation

dynamics and for which high-frequency observations are not available. Moreover, it

allows us to neatly bypass all potential problems arising from short positions that

stretch over long periods of time.

5Other examples are Bednarek and Patel (2018), Maillet et al. (2015), Candelon et al. (2012),
Scherer (2011), Clarke et al. (2011), etc.
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3 Projecting Covariances

3.1 Model-Based Approaches

Let St be a realized measure of the var-cov matrix of M assets at time t and

Ωt ≡ Et−1[St] be its conditional expectation in (t−1). Model-based approaches provide

dynamic structures for Ωt in terms of lags of Ωt and St. In general, model-based

approaches inspired by the most popular MGARCH models generate positive definite

(pd) predictions Ωt under the weakest condition that the realizations St−1 are psd of

rank one6. However, there is an inherent trade-off to the modeling of pd matrices:

parsimony of model parameters versus richness in the description of the second order

dynamics. In fact, the number of parameters to be jointly estimated is generally a

power function of the cross-sectional dimension M . For example, in the Dynamic

Conditional Correlations of Engle (2002a), with targeting7 the order is M2, M1 and

M0 for the full, diagonal and scalar matrices of parameters, respectively. Nevertheless,

the dimensionality problem may be circumvented altogether by the element-by-element

modeling of the conditional variance-covariance matrices in the order prescribed by

the Sequential Conditional Correlations (SCC) decomposition of Palandri (2009).

Representative specifications of the model-based class to be considered in the

empirical analysis that follows are Volatility Timing (VT) and Dynamic Conditional

Correlations (DCC) based on realized measures. While both approaches model the

conditional variances of the returns, only DCC also models the conditional correlation

matrix while VT sets it equal to the identity matrix. We model the M conditional

variances using the benchmark HAR specification of Corsi (2009). Let s2
i,t be a

realized measure of the variance of asset i at time t and σ2
i,t ≡ Et−1[s2

i,t] its conditional

expectation at (t− 1), then:

σ2
i,t = αi,0 + αi,1 · s2

i,t−1 + αi,2 ·
1

5

5∑
j=1

s2
i,t−j + αi,3 ·

1

22

22∑
j=1

s2
i,t−j

which links the conditional variance σ2
i,t to past realizations over daily, weekly and

monthly time intervals.

In DCC, the conditional var-cov matrix is decomposed into standard-deviation Dt

and correlation Rt matrices: Ωt = DtRtDt. The elements of Dt are populated with

6Predictions may fail to be pd for extremely large psd realizations for which Ωt ∝ St−1.
7Variance targeting, proposed by Engle and Mezrich (1996), is the setting of the model’s uncondi-

tional variance to its sample counterpart. In the multivariate case, targeting is particularly convenient
as it eliminates M(M + 1)/2 parameters from variance specifications and M(M − 1)/2 parameters
from correlation specifications.

4



the square-root of the HAR variances, while the elements of Rt are modeled jointly

using the Dynamic Conditional Correlation (1,1) specification8 with targeting:

Rt =
(
P − APA′ −BPB′

)
+ APt−1A

′ +BRt−1B
′, (3)

where P is the sample average of the realized correlation matrices Pt and A and

B are either full, diagonal or scalar matrices of parameters. With a perspective on

portfolios constructed over a vast number of assets, it should be noted that, with

parameters of order M0, scalar DCC with targeting is the only scalable specification

of the three. We estimate model parameters both by least-squares and Gaussian

quasi-maximum-likelihood9. Finding that the former is orders of magnitude faster

than the latter and delivers superior OOS results, we only report and discuss the

findings pertaining to the least-squares estimation.

3.2 Model-Free Approaches

Underlying the model-free approaches is the assumption that the realized var-cov

matrices follow a driftless random-walk process from which Ωt = St−1. Although

this assumption eliminates estimation and scalability problems, the literature on

volatility (GARCH, MGARCH and Realized Variance models) has invariably shown

how stationary specifications consistently outperform the random-walk, both in-sample

(IS) and OOS. Furthermore, in contrast to the model-based specifications, problems do

arise using the random-walk when St−1 is psd. With respect to this issue, Aı̈t-Sahalia

and Xiu (2017) adopt the following three approaches.

The first consists of aggregating daily realized measures into k-period (for an

arbitrary k, e.g. bimonthly) var-cov matrices, which delivers pd k-period measures

unsuitable at the daily level. Furthermore, the exclusion of the overnight movements,

not captured by the realized measures, while irrelevant from the perspective of a day

trader, may accumulate undesirable effects over k-periods.

The second is to express the psd St−1 as the sum of two rank-deficient matrices:

the first arising from a factor structure10 of the data, as in Fan et al. (2008), Fan et al.

8Although (1,1) specifications are well suited in the empirical applications, as highlighted by
Hansen and Lunde (2005), further lags may be considered.

9DCC estimated by quasi-maximum-likelihood is the HEAVY of Noureldin et al. (2012) without
the overnight components.

10Factor decompositions have been studied extensively in the MGARCH literature and generated
the Factor-GARCH family of models: see Diebold and Nerlove (1989), Engle et al. (1990), Alexander
and Chibumba (1997), Sentana (1998), among others. Although, due to the curse of dimensionality,
Factor-GARCH models have not been particularly successful in dealing with both flexibility and
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(2011), Fan et al. (2016) and Aı̈t-Sahalia and Xiu (2017), and the second being the

residual var-cov matrix. Calibrating the shrinkage of the latter toward a diagonal or

block-diagonal structure11 allows to achieve pd of the recombined matrix.

The third consists of controlling for portfolio exposure EC (where EC = 1 and

EC =∞ are the no short-selling, respectively, the unconstrained portfolios) by adding

the constraint
∑M

i=1 |wi,t| ≤ EC to the optimization problem in equation (2). Proposed,

among others, by Jagannathan and Ma (2003), exposure constraints help reduce the

effects of estimation and forecast errors, portfolio turnover and associated transaction

costs. However, exposure constraints alone are not enough to turn the optimization

problem in (2) from ill- to well-behaved when var-cov matrices are rank-deficient.

For what matters here, as a benchmark specification for the model-free class we

adopt the raw realized St−1 with exposure constraints. In so doing, we rely on some

findings - presented independently by Fan et al. (2016, Figure 5), and Aı̈t-Sahalia

and Xiu (2017, Figure 6) - showing that factor structures and shrinkages do not bring

about significant improvements in the OOS results. Following on their outcome that

the optimal exposure is EC = 2, we investigate exposure constraints between 1 and

2, i.e. EC = {1.00, 1.25, 1.50, 1.75, 2.00}, keeping the case of no constraints on the

weights (EC =∞) as a reference. In fact, as EC increases, transaction costs become

larger and larger; thus EC > 2 is suboptimal as the resulting portfolios exhibit larger

OOS variances and higher transaction costs. By the same token, values of EC < 2

should not be discarded a priori as a larger OOS variance may be offset, in some

measure, by lower transaction costs.

4 Dynamic Conditional Weights Modeling

Dynamic Conditional Weights (DCW) is an approach directed at the daily time

series of realized optimal portfolio weights

νt ≡ (ι′S−1
t ι)−1S−1

t ι. (4)

The weights νt are observable in t (from the observability of the realized St) and

minimize the portfolio realized variance ν ′tStνt. The time series profile of νt for a

few tickers may be graphically appraised in Figure 1 (Apple, Boeing, Johnson and

feasibility, the new idea of the model-free literature is to decompose the realizations into factors and
residual components to shrink.

11Block-diagonal structures based on characteristics such as sector, industry, etc. had already been
investigated in the MGARCH literature: for example, see Billio et al. (2006) and Billio and Caporin
(2009).
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Johnson, and Merck): they display different ranges (same scale is used across) around

a changing level, venture into negative territory and, as other financial time series, are

characterized by persistence and some short-lived variability.

In order to define the dynamic structure of the DCW we move from an autoregressive

representation of the portfolio-variance minimization problem12 and we express it in

terms of a time-independent weighting matrix. To see the details, let us recall that ωt is

the vector of weights minimizing the portfolio conditional variance d (Ωt, ωt) ≡ ω′tΩtωt,

where Ωt = Et−1 [St] is the time (t−1)–conditional expectation of St. Furthermore, let

{d (St−i, ωt) ≡ ω′tSt−iωt}
∞
i=0 be the sequence of stationary realized portfolio variances,

given the portfolio weights ωt. Thus, the autocorrelation structure of d (St, ωt) may

be satisfactorily represented as an AR(r), so that an expression for d (Ωt, ωt) can be:

d (Ωt, ωt) = ct +
r∑
i=1

θt,id (St−i, ωt) , (5)

where ct and θt,i (shorthand for c(ωt) and θi(ωt) respectively) are such that ct ≥ 0 and

θt,i ≥ 0 ∀i to satisfy necessary and sufficient conditions for the positivity of d (Ωt, ωt).

Adding and subtracting νt−i to ωt, the generic element d (St−i, ωt) may be rewritten

as:

d (St−i, ωt) = [νt−i + (ωt − νt−i)]′ St−i [νt−i + (ωt − νt−i)]

=
(
ι′S−1

t−iι
)−1

+ 2
(
ι′S−1

t−iι
)−1

ι′ (ωt − νt−i) + (ωt − νt−i)′ St−i (ωt − νt−i)

=
(
ι′S−1

t−iι
)−1

+ (ωt − νt−i)′ St−i (ωt − νt−i) (6)

with ι′ (ωt − νt−i) = 0 due to the portfolio weights adding to unity by construction.

Similarly, in view of the fact that:

1 =
(
ι′S−1

0 ι
)−1

+ (ωt − ν0)′ S0 (ωt − ν0) ,

for some symmetric and pd matrix S0 and ν0 =
(
ι′S−1

0 ι
)−1

S−1
0 ι, equation (5) may be

rewritten as:

d (Ωt, ωt) = d0 + (ωt − ν0)′ ctS0 (ωt − ν0) +
r∑
i=1

(ωt − νt−i)′ θt,iSt−i (ωt − νt−i)

= d0 +m(ωt)
′Wtm(ωt) (7)

12In the Appendix A.1 we derive identical DCW dynamics from the maximization of a quadratic
utility dependent on portfolio returns rt. The corresponding realized portfolio weights, which are a
function of both returns and var-cov matrix, allow for a seamless merger with the literature focusing
on estimation-error reduction in the vector of average returns: see, e.g., the Bayes-Stein shrinkage
portfolio of Jorion (1985) and Jorion (1986), the Bayesian portfolio based on belief in an asset-pricing
model of Pastor (2000) and Pastor and Stambaugh (2000), the portfolio implied by asset-pricing
models with unobservable factors of MacKinlay and Pastor (2000), and the three-fund portfolio of
Kan and Zhou (2007).
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where d0 is the sum of all the terms that do not depend on ωt, the vector

m(ωt) ≡ ((ωt − ν0)′, (ωt − νt−1)′, . . . , (ωt − νt−r)′)′ ,

and the matrix Wt is block-diagonal with blocks (ctS0, θt,1St−1, . . . , θt,rSt−r).

Minimizing m(ωt)
′Wtm(ωt) wrt ωt in such a context loops back to the usual solution

ωt = (ι′Ω−1
t ι)−1Ω−1

t ι, whose implementation requires the separate specification of the

dynamics of Ωt.

To avoid modeling Ωt directly, our suggested solution is to apply the mini-

mization problem to the expression m(ωt)
′Wm(ωt) with a time-independent W , so

that the associated first order conditions may be written as Qm(ωt) = 0 with

Q = (Q0, Q1, Q2, . . . , Qr) where Qi are (M ×M) matrices that do not depend on ωt.

Solving for ωt gives:

ωt = ã+
r∑
i=1

Ãiνt−i

where parameters are in the (M × 1) vector ã and in the (M ×M) matrices Ãi.

By analogy to other financial time series models, one can replace this AR(r)

representation (presumably needing a large r) with a more parsimonious representation

for the vector of expected portfolio weights ωt as an ARMA(p, q)13:

ωt = κ+

p∑
i=1

A∗i νt−i +

q∑
j=1

B∗jωt−j (8)

which gives the DCW functional form of the optimal ωt, given the time-independent

W .

Finally, taking expectations of both sides of equation (8) and letting ω ≡ E[νt] it

follows that:

ωt =

[
I −

p∑
i=1

A∗i −
q∑
j=1

B∗j

]
ω +

p∑
i=1

A∗i νt−i +

q∑
j=1

B∗jωt−j (9)

The specification using full matrix coefficients guarantees ι′ωt = 1 for all t only if,

beside ι′ω = 1 and ι′ω0 = 1, we impose the restrictions A∗′i ι = aiι and B∗′j ι = bjι for all

i and j (i.e., in each coefficient matrix all columns must add to the same value). This

condition is satisfied if the coefficient matrices are scalar but not in the diagonal case,

for which the normalization ωt/(ι
′ωt) is used. Notice that, regardless of the structure

13While, in general, a (p, q) parameterization does not necessarily coincide with the (∞) parame-
terization, just like in the case of a GARCH(p, q) vs an ARCH(∞), the former will provide more
stable estimates and accurate forecasts than the latter, all the more when truncated.
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of the coefficient matrices, DCW requires the modeling of only M dynamic components

(the portfolio weights) in contrast to standard model-based approaches which require

modeling of M conditional variances and M(M − 1)/2 conditional correlations.

The parameters in (9) may be estimated using various approaches. Two of

them are worth discussing briefly: in the first, estimates are obtained by minimizing

the sample portfolio variance itself. This approach has the appealing feature of

selecting the model parameters that IS minimize the same function used to evaluate

the OOS performance. Its main drawback is that the objective function has to be

optimized with respect to all parameters jointly, making the estimation particularly

cumbersome and difficult to apply to large cross-sectional dimensions M . The second

approach is least-squares estimation, performed by the IS minimization of the square

distance between predictions ωt and realizations νt. When associated to a diagonal

parameterization of the matrices A∗i and B∗j , it further allows for the equation-by-

equation ARMA estimation of the model parameters. Therefore, in view of its

applicability to a vast number of assets M , in what follows we focus on the diagonal

DCW specification estimated by least-squares. Furthermore, we will concentrate

on the DCW(1,1) parameterization, with a twofold motivation: to provide a fair

comparison to the model-based DCC(1,1) and to work with a baseline specification

that is easy to scale to a large number of assets. It follows that the empirical

performance of DCW, presented in Section 5, is likely to improve if a case-by-case

best IS specification is derived from any combination of standard selection techniques

such as Information Criteria, pruning statistically insignificant parameters, and Box-

Jenkins–type procedures based on the properties of the residual ACFs and PACFs.

5 Empirical Application

The data used for portfolio selection pertain to M = 28 of the 30 constituents of

the Dow Jones 30 Index. The sample has 11 years of high-frequency daily observations

from 01/03/2005 to 12/31/2015 for a total of 2768 days. Two series, with tickers TRV

and V, are not included in the study because they are not available for the full sample

period14. Tickers of the 28 included stocks are: AAPL, AXP , BA, CAT, CSCO, CVX,

DD, DIS, GE, GS, HD, IBM, INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT,

NKE, PFE, PG, UNH, UTX, VZ, WMT, XOM. The raw tick-by-tick TAQ data are

14TRV data are available only from 02/26/2007 while V data are missing from 08/04/2006 to
02/26/2007.
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cleaned using the procedure of Brownlees and Gallo (2006) from which realized kernel

covariances are computed following the approach of Barndorff-Nielsen et al. (2011).

Details on this procedure may be found in Appendix A.2. The sample is split into six

5-year IS periods: 2005-2009 to 2010-2014, with about 1260 observations each. Each

model specification is estimated IS and ensuing OOS forecasts are computed for the

following year (about 252 observations).

In Section 5.1, we discuss the portfolio weights forecast performance for the diagonal

DCW(1,1) of equation (9), the scalar DCC(1,1) of equation (3) and the plain RW

of Section 3.2. DCW and DCC with full matrices of coefficients are not considered

due to their limited applicability to large cross-sectional dimensions. On the other

hand, scalar DCW and diagonal DCC are estimated but not reported as their OOS

performance is inferior to that of diagonal and scalar, respectively. Instead, the choice

of plain RW as benchmark of the model-free approaches is motivated by the findings

of Fan et al. (2016), Figure 5, and Aı̈t-Sahalia and Xiu (2017), Figure 6, which show

that none of the proposed alternatives consistently outperforms the plain Ωt = St−1

in attaining the minimum OOS portfolio variance.

In Sections 5.2-5.6 we comment on the resulting portfolio performances in terms

of various standard measures as in Bollerslev et al. (2018) and the novel break-even

transaction costs.

5.1 Portfolio Weights

Table 1 reports descriptive statistics of the equation-by-equation ARMA estimates

of the parameters of the diagonal DCW(1,1) of equation (9). Persistence, estimated by

A∗ +B∗, is in-line with that of realized variances, with B∗ substantially larger than

A∗. Specifically, over the 168 estimates, the maximum A∗ is 0.35 while the minimum

B∗ is approximately 0.5. Descriptive statistics for the IS R2 may be found in Table 2.

Over the six IS periods, portfolio weights exhibit different degrees of predictability

with R2 ranging from 4% to 50%. Overall predictability of realized portfolio weights is

attested by the average R2 which ranges between 20% and 28%, depending on the IS

period. Given that each realized weight is made of 756 covariances and 28 variances,

reported R2 are found to be in line with those reported by the model-based literature

for the modeling of realized variances (higher) and covariances (lower).

We measure OOS performance in terms of R2 as in Welch and Goyal (2008):

R2 = 1− MSEA
MSEN
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where the MSEA is the OOS mean-squared forecasting-error of the model whose

weights forecasts are being evaluated and MSEN is the reference measure. Notice

that, in comparing the performance of competing specifications, the rankings of the

OOS R2 are unaffected by the choice of MSEN . Here, we calculate MSEN with

respect to the ex-post OOS mean of the portfolio weights. Summary statistics of

DCW performance are presented in Table 3, with forecasts explaining 10% of the

OOS variability in the realized portfolio weights, on average. While for some stocks,

DCW forecasts explain more than 20%, for others they are as low as −7%. OOS R2

associated to portfolio weights forecasts from DCW, DCC and RW are summarized

by the kernel density estimates in Figure 4. It clearly emerges that the OOS weights

forecasts of DCW are superior to those of DCC, which exhibit R2 centered at zero and

a long left tail. The approximately symmetric distribution of RW OOS R2, centered

around −40%, provides further evidence of the relatively poor performance of random

walk dynamics.

To see how the DCW with EC =∞ forecasts behave in practice, we organize one–

step ahead results for individual stocks by taking their absolute value and rescaling

them to sum up to one. The outcome is then aggregated by sector and ordered

according to the average importance over the period considered. The graphical

representation of the cumulative relative importance of sectors (value) is influenced by

the corresponding cardinality (i.e. value = average×# of tickers); each sector position

is readable as the difference from the lower line (the top line being 1). Over the

entire period 2010–2015 (Figure 2), the relative importance of Services is fairly stable

around 0.23; the next sector is Consumer Goods whose importance oscillates around

0.20, although it shows a higher variability and a temporary diminished importance

during 2013; Healthcare is next 0.15 and it shows a diminishing importance with a

drastic reduction of its values right after the beginning of 2013. Technology has an

average importance of 0.16 with a fairly stable value over the whole period; Basic

Materials has a relative importance of 0.08; Industrial Goods has an overall value 0.12:

its relative importance seems to increase after the beginning of 2013 for about one

year, and then, again, during the first half of 2015. Finally, Financials has a relative

importance of 0.06. Breaking the results by year (Figure 3), we get a more detailed

view of the evolution of this relative importance: first and foremost the confirmation

that Services and Consumer Goods alternate in the top position (4, respectively 2

times). Financial is always in the weakest position (with a substantial gain in 2015);

Health Care is fairly prominent in the first four years (reaching the second ranking
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in 2013), but it rapidly deteriorates in 2014 and even more so in 2015. Technology

jumps to the third position in 2014 and 2015.

5.2 Portfolio Variance (PV)

One measure of OOS performance is the average portfolio variance15 that emerges

from choosing model κ:

PVκ =
1

T

T∑
t=1

ω̂′κ,tStω̂κ,t

where ω̂κ,t is the time t forecast of the optimal portfolio weights from model κ, St is

the time t realized variance-covariance matrix and t = 1, . . . , T is the OOS period.

From Table 416, VT produces smaller portfolio variances than those of the Naive

equally weighted portfolio (by between 7.10% and 17.86%, with an average of 14.34%

over the six-year period). Overall, the model-free RW exhibits PV improvements

between 24.61% (EC ≤ ∞) and 29.04% (EC ≤ 1.50). For any value of EC, the

portfolio variances of the model-based DCC are lower than those of RW by between

1.53% (EC ≤ 1.25) and 9.08% (EC ≤ ∞). DCW portfolio variance without exposure

constraints (EC ≤ ∞) is the smallest. It is smaller than that of RW for any value of

EC, by between 0.80% (EC ≤ ∞) and 13.30% (EC ≤ 1.25). It is smaller than that

of DCC for all EC above 1.50 (by between 1.16% when EC ≤ 1.50 and 4.65% when

EC ≤ ∞), but larger for all EC below 1.25 (between 0.74% when EC = 1.25 and

1.53% when EC = 1.00). Should the investor be able to select the EC parameter ad

hoc, as is the case for some parameters of the model-free approaches, RW portfolio

variance would be reduced by 3.44% by DCC and 7.89% by DCW.

5.3 Certainty Equivalent Return (CEQ)

Another common measure of OOS performance is the certainty equivalent return.

It is defined as the certain return that an investor is willing to accept to switch from

model κ1 to κ2:

CEQκ1→κ2 = γ · 1

2
(PVκ1 − PVκ2) (10)

15A common measure of the OOS portfolio performance is the Sharpe ratio which highlights the
reward-to-risk. However, given that in this study we concentrate exclusively on the contribution of
the conditional second moments to optimal portfolio formation, we deem it more appropriate to use
a measure of OOS performance that captures second moment effects only.

16From here on, in our comments we focus in particular on the overall results reported in the
column labeled All, unless otherwise stated.
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Reporting CEQκ1→κ2 for γ = 1 allows for the immediate calculation of the certainty

equivalent return for any value of risk-aversion17 simply by rescaling the reported

value by γ. While the rankings it generates within this framework are no different

from those of PV, CEQ may still be helpful in quantifying the differences in portfolio

variances by translating them into returns.

As shown in Table 5, VT exhibits OOS certainty equivalences, with respect to Naive,

that range between 0.95 and 6.84 average daily basis points and 3.63 basis points over

the whole OOS period. Switching from VT to RW the certainty equivalence ranges

from 5.33 (EC ≤ ∞) to 6.29 (EC ≤ 1.50) basis points. The switch from RW to DCC

also exhibits positive CEQ for any exposure constraint and between 0.24 (EC ≤ 1.25)

and 1.48 (EC ≤ ∞) basis points. The switch from DCC to DCW exhibits positive

CEQ for EC at and above 1.50, between 0.17 (EC ≤ 1.50) and 0.69 (EC ≤ ∞) basis

points, but -0.11 and -0.24 basis points for (EC ≤ 1.25) and (EC = 1.00), respectively.

Again, should the investor be able to select the EC parameter ad hoc, switching

from RW to DCC and DCW would correspond to 1.48 and 2.17 daily basis points,

respectively.

5.4 Turnover (TO)

In this study, where the focus is on daily trading with no overnight holdings, we

have zero portfolio weights prior to rebalancing. Hence, average turnover is given by

TOκ =
1

T

T∑
t=1

M∑
j=1

|ω̂κ,j,t|

and captures the average portfolio exposure ECκ of forecasting model κ: in the

optimal portfolio allocation literature it is commonly reported, as it is of relevant

interest for investors. This measure, which does not include assets’ returns, is derived

in Appendix A.3 where we also show its precision up to two orders of magnitude.

In Table 6, Naive and VT have turnovers of 1.00, by construction. Of the other

strategies, for any exposure constraint EC, RW exhibits the highest turnover18 TO,

followed by DCC and, last, DCW. In the presence of transaction costs, the implications

for the investor are that RW gives rise to the most expensive allocations, followed by

those of DCC and DCW.
17For example, De Miguel el al. (2009) consider risk-aversion coefficients of γ = {1, 2, 3, 4, 5, 10}.
18Turnover is a reflection of the dispersion of the resulting portfolio weights and, in the presence of

estimation and forecasting errors, it may be taken as an indirect measure of their magnitude.
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5.5 Break-Even Transaction Costs (BETC)

To provide a comprehensive view of portfolio performance which includes both PV

and the associated transaction costs from TO, we introduce break-even transaction

costs as a novel measure of portfolio performance. Specifically, BETC identifies the

transaction costs for which two portfolio allocations are indifferent and consecutively

the range over which one allocation is preferred to the other. As shown in Appendix

A.4, with markup transaction costs τ , average transaction costs TCκ for model κ may

be approximated up to two orders of magnitude by:

TCκ ≈ 2τ · TOκ

which, combined with equation (10), allows to derive the net certainty equivalent

return:

NCEQκ1→κ2 = γ · 1

2
(PVκ1 − PVκ2) + 2τ (TOκ1 − TOκ2) (11)

The break-even transaction cost (BETC) is defined as the value of τ/γ > 0 that sets

equation (11) to zero:

BETCκ1→κ2 = −1

4
· PVκ1 − PVκ2
TOκ1 − TOκ2

,

and hence it combines PV and TO to identify transaction costs per units of risk-aversion

(τ/γ) for which one approach is preferred to another. BETC are reported in Table

7: entries may be simply multiplied by γ to obtain transaction costs corresponding

to risk-aversions different from unity. VT is preferred to Naive for any level of the

transaction costs τ : smaller PV and equal TO. RW is preferred to VT for any τ only

with no short-selling constraints EC = 1.00. In the other cases, RW is preferred to VT

for greater risk-aversion γ and non-negligible transaction costs. Both DCC and DCW

are preferred to RW for any γ and τ . This is due to the fact that their (estimated)

shrinkage produces smaller PV and lower TO, both indicative of portfolio weights of

higher quality. DCW is always preferred (any τ/γ) to DCC for EC at and above 1.50.

It is interesting to note that the year 2010 contains some influential data connected to

the flash crash of May 6 which impact on the results: while we opted for not arbitrarily

correcting for those specific values, the overall results on 2011–2015 confirm that DCW

is to be preferred19 to RW and DCC for any EC and τ/γ.

19Excluding 2010, for the triplet RW, DCC and DCW we have PV = {0.293206, 0.289647, 0.287181},
for EC ≤ 1.25, and PV = {0.307414, 0.301346, 0.300040}, for EC = 1.00. Similarly, TO =
{1.23, 1.23, 1.09}, for EC ≤ 1.25, and TO = 1 for all three when EC = 1.00. Hence, there is
no τ/γ for which RW is preferred to DCC or DCC is preferred to DCW.

14



5.6 Utility Levels

In Figure 5 we report the utility levels20 associated with the various approaches.

Specifically, for a given strategy, we begin by plotting the utilities associated with

a given strategy as a function of τ/γ for the various exposure constraints EC. We

then construct the envelope of each strategy as a function of τ/γ. The envelopes are

piecewise linear curves (the utilities are linear in τ/γ) which identify the maximal

utility attainable by each strategy for the ex post optimal exposure constraint EC.

Finally, we report the envelope differences of RW, DCC and DCW with respect to VT.

For low τ/γ, high EC allocations are preferred as they produce portfolios with smaller

variances. On the other hand, when τ/γ is high, low EC allocations are preferred

as the increase in portfolio variance is more than compensated by the decrease in

the associated transaction costs. From the first graph of Figure 5, DCC and DCW

outperform RW for any τ/γ, while DCC is preferred to DCW for τ/γ greater than 3

basis points. Once again, excluding the year 2010 produces slightly different results

as shown in the bottom panel of Figure 5: DCW is preferred to both DCC and RW,

for any τ/γ. Furthermore, as τ/γ increases and EC = 1.00 becomes optimal for all

approaches, the allocation gains of DCW over DCC tend to vanish while their difference

with respect to RW remains sizeable.

6 Conclusions

In this paper we motivate the use of Dynamic Conditional Weights by deriving

its dynamic structure by expressing the autoregressive representation of the portfolio-

variance minimization problem in terms of a time-independent weighting matrix. We

evaluate portfolio weights forecasts from the proposed approach against those of

representative model-based and model-free specifications which forecast conditional

var-cov matrices to calculate the optimal weights. Specifically, the scalar DCC with

HAR variance dynamics as a manageable representative model for the model-based

class and the daily RW as the benchmark specification for the model-free class. We find

the DCW portfolio allocations to have lower variance PV and turnover TO than DCC

and RW, for any value of the exposure constraints EC. The proposed BETC criterion,

which allows the joint evaluation of strategy performance and implementation costs,

20In the presence of transaction costs, the utility function of equation (2) becomes Vt = −2τTOκ−
0.5γPVκ. Reported utility levels are those associated to the rank-preserving transformation Ṽt =
−2(τ/γ)TOκ − 0.5PVκ.
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highlights that, for any realistic level of transaction costs, investors would switch from

RW to DCC and, with the exception of the no short-selling case EC = 1.00, would

switch from DCC to DCW.

While measures of portfolio performance are of primary interest in a portfolio

management framework, our analysis suggests not to overlook the forecasts of the

portfolio weights. In fact, considering that portfolio measures not only capture how

close the weights forecasts are to the realizations, but also their diversification effects,

a given strategy may perform relatively well because it provides one of the infinitely

many good diversifications despite poorly forecasting the optimal weights. This may

be the case for the RW at the heart of the model-free approaches: considering the lack

of evidence supporting random walk dynamics for variances and covariances and the

relatively poor performance of the associated weights forecasts, performance of the

RW portfolio allocations may mostly reflect diversification.

The Dynamic Conditional Weights approach is readily extendible (Appendix A.1)

to the general case of a quadratic utility maximization to incorporate the advances in

the reduction of estimation-error in the vector of average returns as in De Miguel et al.

(2014), Bouaddi and Taamouti (2013), Behr et al. (2013), Behr et al. (2012), Kirby

and Ostdiek (2012), Tu and Zhou (2011), De Miguel et al. (2010) and Brandt et al.

(2009), among others. Another noteworthy extension of the proposed approach is

the one that ensues when the weighting matrix is allowed to exhibit time-dependence.

The resulting DCW dynamics will display a higher degree of flexibility by allowing

for time-varying parameters, a route suggested by Bollerslev et al. (2016) to alleviate

model misspecification in the context of var-cov modeling. We leave these and other

refinements to future research.
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that outperform näıve diversification, Journal of Financial and Quantitative Analysis,

47, 437–467.

20



Ledoit, O. and Wolf, M. (2012) Nonlinear shrinkage estimation of large-dimensional

covariance matrices, Annals of Statistics, 40, 1024–1060.

MacKinlay, A. and Pastor, L. (2000) Asset pricing implications for expected returns

and portfolio selection, The Review of Financial Studies, 13, 883–916.

Maillet, B., Tokpavi, S. and Vaucher, B. (2015) Global minimum variance portfolio

optimisation under some model risk: A robust regression-based approach, European

Journal of Operational Research, 244, 289 – 299.

Markowitz, H. (1952) Portfolio selection, Journal of Finance, 7, 77–91.

Noureldin, D., Shephard, N. and Sheppard, K. (2012) Multivariate high-frequency-

based volatility (HEAVY) models, Journal of Applied Econometrics, 27, 907–933.

Palandri, A. (2009) Sequential conditional correlations: Inference and evaluation,

Journal of Econometrics, 153, 122–132.

Park, S. and Linton, O. (2012) Realized volatility: Theory and applications, in

Handbook of Volatility Models and their Applications (Eds.) L. Bauwens, C. Hafner

and S. Laurent, John Wiley & Sons, pp. 319–345.

Pastor, L. (2000) Portfolio selection and asset pricing models, The Journal of Finance,

55, 179––223.

Pastor, L. and Stambaugh, R. F. (2000) Comparing asset pricing models: An invest-

ment perspective, The Journal of Financial Economics, 56, 335–381.

Scherer, B. (2011) A note on the returns from minimum variance investing, Journal

of Empirical Finance, 18, 652–660.

Sentana, E. (1998) The relation between conditional heteroskedastic factor models

and factor GARCH models, The Econometrics Journal, 1, 1–9.

Shephard, N. and Sheppard, K. (2010) Realising the future: forecasting with high

frequency based volatility (HEAVY) models, Journal of Applied Econometrics, 25,

197–231.

Tao, M., Wang, Y., Yao, Q. and Zou, J. (2011) Large volatility matrix inference via

combining low-frequency and high-frequency approaches, Journal of the American

Statistical Association, 106, 1025–1040.

21



Tao, M., Wang, Y. and Zou, H. (2013) Optimal sparse volatility matrix estimation for
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A Appendix

A.1 Dynamic Conditional Weights for Quadratic Utility

Consider the problem of an investor forecasting portfolio weights ωt in (t− 1) to

maximize the quadratic utility:

V (rt, St, ωt) = ω′trt −
γ

2
ω′tStωt

where rt and St are the realized vector of returns and var-cov matrix, respectively.

Let {V (rt−i, St−i, ωt)}∞i=0 be the time series of realized utilities V (rt−i, St−i, ωt) =

ω′trt−i−0.5γωtSt−iωt, reconstructed at time t, given the portfolio weights ωt. Following

the same steps of Section 4, assume the autocorrelation structure of V (rt, St, ωt) is

captured, with the desired degree of precision, by an AR(r) and take Et−1 of both

sides of the equality:

V (Et−1(rt),Ωt, ωt) = ct +
r∑
i=1

θt,iV (rt−i, St−i, ωt) (12)

where ct ≥ 0 and θt,i ≥ 0, ∀i to guarantee positivity of the conditional utility

V (Et−1(rt),Ωt, ωt). Let δt,i = (ωt − νt−i) where νt−i = γ−1S−1
t−irt−i is the vector of

realized optimal portfolio weights that maximize V (rt−i, St−i, νt−i), then the generic

element V (rt−i, St−i, ωt) may be rewritten as:

V (rt−i, St−i, ωt) = ω′trt−i −
γ

2
ν ′t−iSt−iνt−i − γδ′t,iSt−iνt−i −

γ

2
δ′t−iSt−iδt−i

= ω′trt−i −
γ

2
ν ′t−iSt−iνt−i − δ′t,irt−i −

γ

2
δ′t−iSt−iδt−i

= ν ′t−irt−i −
γ

2
ν ′t−iSt−iνt−i −

γ

2
(ωt − νt−i)′ St−i (ωt − νt−i)

Similarly, in view of the fact that:

1 =
1

2γ
r′0S

−1
0 r0 −

γ

2
(ωt − ν0)′ S0 (ωt − ν0)

for some vector r0 and some symmetric and pd matrix S0 with ν0 = γ−1S−1
0 r0, equation

(12) may be rewritten as:

V (Et−1(rt),Ωt, ωt) = d0 −
γ

2
ct (ωt − ν0)′ S0 (ωt − ν0)

− γ

2

r∑
i=1

θt,i (ωt − νt−i)′ St−i (ωt − νt−i)

where d0 is the sum of all the terms that do not depend on ωt. Following mutatis

mutandis the steps of Section 4 leads to the same dynamic specification of ωt as in

equation (9) with the only difference being in the definition of the realized weights

νt−i.
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A.2 Data Handling

For each trading day t, let {rj}Jj=1 be the collection of the (M × 1) return-vectors

resulting from price-vectors synchronized according to Barndorff-Nielsen et al. (2011).

The daily realized kernel variance-covariance matrix is then computed as:

S =
l∑

h=−l

k

(
h

H

)
Γh

where l = min(H, J − 1) and H is:

H =
1

M

M∑
i=1

3.51 · J3/5

(2J)−1
∑J

j=1 r
2
i,j∑J̃

j=1 r̃
2
i,j

2/5

with ri,j are the i-th elements of the vectors rj. Similarly, r̃i,j are the i-th elements

of the vectors r̃j where {r̃j}J̃j=1 is the collection of return-vectors in the j-th bin of

equally spaced 15 minute intervals. Γh and the Parzen kernel k(x) are given by:

Γh =



J∑
j=h+1

rjr
′
j−h if h ≥ 0

J∑
j=−h+1

rj+hr
′
j if h < 0

; k(x) =


1− 6x2 + 6x3 if x ∈ [0, 1/2]

2(1− x)3 if x ∈ (1/2, 1]

0 otherwise

A.3 Turnover Approximation

For our day trader type of investor, who opens (closes) all positions at the beginning

(end) of the trading day, the average turnover of forecasting model κ over T trading

days is given by:

2TOκ =
1

T

T∑
t=1

M∑
j=1

|ω̂κ,j,t|+
∣∣ω̂cκ,j,t∣∣

where ω̂cκ,j,t is the value of the portfolio weight ω̂κ,j,t at the end of the trading day.

Value of the weights at close is related to value at open by ω̂cκ,j,t = (1 + rocj,t) · ω̂κ,j,t,
where rocj,t is the open-close return. It follows that turnover may be rewritten as:

2TOκ =
1

T

T∑
t=1

M∑
j=1

(2 + rocj,t) |ω̂κ,j,t|

Let r be the daily weighted average return over the entire time series and across all

assets:

r ≡
1

T ·M
∑T

t=1

∑M
j=1 |ω̂κ,j,t| · r oc

j,t

1
T ·M

∑T
t=1

∑M
j=1 |ω̂κ,j,t|
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Then:
1

T

T∑
t=1

M∑
j=1

r oc
j,t |ω̂κ,j,t| = r · 1

T

T∑
t=1

M∑
j=1

|ω̂κ,j,t|

from which it follows that turnover associated with model κ may be rewritten as:

2TOκ = (2 + r) · 1

T

T∑
t=1

M∑
j=1

|ω̂κ,j,t|

≈ 2 · 1

T

T∑
t=1

M∑
j=1

|ω̂κ,j,t|

given that r is usually a very small number. The main advantage of this approximation

is not to rely on portfolio returns: since none of the competing models is optimized

with respect to returns, including them in the measures of performance would only

amount to adding noise to the analysis. In addition, to have an idea of the goodness

of our approximation, consider the case in which the weighted average return is p over

a year’s time, which corresponds to the daily average r ≈ 0.004 · p. It follows that the

percentage approximation error ξ of our turnover measure is ξ = −p(500 + p)−1. Thus,

even in the presence of a 100% annual return, the percentage error of our measure of

turnover is less than 0.2%.

A.4 Transaction Costs Approximation

The approximation of average transaction cost associated with model κ follows

directly from that of turnover:

TCκ = τ · 2TOκ

≈ 2τ · 1

T

T∑
t=1

M∑
j=1

|ω̂κ,j,t|
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Table 1:

Summary statistics of diagonal DCW parameter estimates over the five IS periods. The, equation by equation, sum
of parameters A∗ +B∗ captures persistence.

A∗ B∗ A∗ +B∗ A∗ B∗ A∗ +B∗

Mean 0.16585 0.77946 0.94531 5% perc. 0.10437 0.60701 0.85147

Minimum 0.07146 0.49990 0.77485 95% perc. 0.24781 0.85961 0.98286

Maximum 0.35466 0.89259 0.98924 Std. Dev. 0.04287 0.07248 0.04051

Table 2:

Summary statistics of IS R2 for the diagonal DCW specification.

2005-09 2006-10 2007-11 2008-12 2009-13 2010-14

Mean 0.26927 0.28780 0.28042 0.23246 0.21310 0.20822

Minimum 0.08605 0.09961 0.07387 0.07048 0.04422 0.06710

Maximum 0.46056 0.49641 0.51059 0.48423 0.43555 0.41336

5% perc. 0.09369 0.11291 0.11389 0.07357 0.05967 0.07272

95% perc. 0.44997 0.48114 0.48190 0.44085 0.41778 0.39195

Std. Dev. 0.10319 0.11272 0.09711 0.09085 0.09794 0.09212

Table 3: Summary statistics of OOS R2 for the diagonal DCW specification. The OOS total sums of squares
are calculated from the OOS averages.

2010 2011 2012 2013 2014 2015

Mean 0.12704 0.12773 0.08409 0.05893 0.10469 0.12473

Minimum -0.06260 -0.02693 -0.05123 -0.04390 -0.06979 -0.03695

Maximum 0.33471 0.40899 0.37336 0.21401 0.25642 0.36444

Std. Dev. 0.09520 0.10447 0.09785 0.06753 0.08564 0.09834

5% perc. -0.03601 -0.01474 -0.04148 -0.04130 -0.05593 -0.02137

95% perc. 0.32166 0.36616 0.31808 0.20497 0.24894 0.33456
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Table 4:

Average OOS daily variances PV of the portfolio strategies. For Naive and VT, exposure EC is 1.00 by
definition. For RW, DCC and DCW results are presented without exposure constraints (EC ≤ ∞), with
EC ≤ {2.00, 1.75, 1.50, 1.25} and no short-selling (EC = 1.00).

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Naive 0.765768 0.940376 0.337162 0.247769 0.265182 0.477073 0.505796

VT 0.629024 0.776975 0.277726 0.228755 0.242804 0.443216 0.433283

EC ≤ ∞

RW 0.410682 0.440253 0.220276 0.249329 0.223546 0.415370 0.326658

DCC 0.363172 0.424437 0.199700 0.211095 0.206934 0.376261 0.297010

DCW 0.368602 0.404762 0.180981 0.200283 0.190229 0.353792 0.283197

EC ≤ 2.00

RW 0.398498 0.429203 0.215218 0.241141 0.216777 0.386768 0.314685

DCC 0.363755 0.424242 0.199700 0.211045 0.206517 0.375678 0.296899

DCW 0.373493 0.418564 0.181196 0.199287 0.190273 0.359317 0.287114

EC ≤ 1.75

RW 0.389666 0.431561 0.209392 0.235116 0.211803 0.381235 0.309880

DCC 0.365464 0.429841 0.199629 0.210688 0.205754 0.374272 0.297687

DCW 0.379125 0.428851 0.181590 0.198752 0.190562 0.362648 0.290351

EC ≤ 1.50

RW 0.387697 0.441894 0.202447 0.227201 0.206624 0.378370 0.307464

DCC 0.370794 0.442001 0.198367 0.209836 0.204315 0.372569 0.299733

DCW 0.390087 0.445715 0.183172 0.198466 0.191394 0.368115 0.296260

EC ≤ 1.25

RW 0.396078 0.466123 0.198625 0.218991 0.202397 0.379484 0.310385

DCC 0.385483 0.467761 0.196376 0.207064 0.202168 0.374460 0.305651

DCW 0.410382 0.478605 0.187242 0.199859 0.193726 0.376030 0.307905

EC = 1.00

RW 0.416423 0.509316 0.206378 0.223728 0.205606 0.391573 0.325618

DCC 0.399477 0.510957 0.201358 0.208639 0.201557 0.383752 0.317734

DCW 0.435044 0.516830 0.193881 0.205725 0.196801 0.386463 0.322585
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Table 5:

Average OOS daily certainty equivalent CEQ, expressed in basis points, relative to the change of strategy indicated
by →. CEQ are calculated for a risk-aversion coefficient of γ = 1 and may be computed for different values of γ
by simple multiplication. For Naive and VT, exposure EC is 1.00 by definition. For RW, DCC and DCW results
are presented without exposure constraints (EC ≤ ∞), with EC ≤ {2.00, 1.75, 1.50, 1.25} and no short-selling
(EC = 1.00).

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Naive→ VT 6.84 8.17 2.97 0.95 1.12 1.69 3.63

EC ≤ ∞

VT→ RW 10.92 16.84 2.87 -1.03 0.96 1.39 5.33

RW→ DCC 2.38 0.79 1.03 1.91 0.83 1.96 1.48

DCC→ DCW -0.27 0.98 0.94 0.54 0.84 1.12 0.69

EC ≤ 2.00

VT→ RW 11.53 17.39 3.13 -0.62 1.30 2.82 5.93

RW→ DCC 1.74 0.25 0.78 1.50 0.51 0.55 0.89

DCC→ DCW -0.49 0.28 0.93 0.59 0.81 0.82 0.49

EC ≤ 1.75

VT→ RW 11.97 17.27 3.42 -0.32 1.55 3.10 6.17

RW→ DCC 1.21 0.09 0.49 1.22 0.30 0.35 0.61

DCC→ DCW -0.68 0.05 0.90 0.60 0.76 0.58 0.37

EC ≤ 1.50

VT→ RW 12.07 16.75 3.76 0.08 1.81 3.24 6.29

RW→ DCC 0.85 -0.01 0.20 0.87 0.12 0.29 0.39

DCC→ DCW -0.96 -0.19 0.76 0.57 0.65 0.22 0.17

EC ≤ 1.25

VT→ RW 11.65 15.54 3.96 0.49 2.02 3.19 6.14

RW→ DCC 0.53 -0.08 0.11 0.60 0.01 0.25 0.24

DCC→ DCW -1.24 -0.54 0.46 0.36 0.42 -0.08 -0.11

EC = 1.00

VT→ RW 10.63 13.38 3.57 0.25 1.86 2.58 5.38

RW→ DCC 0.85 -0.08 0.25 0.75 0.20 0.39 0.39

DCC→ DCW -1.78 -0.29 0.37 0.15 0.24 -0.14 -0.24
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Table 6:

Average daily OOS daily turnover TO of the portfolio strategies. For Naive and VT, exposure EC is 1.00 by
definition. For RW, DCC and DCW results are presented without exposure constraints (EC ≤ ∞), with EC ≤
{2.00, 1.75, 1.50, 1.25} and no short-selling (EC = 1.00).

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Naive 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VT 1.00 1.00 1.00 1.00 1.00 1.00 1.00

EC ≤ ∞

RW 2.06 2.09 1.84 1.83 1.80 2.17 1.97

DCC 1.68 1.74 1.49 1.43 1.47 1.69 1.59

DCW 1.49 1.55 1.34 1.27 1.21 1.42 1.38

EC ≤ 2.00

RW 1.87 1.84 1.77 1.73 1.70 1.83 1.79

DCC 1.67 1.69 1.49 1.43 1.46 1.66 1.57

DCW 1.42 1.45 1.32 1.23 1.18 1.29 1.32

EC ≤ 1.75

RW 1.71 1.69 1.67 1.62 1.60 1.67 1.66

DCC 1.61 1.61 1.49 1.42 1.44 1.60 1.53

DCW 1.36 1.39 1.28 1.20 1.15 1.23 1.27

EC ≤ 1.50

RW 1.49 1.49 1.49 1.46 1.43 1.46 1.47

DCC 1.47 1.46 1.43 1.38 1.38 1.45 1.43

DCW 1.26 1.29 1.22 1.15 1.11 1.14 1.19

EC ≤ 1.25

RW 1.25 1.25 1.25 1.22 1.22 1.22 1.23

DCC 1.25 1.25 1.25 1.22 1.20 1.22 1.23

DCW 1.13 1.15 1.12 1.07 1.05 1.05 1.09

EC = 1.00

RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DCC 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DCW 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 7:

Average OOS daily break-even transaction costs BETC, expressed in basis points, relative to the change of strategy
indicated by →. BETC are calculated for a risk-aversion coefficient of γ = 1 and may be computed for different
values of γ by simple multiplication. < and > define the range of transaction costs for which the strategy on the
right of→ is preferred to that on the left. The entry A (N) indicates that the strategy to the right of→ is preferred
for Any (No) value of τ/γ. For Naive and VT, exposure EC is 1.00 by definition. For RW, DCC and DCW results
are presented without exposure constraints (EC ≤ ∞), with EC ≤ {2.00, 1.75, 1.50, 1.25} and no short-selling
(EC = 1.00).

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Naive→ VT A A A A A A A

EC ≤ ∞

VT→ RW <5.15 <7.72 <1.71 N <0.60 <0.60 <2.75

RW→ DCC A A A A A A A

DCC→ DCW <0.71 A A A A A A

EC ≤ 2.00

VT→ RW <6.62 <10.35 <2.03 N <0.93 <1.70 <3.75

RW→ DCC A A A A A A A

DCC→ DCW A A A A A A A

EC ≤ 1.75

VT→ RW <8.43 <12.53 <2.55 N <1.29 <2.31 <4.67

RW→ DCC A A A A A A A

DCC→ DCW >1.37 A A A A A A

EC ≤ 1.50

VT→ RW <12.31 <17.10 <3.84 N <2.10 <3.52 <6.69

RW→ DCC A A A A A A A

DCC→ DCW >2.30 >0.55 A A A A A

EC ≤ 1.25

VT→ RW <23.29 <31.09 <7.91 <1.11 <4.59 <7.24 <13.36

RW→ DCC A N A A A A A

DCC→ DCW >5.19 >2.71 A A A >0.23 >0.40

EC = 1.00

VT→ RW A A A A A A A

RW→ DCC A N A A A A A

DCC→ DCW N N A A A N N
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Figure 1: Realized portfolio weights over the entire 2005-2015 period for Apple (top-left),
Boeing (top-right), Johnson & Johnson (bottom-left) and Merck (bottom-right).
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Figure 2: Graphical representation of cumulative relative importance of sectors over the
entire period 2010–2015. One–step ahead weight forecasts for individual stocks in the
DJ30 from DCW are taken in absolute value and then rescaled to sum up to one. Sector
values are obtained by aggregation and then ordered (bottom to top) according to the
average relative importance; single sector positions are readable as a difference from the
lower line (top line =1).
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Figure 3: Graphical representation of cumulative relative importance of sectors by year
2010 to 2015. One–step ahead weight forecasts for individual stocks in the DJ30 from
DCW are taken in absolute value and then rescaled to sum up to one. Sector values
are obtained by aggregation and then ordered (bottom to top) according to the average
relative importance; single sector positions are readable as a difference from the lower line
(top line =1).

32



Figure 4: Density representation of OOS R2 of forecasted portfolio weights across assets
and time periods.
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Figure 5: Graphical representation of utility envelopes of RW, DCC and DCW with
respect to VT. On the horizontal axis are the transaction costs per units of risk-aversion
τ/γ and on the vertical axis are the utilities measured with respect to that of VT. The
first graph represents the entire period 2010–2015, while the second graph excludes the
year 2010.
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