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Abstract

In linear mixed models the selection of fixed and random effects using a testing hypoth-

esis approach brings up several problems. In this paper, we consider the so called bound-

ary problem and the confounding impact of effects from one set of coefficient in the other

set. These problems are addressed by defining two test statistics based on ordinary least

squares obtained by dividing two quadratic forms, one that contains the effect and another

that does not. As a result, the test statistics are sufficiently general, easy to compute, with

known finite sample properties. The test on randomness has a known exact distribution under

the null and alternative hypothesis, the test on fixed effect is approximated by a noncentral

F−distribution. Because of its importance in the selection variable approach, the goodness-

of-approximation is examined in-depth in final simulations.

keywords: Selection procedure; Hypothesis testing; Linear Mixed Models; Generalized

F-distribution;

1 Introduction

Linear mixed-effect models are widely used to analyze longitudinal and repeated measurements

data because of their flexibility and relative simplicity. In particular, they are used in the form of

random coefficient regression model for analyzing the specification of the within-unit covariance

structure. In this context, deciding which random or fixed coefficient should be included in the

model becomes a fundamental problem.

In order to address the issue of which model is more suitable, one might use standard model

selection measures based on information criteria such as the widely used Akaike Information
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Criteria (AIC; Akaike (1973)), the Bayesian Information Criteria (BIC; Schwarz (1978)) the con-

ditional Akaike Information Criterion (cAIC, Vaida and Blanchard (2005)). These approaches

are based on the choice of models that minimize an estimate of a specific criterion which usually

involves a trade-off between the closeness of the fit to the data and the complexity of the model;

see Muller et al. (2013) for a comprehensive review of model selection in linear mixed models.

All these methods deals with the problem of selection working simultaneously with both fixed

and random component resulting computationally burdensome. One approach to overcoming this

computational problem is penalized likelihood methods (dating back to Tibshirani (1996)). These

procedures treat the selection problem via a separate selection approach to avoid the impact of

effects from one set of coefficient in the other set. Often the fixed effects are selected by first

keeping all the random effects in the models, then the random effects are selected by keeping

selected fixed effects from the previous step. The two steps are implemented iteratively until the

parameters in the model no longer change. Bondell et al. (2010), Ibrahim et al. (2011) proposed

separate penalties for the fixed and random effects that are summed together. Fan and Li (2012),

Peng and Lu (2012), Lin et al. (2013) proposed two-stage methods where the fixed and random

effects selection are performed independently. Note that to remove random effects from a model,

entire rows and columns of the covariance matrix must be eliminated to form the final working

model. Accounting for these issues, the unknown covariance matrix of the random effects is usu-

ally replaced with a suitable proxy matrix (see for example an orthogonalization-based approach

proposed by Wu et al. (2017)).

Although the penalized likelihood methods may avoid the need to search through the entire

model space, it may remain computationally intensive. A Bayesian method was proposed by

Chen and Dunson (2003) by selecting a prior with mass at zero for the random effect variances.

A further complication of these methods is how to define a ”good” penalty function (for a dis-

cussione see Fan and Li (2001)) and how to perform the shrinkage appropriately. Finally, the

results obtained can be interpreted only asymptotically, assigning to simulations the analysis of

the behaviour in small samples.

Because the selection of terms is closely related to hypothesis testing, the choice of fixed and

random coefficients to be included in the model could be conducted by assessing the significance

of appropriate test statistics. This approach brings up several problems. Testing randomness is

associated to the fact that the null hypothesis places the parameter on the border of the parametric
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space. Testing fixed parameters is related to the confounding impact on the statistic of the random

effect that must be ”removed” to avoid a misleading interpretation of the significance. We face

the same type of problem encountered in penalty function approaches.

We agree with some authors (Rocha and Singer, 2017) that none of the proposed procedures

should be used as the only procedure to select the fixed and random coefficients in linear mixed

models. In fact they should be taken as complementary and the decision should be based on all

available information. The goal of this work is to propose an additional (hopefully useful) in-

strument for such purposes. Specifically, we show how to choose fixed and random coefficients

through ordinary least squares estimators, defining two simple statistics based on a ratio between

a statistic which contains the effect and another that does not. More precisely, the test for random-

ness is constructed by comparing the sample covariance matrix of ordinary least squares, ols, (see

Gumpertz and Pantula (1989)) with the same matrix under the hypothesis of zero random effect.

As a result, the statistic has a known distribution for any sample size and captures randomness

indirectly avoiding the boundary problem. The statistic for fixed effects is a ratio between the

square of the quadratic mean of h−th element of the sample average of ols (which contains both

fixed and random effects) and the h−th diagonal element of the sample covariance matrix of ols

(which captures random effect only). The ratio: (random eff ect + f ixed eff ect)/random eff ect

defines a test statistic with random effect removed. The distribution of this statistic is approxi-

mated with a noncentral F−distribution. A selection procedure may be conducted through a joint

analysis on the significance of these two tests.

The use of ordinary least squares makes the approach simple and may be seen as an attempt to

overcome the boundary and confounding problems of testing procedures. Furthermore, point es-

timates and (approximate) confidence intervals can be constructed as complementary information

useful for choosing variables.

Section 2 introduces some notations and defines the two stage linear mixed model. Section 3

defines the statistics for testing randomness and fixed effects. Section 4 discusses the density

function of the test statistics. Section 5 introduces the simulations outlining the limits of the anal-

ysis. This section is divided into two subsections. Subsection 5.1 describes the base scenarios

for all simulations. Subsection 5.2 study and discuss the goodness-of-approximation of the non-

central F−distribution. Appendix A examines and defines the exact density function of the test

statistic for randomness. Appendix B deals with the approximated distribution.
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2 Two-Stage Random Effects: Model and notations

The linear mixed model for longitudinal data can be described as follows: yi = X∗i β ∗+Zid∗i +ui,

i= 1, . . . ,n where yi is a ti×1 vector of repeated measurements, X∗i is a ti× l matrix of explanatory

variables, linked to the unknown l×1 fixed effect β ∗, Zi are the observed ti×q covariates linked

to the unknown q× 1 random effects d∗i ∼ N (0,Ωq), Ωq is a q× q positive semidefinite matrix,

Ωq � 0, ui ∼ N
(
0,σ2Iti

)
. The ui j’s are iid so can be thought of as measurement error. We assume

that ui and d∗i are independent.

Following Rocha and Singer (2017) we re-express the linear mixed model as a two-stage

random coefficients model Laird (2004),

yi = Xiβi +ui, i = 1, . . . ,n (1)

where Xi is a matrix with k columns obtained from the elements of X∗i and Zi; the columns of Xi

are those common to X∗i and Zi plus those that are unique either to X∗i or Zi. The j−th element of

βi is given by β ∗j +d∗ji if column j is common to X∗i and Zi, by β ∗j if column j is unique to X∗i or

by d∗ji if column j is unique to Zi. We can therefore write βi = β +di, where null elements may

be added to the original β ∗ and d∗i vectors so that they have the same dimension.

Regarding (1) as a two stage model, it follows that yi|d∗i ∼ N(Xiβi;σ2Iti) is the first stage

model and can be considered as a set of separate regression models for each unit. So in the first

stage we may be be able to obtain estimates of βi and σ2 using just the data from the i− th sub-

ject, i.e., bi = (X ′i Xi)
−1X

′
i yi and s2 = 1

df ∑
n
i=1(ti− k)s2

i , with (ti− k)s2
i = y′i

(
Iti−Xi(X ′i Xi)

−1X ′i
)

yi

and df = Nt − nk = ∑
n
i=1(ti− k). The estimated parameters, bi’s, are independent and normally

distributed with mean βi and variance-covariance matrix σ2(X ′i Xi)
−1.

The βi’s are random variables; to specify population parameters, at Stage 2 we assume that

βi ∼N(β ,Ωk), where Ωk consists of Ωq augmented with null rows and/or columns corresponding

to the null elements in the random vectors di. Let βhi = βh +dhi be the h-th component of the

vector βi where βh is the h-th component of β and dhi is the h-th element of di such that dhi ∼

N(0,ωhh), ωhh the h-th diagonal element of Ωk. Setting ωhh = 0 is equivalent to setting all the

elements in the h−th column and h−th row of the matrix Ωk to zero. This means that a single

parameter controls the inclusion/exclusion of the random effects in the model.
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3 Test statistics

The test statistics defined in this section are based on ols, bi ∼
(
β ,σ2(X ′i Xi)

−1 +Ωk
)
. Let denote

with bhi the h-th element of the vector bi. The sample average of ols estimators, b = 1
n ∑

n
i=1 bi,

is normally distributed with expected value β and variance var(b) = σ2

n V + 1
n Ωk where V =

n−1
∑

n
i=1(X

′
i Xi)

−1. Let bh be the h-th element of b, and vhh the h-th main diagonal element of V .

According to the assumptions of the model, (bi−b)∼ N( 0 , σ2Vii +
n−1

n Ωk) with

Vii =
1
nV + n−2

n (X ′i Xi)
−1, E(bi−b)(b j−b)′ = σ2Vi j +hi jΩk, Vi j =

1
nV − 1

n(X
′
i Xi)

−1− 1
n(X

′
jX j)

−1

and hi j =
n−1

n
if i = j, hi j = −1

n if i 6= j. Vii and Vi j are k× k matrices. Let denote with V

the nk× nk matrix with (i, j)-th block Vi j. V is a positive semidefinite and symmetric matrix

with rank (n− 1)k. We recall that the h−th element of the vector βi is βhi = βh +dhi that is

βhi = f ixed + random. Then, we define two statistics, one for testing randomness ”removing”

the fixed effect. Is E(βhi−βh) = 0 for any βh ∈ R? The other statistic is defined for testing the

nullity of the fixed effect ”removing” randomness from βhi.

1. Is βhi a random parameter? Hypotheses: H0 : ωhh = 0
⋂

βh ∈ R , H1 : ωhh > 0
⋂

βh ∈ R.

Observe that ωhh = 0 implies dhi = 0 with probability 1 and βhi = βh ∈ R.

We construct a test statistic based on Sbh = (n−1)−1
∑

n
i=1
(
bhi−bh

)2
which is the h-th di-

agonal element of the sample covariance matrix of ols proposed by (Gumpertz and Pantula,

1989), Sb = (n−1)−1
∑

n
i=1
(
bhi−bh

)(
bhi−bh

)′
. We recall that E(Sb) = σ2V +Ωk then

E (Sbh |H1) = σ2vhh +ωhh and E (Sbh |H0) = σ2vhh. By comparing these two expected val-

ues we capture the randomness, by working on the difference, bhi−bh we remove the fixed

effect from the statistic. The test statistic developed in this work is an estimate of the ratio

of this two variances

E
[ 1

n−1 ∑
n
i=1(bhi−bh)

2|H1
]

E
[ 1

n−1 ∑
n
i=1(bhi−bh)2|H0

] = σ2vhh +ωhh

σ2vhh
= 1+

ωhh

σ2vhh
= θh

The statistic is otained from the ratio Sh = 1
n−1 ∑

n
i=1(bhi− bh)

2/(σ2vhh) by replacing σ2

with the sample variance s2. We have,

Th =
1

n−1
∑

n
i=1(bhi−bh)

2

s2 vhh
(2)
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The parameter θh may be interpreded as a measure of the relative change of the total vari-

ance of bhi with respect to the variance of bhi under H0. In this sense it is a relative measure

of randomness. We call rp =
ωhh

σ2vhh
randomness parameter.

The expected value of Th is given by

E(Th) = E
(

Th
df σ2

df σ2

)
= E (Sh )E

(
df σ2

df s2

)
=

df
df −2

θh with df =
n

∑
i=1

(ti− k)

Since E (Sbh |H1) = σ2vhh+ωhh, the difference ω̂hh = Sbh− s2vhh is an unbiased estimate of

ωhh, θ̂h = 1+
ω̂hh

s2vhh
= Th and

df −2
df

Th is an unbiased estimator of θh.

When ωhh = 0, θh = 1 and Th takes values around E(Th) =
df

df−2 . If ωhh > 0 then ωhh
σ2 > 0,

θh is greater than 1 and Th deviates from its expected value. The farther ωhh
σ2 > 0 is from

zero, the greater are θh and Th, everything else being equal. The greater Th the stronger the

evidence against H0. The parameter, rp, plays the same role as a noncentrality parameter

of an F-distribution. As we shall see, if rp increases, θh increases too, the shape of the

distribution of Th shifts to the right and a larger percentage of the curve moves to the right

of the critical value.

θh can be seen as the unknown parameter of the model to be tested and estimated. Testing

randomness is equivalent to testing θh. We can restate the null and alternative hypotheses

as follows: H0 : θh = 1(H0 : θh ≤ 1) and H1 : θh > 1 with Th taken as a test statistic. H0 is

rejected if Th is ”much” greater than one.

2. Is βh = 0? Hypotheses: H0 : βh = 0
⋂

ωhh ≥ 0, H1 : βh > 0
⋂

ωhh ≥ 0.

We develop a test based on bh. The quadratic mean under H1, E(n b
2
h|H1) is compared by a

ratio with E(n b
2
h|H0) = E (Sbh),

E(n b
2
h | H1)

E(n b
2
h | H0)

=
σ2vhh +ωhh +n β 2

h
σ2vhh +ωhh

= 1+
nβ 2

h
σ2vhh +ωhh

= 1+ncp

where ncp =
nβ 2

h
σ2vhh +ωhh

is a noncentrality parameter. The numerator incorporates both

random and fixed effect, the ratio removes the random effect. The statistic we propose is an

estimate of the above ratio,

Fh =
n b

2

Sbh

=
n b

2

(n−1)−1 ∑
n
i=1
(
bhi−bh

)2 (3)
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When βh = 0 the test statistic Fh takes values around the expected value of an F−distribution.

If βh 6= 0 then Fh deviates from its expected value. The greater β 2
h the further away the peak

of the distribution from zero.The bigger the ncp, the more the alternative sampling distribu-

tion moves to the right and the more power we have. The larger the noncentrality parameter

the greater the power. The null hypothesis is rejeted for large value of Fh.

The test statistics Th and Fh can be jointly used for a selection variable approach. Tab.: 1

shows by row the significane of Th and by column the significance of Fh,

Table 1: Selection of fixed and random coefficients
in a linear mixed model

Significance of Fh
Significance of Th yes No

Yes βhi = βh +dhi βhi = dhi θh > 1, ∀ βh
No βhi = βh βhi = 0 θ = 1, ∀ βh

βh 6= 0, θh ≥ 1 βh = 0, θh ≥ 1

The Table can be read by column or by row. Let consider the cell (yes, yes). Reading by row,

yes means that Th is significative: we reject the hypothesis, H0, ”no randomness” (θh > 1, ∀ βh)

then likely βhi is random. By column, yes implies the significance of Fh (βh 6= 0, θh ≥ 1). The

cell (yes, yes), (significance of both tests) means that presumably βhi consists of both a fixed and

a random component: βhi = βh +dhi.

4 Density functions

Appendix A describes the exact density function of Th both under the null and the alternative

hypotheses. In this section we discuss and develop the density function of Fh.

Let us divide and multiply expression Fh (formula (3) ) by σ2vhh +ωhh and analyze the nu-

merator and the denominator. According to the assumptions of the model,

n b
2
h

σ2vhh +ωhh
∼ χ

2
(

1,ncp =
nβ 2

h
σ2vhh +ωhh

)
f or any ωhh ≥ 0 (4)

and

Qh =
Sbh

σ2vhh +ωhh
=

1
n−1

∑
n
i=1
(
bhi−bh

)2

σ2vhh +ωhh
∼ 1

n−1

n−1

∑
i=1

τi χ
2(1)≈ a χ

2(b) (5)

where τi, a and b are defined in Appendix B.
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Qh is distributed as a linear combination of χ2(1) the exact distribution of which is derived

in Appendix B. The knowledge of the exact distribution of Qh is not very useful for defining a

”simple” distribution of the statistic Fh, so following (Yuan and Bentler, 2010) we approximate the

distribution of Qh by a χ2(b) (we write Qh ≈ a χ2(b)) where a and b are determined by matching

the first two moments of Qh with those of aχ2(b) (see Appendix B). The ratio between the exact

Chi-square distribution given by expression (4) and the approximate Chi-square distribution given

by (5) each divided by its degrees of freedom gives the following approximate distribution of Fh,

Fh =
n b

2

(n−1)−1 ∑
n
i=1
(
bhi−bh

)2 ≈ F (1,b = n−1,ncp) f or any ωhh ≥ 0 (6)

We recall (see (Appendix B) that the degrees of freedom, b, of the approximated Chi-square

distribution depend on the random component and ranges between b0 when ωhh = 0 and (n−1)

when ωhh is large. We work setting b = n−1 mainly for the following reasons

• Given vhh, if ωhh is large with respect to σ2 (θh ”much larger” than one), then the statistic

Fh has an exact F−distribution, Fh ∼ F(1,n− 1,ncp). We recall that the farther ωhh
σ2 > 0

from zero, the greater θh and Th, everything else being equal. The greater Th the stronger

the evidence in favour of the presence of randomness. Simulations show that if the pvalue

of Th is less than 0.001 the distribution may be considered ”exact”. In applications Th >>

critical value or pvalue << 0.05 justify the choice b = n−1.

• If the number of observations, n, is large then the shape of the noncentral F−distribution is

similar to the noncentral chi squared distribution with 1 degrees of freedom,

Fh ∼ χ2(1,ncp) as n→ ∞.

• The approximating F−distribution depends on the number of unit, n. As n increases, ac-

cording to the central limit teorem, the exact distribution of Qh = Sbh may be approximately

described by a normal distribution, and so may aχ(b). Thus, we expect that the approxi-

mation will improve as n increases.

• We recall that as θh→ 1 (θh = 1), b→ b0 (see Appendix B). Then, if ncp = 0 the quantiles

of F(1,b0) are greater than the quantiles of F(1,n−1) (so is the critical value) this implies

that, given α , the rejection region defined by F(1,b0), R0, is a subset of the rejection region

defined by F(1,n− 1), R. This has two consequences, the first is P(Fh ∈ R0|ncp > 0) ≤

P(Fh ∈ R|ncp > 0) then the approximation with b0 degrees of freedom is less powerful than
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the approximation with n−1 degrees of freedom, the second is that the test based on b0 is

conservative when randomness is different from zero.

5 Simulation

The selection procedure proposed in table 1 is powerful if the two test statistics defined for the

selection, Th and Fh are powerful. Any simulation for evaluating the performance of the approach

proposed requires a preliminary analysis of Th and Fh. As a consequence an exhaustive analysis

of the selection procedure produces a huge amount of results which cannot all be shown in this

paper and a choice is made.

The statistic Th is based on the works of Barnabani (2017) and Barnabani (2019) where the

power function and consistency of the test is partly analyzed and discussed. The results are not

reproposed here but are available in a supplementary material.

The statistic Fh needs more attention. We expect that given the noncentrality parameter the

distribution of Fh is not influenced by the random effect, that is Fh ≈ F(1,n−1,ncp) for any

θh ≥ 1. In this sense we say that the test statistic, Fh, is ”stable” with respect to the randomness

parameter. Therefore, a simulation study on the goodness-of-approximation focusing on the effect

of θh (randomness) and ncp (noncentrality parameter) on Fh plays a crucial role for evaluating

power, consistency and ”stability” of the test statistic. This study is conducted by analyzing a set

of matrices, M1, . . . ,Ml, . . . ,Ms constructed as follows.

Let denote with ncpl , l = 1, . . . ,s = 6 one specific value of ncp in A = {0,1,2,3,5,8}. We

consider nrepl = 100 different values of θh j, j = 1, . . . ,nrepl drawn randomly from a uniform dis-

tribution on the interval [1,10]. Given ncpl , for each different parameter combination (ncpl,θh j),

we compute the test statistic Fh on N = 1000 simulated samples of size n = 10. This yields an

N×nrepl matrix, Ml , of statistics all with the same noncentrality parameter but different param-

eter θh j. The matrix Ml is defined for each value of ncpl ∈ A. The set of Ml matrices, l = 1, . . . ,s

is the basis of our analysis on the goodness-of-approximation of the test statistic.

5.1 ”Base” Scenario for simulations

To allow the maximum of generality and arbitrariness, we define the following scenario for all

simulations unless otherwise specified.
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(i) The number of parameters and units are respectively k = 6 and n = 10. The number of

observations per units, ti, i = 1, . . .n, are drawn randomly from a uniform distribution,

U(k+4,3k).

(ii) The vector of regression coefficients, β , is generated randomly from a N(0,2).

(iii) For each units, the columns of Xi are drawn from an N(mean,sqrt) where the mean is ran-

dom from a uniform distribution, U(10,20) and sqrt is random from U(2,10). All the

elements in the first column are 1.

(iv) We define first a positive definite matrix, Ψ, by extracting elements from a standard normal

distribution then the covariance matrix Ωk is obtained by selecting q columns and rows from

Ψ and zero elsewhere. This allows us to define (indirectly) the random and fixed parameters

of the model.

(v) The index of the tested parameter is drawn randomly from a uniform distribution, U(1,k).

(vi) The variance, σ2, is fixed proportionally to the maximum entry of the main diagonal of Ωk.

5.2 Goodness-of-approximation

We have the scheme: Fh ∼ ”exact” cdf ≈ ”approx” cdf . Since we are not able to evaluate the

goodness of the approximating cdf to the ”exact” cdf we by-pass the second step and use methods

for analysing the fitting of the F−distribution to the test statistic Fh.

To this purpose we choose a specific combination of (ncpl,θh j) and extract one column from

Ml . With these data (N = 1000 simulated samples) we show and comment some usual graphs,

we compute different goodness-of-fit statistics and estimate the parameters of the approximating

F−distribution by maximizing the likelihood function. Subsequently we extend the analysis to

all the column of the matrix Ml so that we can evaluate the ”stability” of the results obtained.

Given the parameter combination (ncpl = 3,θh j = 3.85), the empirical distribution function

of the N simulated value of the statistic Fh is shown in Fig.: 1.a where the solid line is the non-

central F−distribution and the dotted line is the central F−distribution. The deviation between

the two curves is the effect of the noncentrality parameter. Fig.: 1.b shows the empirical cdf

of Fh with the 95% Kolmogorov-Smirnov (K.S.) confidence bands for the unknown cumulative

distribution function. Fig.: 1.c shows the Q-Q plot between the quantiles of the noncentral distri-

bution, F(1,n− 1,ncp) and the empirical quantiles. The points of both sets of quantiles form a
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line that’s roughly straight. Fig.: 1.d is a P-P plot computed as follows: on the abscissa there is

the set of probabilities: p = {0.025,0.05,0.075, . . . ,0.975} on the vertical axis there is the empir-

ical probability, P̂p =
1
N ∑

N
i=1 δ (Fh < qp) where δ (true) = 1, δ ( f alse) = 0 and qp is the quantile

of the non central F− distribution. The points close to the 0− 1 line highlights goodness of the

approximation.
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solid: F(1,n-1,ncp) 
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Fig.: 1.b

Fig.: 1.c Fig.: 1.d

Figure 1: - Fig.: 1.a shows simulated histogram of Fh, the central F (dotted line) and noncentral F (solid
line). The displacement of the solid line from the dotted line is due to the ncp with θh ≥ 1. The parameters
are: h = 3, ncp = 3 θh = 3.85. - Fig.: 1.b show the graph of the empirical cdf of Fh with K.S. confidence
bands at 95%. - Fig.: 1.c represents Q-Q plot plot between empirical quantiles and quantiles of noncentral
F−distribution functions. . Fig.: 1.d shows the empirical probabilities plottted against theoretical quantiles
of F(1,n−1,ncp).

The Kolmogorov-Smirnov method is used to test the null hypothesis that the hypotesized

distribution is F(1,9,ncp = 3) against the alternative that the ”exact” cdf does not equal the

F(1,9,ncp = 3). The result is a statistic ks = 0.02130233 with a pvalue = 0.75. (The chi-square

goodness of fit test gives similar results).

The method of maximum likelihood is used to estimate the parameters of a noncentral F−distribution.
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We expect that the estimates are ”close” to the parameters (1,9,ncp = 3). The fitdistrplus pack-

age of R produces the result of Tab.: 2. Tab.: 3 shows the confidence intervals obtained with the

basic bootstrap procedure. All the results are quite satisfactory.

Table 2: Maximum likelihood estimation

Parameters Estimate. Std. Error
d f 1 = 1 1.018527 0.05633942
d f 2 = 9 8.633183: 1.27773298
ncp = 3 2.951871: 0.14260946
Loglik: -2567.894 AIC: 5141.787 BIC: 5156.51

Table 3: Parametric bootstrap medians and 95% percentile CI

Median 2.5% 97.5%
d f 1 = 1 0.9613134 0.8688267 1.074114
d f 2 = 9 8.7609549 6.8027519 11.999008
ncp = 3 3.0368 2.69518 3.08946

The above analysis is carried out on N = 1000 simulated samples. To evaluate the ”stability”

of the results we keep fixed the noncentrality parameter and repeat (nrepl = 100) the simulations

drawing randomly θh j from a uniform distribution on the interval [0,10]. Moreover, working on

the whole matrix Ml , we can analyze the goodness of fit of the F−distribution to the ”exact”

unknown distribution function of Fh.

For each column of the matrix Ml we compute the empirical vigintiles of Fh. Fig.: 2.a shows

the bundle of lines ”close” to each others which envelop the vigintiles (black points) of the ap-

proximating noncentral distribution. Fig.: 2.b shows the boxplots of vigintiles and the points of

the approximating distribution. The approximation which collocates points of the replicated sim-

ulation inside the box or within the whiskers of the boxplot can be defined ”good” (”excellent”).

Fig.: 2.c reproposes part of Fig.: 2.b focusing on the first and third quartiles.

Let define the empirical probability of rejecting Fh under H0 and under H1,

α̂ j =
1
N

N

∑
i=1

δ (Fi j > q0.95|H0) γ̂ j =
1
N

N

∑
i=1

δ (Fi j > q0.95|H1)

where δ (true) = 1 and δ ( f alse) = 0, P(F(1,n− 1) ≤ q0.95) = 0.95 and Fi j is the element (i, j)

of the matrix Ml , that is, the value of the statistic Fh computed on the i−th simulated sample

(i = 1, . . . ,N) and a specific value of θh j, j = 1, . . . ,nrepl.
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Figure 2: - Fig.:2.a shows the bundle of lines of empirical vigintiles and the points of the approximating
noncentral distribution. - Fig.: Fig.:2.b shows the boxplots of empirical vigintiles and the points of the
approximating distribution. - Fig.: Fig.:2.c shows the graph of Fig.:2.b limited to the quartiles.

We expect that α̂ j and γ̂ j does not change ”significantly” as θh jA changes. Tab.: 4 shows

summary statistics of α̂ j (first row) and γ̂ j (for different value of ncp) the interquartile difference

can be taken as a measure of the variability.

Table 4: Summary statistics of α̂ j and γ̂ j, N = 1000, n = 10, nrepl = 50,

Hypothesis Min. 1st Qu. Median Mean 3rd Qu. Max.
H0 : ncp = 0

⋂
θh ≥ 1 α̂ j: 0.036 0.045 0.05 0.0498 0.05475 0.076

H1 : ncp = 2
⋂

θh ≥ 1 γ̂ j: 0.1060 0.2572 0.2685 0.2612 0.2775 0.307
H1 : ncp = 5

⋂
θh ≥ 1 γ̂ j: 0.1860 0.441 0.553 0.504 0.572 0.599

H1 : ncp = 8
⋂

θh ≥ 1 γ̂ j: 0.353 0.69 0.75 0.705 0.77 0.81

Let foss be a realized value of the test statistic Fh. The cumulative distribution function of the

pvalue (written as cdf [P(Fh ≥ foss | ”true”df )], is a 45◦ line. Then, if the (empirical) cumulative

probability of P(Fh ≥ foss | ”approx”df ) that is the cdf of the pvalue computed with the approx-

imating F−distribution, is ”close” to the 45 degrees line we face to a ”good” approximation.
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Fig.:3.a shows the ”true” cdf of the pvalue (black points) and the empirical cdf of 10 replications

of the approximated pvalues computed with an F(1,9,ncp = 3).

The comparison between the ”exact” and ”approx” pvalue allows us also to detect the ”ap-

prox” power function of the test (see Fig.:3.b). In terms of pvalue we recall that the (empirical)

power function of the test is given by cdf (pvalue < p|H1) varying p on the interval [0,1] and H1

defined for a specific combination (ncpl,θh > 1). The 45◦ line can be seen as the power function

computed when H0 = H1, the pvalue always equals power. The graph of Fig.:3.b is generated by

varying foss. The upper right hand of the graph corresponds to foss = 0. Both pvalue and power

are 1 at this point. The lower left-hand corner corresponds to a very large foss, so large that the

test statistic will never exceed it. Both pvalue and power are 0 at this point. Normally, we would

expect the power of the test to exceed its pvalue for any given foss,except when pvalue and power

are both equal to 0 or 1. The curves in Fig.:3.b are examples of tests for which this is the case.

power tradeoff curve given by the 45◦ line. A test for which size always equals power has a

size-è If the DGP for which the tradeoff curve is constructed actually satisfies the null hypothesis.

The graph of Fig.:3.b is generated by varying foss.

The size-power tradeoff curve is generated by varying foss. The upper right hand of the graph

corresponds to foss = 0. Both size (pvalue) and power are 1 at this point. The lower left-hand

corner corresponds toa very large foss = 0, so large that the test statistic will never exceed it. Both

size and power are 0 at this point.
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Note:   (a,b)   m eans   ncp=a,   θhj=b

(1, 5.73)
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(13, 20.5)

Figure 3: - Fig.:3.a shows the points of cdf [P(Fh ≥ foss | ”true”df )] (45◦ line) and 10 replications of the
(empirical) cumulative probability of P(Fh ≥ foss | ”approx”df ) (solid lines). The approximating distri-
bution is an F(1,9,ncp = 3). - Fig.: Fig.:3.b shows empirical power functions for different combinations
(ncpl ,θh j). The power increases as ncpl increases for any θh j ≥ 1.

14



6 Conclusions

A hypothesis testing approach designed for selecting fixed and random coefficients to be included

in a linear mixed model brings up several complications. The two test statistics proposed in the

work are developed for investigating the ”boundary” and ”confounding” problems that are crucial

for evaluating the significance of the tests.

In our opinion an indirect approach based on a ratio between two quadratic forms one that

contains the effect and another that does not, may be a good method to tackle the above-mentioned

problems. Since the statistics used in the work are based on ordinary least squares, they are easy

to compute, do not need any estimate of covariance matrices, allow to investigate the exact or

approximative density function and allow an analysis of the tests in small samples.

By using only ordinary regression results, the analysis maintains great simplicity and in addi-

tion to the analysis on the significance, the approach can be developed by improving the power of

the two test statistics, Th and Fh and by introducing other instruments such as point estimates and

(approximative) confidence intervals of randomness and noncentrality parameter.

Appendix A Exact probability density function of Th

Consider first the distribution of (bi−b) when Ωk � 0 and σ2 is known. The vector has a normal

distribution with mean zero and variance covariance matrix σ2Vii +
n−1

n
Ωk. Let vhi, h = 1, . . . ,k

be the h-th diagonal element of Vii and denote with D−1/2 = In⊗V−1/2
D the block diagonal matrix

with V−1/2
D = diag(1/

√
(v11), . . . ,1/

√
(vhh), . . . ,1/

√
(vkk)). Then, the vector V−1/2

D (bi−b)/σ is

multivariate normal with mean zero and covariance matrix V−1/2
D

(
Vii +

n−1
n

Ωk
σ2

)
V−1/2

D . The h-th

component, shi = (bhi−bh)/(σ
√

vhh), is N (0,θhi) where θhi =
vhi
vhh

+
(n−1

n

)
ωhh

σ2vhh
and ωhh denotes

the h-th element of the main diagonal of Ωk.

The square, s2
hi, has a gamma distribution with shape parameter α = 1/2, scale parameter

2θhi = 2
[

vhi
vhh

+
(n−1

n

)
ωhh

σ2vhh

]
and E(s2

hi) = θhi

Let’s denote W =R+G where R=D−1/2V D−1/2 is the nk×nk covariance matrix when Ωk =

0 (H0 is true) and G = D−1/2Hn⊗ Ωh
σ2 D−1/2 the nk×nk covariance matrix of random components.

Moreover, let Wh = Rh +Gh be the n×n matrix of rank n−1 obtained from W dropping the rows

and columns that do not refer to the h-th element. The i-th diagonal element of Wh is θi, the other
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elements are covariances. The column vector [sh1,sh2, . . . ,shn] is multivariate normal with zero

mean and covariance matrix Wh, {s2
h1, . . . ,s

2
hi, . . . ,s

2
hn} is a set of correlated gamma.

The average, Sh = 1
n−1 ∑

n
i=1 s2

hi is a sum (scaled by n− 1) of correlated gamma with same

shape parameter, α = 1/2, and different scale parameters. The expected value of Sh is equal to

θh =
1

n−1 ∑
n
i=1 θhi = 1+ ωhh

σ2vhh
. When the h-th coefficient is not random, ωhh = 0 and E(Sh) = 1.

The arithmetic mean Sh has the same distribution as a sum of chi-square random variables (Mathai

and Provost, 1992) (section 3.2a.2, p. 36, Eq. (3.2a.8),

Sh ∼
n−1

∑
i=1

φi

n−1
G
(

α =
1
2
,β = 2

)
(7)

where the φi’s are the eigenvalues of Wh and capture the presence of randomness. Observe that

E (Sh) = θh =
1

n−1 ∑
n−1
i=1 φi. When H0 is true ∑

n−1
i=1

φi

n−1
= 1.

If in {s2
hi} we replace σ2 with the sample variance s2 we get

t2
hi =

(bhi−bh)
2

s2 vhh
=

s2
hi

(df s2)/(df σ2)
, with df =

n

∑
i=1

(ti− k) (8)

which can be seen as the ratio of two independent gamma distributions: the numerator is G(1
2 ,2df θhi),

the denominator is G(df
2 ,2). Therefore, t2

hi ∼ GF(1
2 ,

df
2 ,1,

2df θhi
2 ) = GF(1

2 ,
df
2 ,df θhi) where GF

denotes generalized F-distribution and the argument 1 is omitted.

The arithmetic mean Th = 1
n−1 ∑

n
i=1 t2

hi has the same distribution as the ratio of two random

variables where the numerator is a sum of gamma. By (7) we have,

Th ∼
n−1

∑
i=1

φi

n−1
G( 1

2 , 2 df )

G(df
2 ,2)

(9)

Following Moschopoulos (1985), by expressing the numerator of (9) as a single gamma-series

representation, the density function of Th is written as

fTh(x) =
∞

∑
k=0

pk
G(ρ + k,β1)

G
(

df
2 ,2
) =

∞

∑
k=0

pk GF
(

ρ + k,
df
2
,
β1

2

)
(10)

where pk =Cδk, β1 = mini{βi}, C = ∏
n−1
i=1

(
β1
βi

)αi
, ρ = ∑

n−1
j=1 α j, α j = 1/2 ∀ j, βi = 2φi

df
n−1 , and
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the coefficients δk obtained recursively by the formula


δ0 = 1

δk+1 = 1
k+1 ∑

k+1
i=1

[
∑

n−1
j=1 α j

(
1− β1

β j

)i
]

δk+1−i, k = 0,1,2, . . .

Since the series representation of Moschopoulos (1985) is CPU-time intensive when the shape

parameters are small and the scale parameters have large variation, Barnabani (2017) proposed

to approximate the probability distribution (k, pk)k=0,1,2... with a generalized negative binomial

distribution.

The function (10) is uniform convergent (Moschopoulos, 1985). This property justifies the

interchange of the integration and summation and allows us to compute the distribution function

and quantiles.

Appendix B Approximation

Following the describtion of the exact density distribution of Sh of App.A, the ratio Qh = Sh/θh,

Qh =
1

n−1
∑

n
i=1
(
bhi−bh

)2

σ2vhh +ωhh
is distributed as 1

n−1 ∑
n−1
i=1 τi χ2(1) where τi = φi/θh. We can derive the

exact distribution of Qh using the single gamma-series representation proposed by Moschopoulos

(1985). Fig. : 1.a shows a simulated histogram of (n− 1)Qh and its exact density function. The

expected value of (n−1)Qh is n−1, the variance is Var [ ((n−1)Qh] = K(τ) where K(τ) denotes

an unknown expression that depends on the random component (ωhh) through θh.

Following Yuan and Bentler (2010) we discuss the approximations (n−1)Qh≈ a χ2(b) where

a and b are determined by matching the first two moments of (n− 1)Qh with those of aχ2(b).

Straightforward calculation leads to a =
(n−1)2

K(τ)
and b =

n−1
a

. We discuss the following ap-

proximation,
(n−1)Qh

a
=

1
n−1

∑
n
i=1
(
bhi−bh

)2

σ2vhh +ωhh

K(τ)

n−1
≈ χ

2 (b) (11)

observe that if (11) is divided by the degree of freedom, b, we remove K(τ) from the quadratic form.

As known (Yuan and Bentler, 2010) the chi-square approximation (11) depends on the relative

sizes of the τi’s, on their variabilities and on the degrees of freedom. In this section we analyze

these effects on the approximation.

1. When τ1 = τ2 = . . .= τn−1 = τ , then a = 1, b = n−1, τ = θh and the approximation in (11)
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is exact, (n− 1)Qh ∼ χ(n− 1). The equality of τi’s occurs when given vhh, ωhh is (very)

large with respect to σ2, or when the parameter θh is ”much larger” than one. The greater

ωhh (with respect to σ2) the farther θh is from one, the less the variability of the eigenvalues.

From a practical point of view we may capture this ”limit” situation through the pvalue of

the test statistic Th. Let toss be the observed value of Th, if P(Th > toss|H0)< 0.001 that is,

if pvalue < 0.001 then the variability of eigenvalues is (approximately) zero, b = n−1 and

(n−1)Qh ∼ χ(n−1).

Yuan and Bentler (2010), shows algebraically that when ωhh = 0, b reaches the maximum

value at n−1.

2. The maximum variability of τi is reached when ωhh = 0. In this case we can compute

the minimum value of b, b0, and the maximum value of a, a0. Therefore, b0 ≤ b ≤ n− 1

and 1 ≤ a ≤ a0. We recall that b depends on ωhh and can not be calculate while b0 and

a0 can be. Starting from the zero variability of eigenvalues, as the τi’s depart from each

other b decreases towards b0 and a increases towards a0. In Figure 4 the bottom left graph

(Fig. : 1.c), shows the distribution functions (cdf) of χ2(b0), χ2(n− 1) and the empirical

distribution function (ecdf) of (11) which collocates between the two curves. The ecdf of

(11) is ”well” approximated by a χ2(b). Fig. : 1.c shows the difference between the two

curves which is less than 0.5%.

3. The approximation depends on the number of unit, n. As n increases, according to the

central limit teorem, the exact distribution of (n−1)Qh may be approximately described by

a normal distribution, and so may aχ(b). Thus, we may expect that the approximation will

improve as b increases.
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