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Abstract: Nowadays split-plot designs play a crucial role in the technological field, both for 

their flexibility when applying a robust design approach and in relation to the modelling 

step, by considering Mixed Response Surface models and/or the class of Generalized Linear 

Mixed Models-GLMMs. In this paper, a split-plot design is studied in a process optimization 

scenario involving several response variables, e.g., a multi-response situation, in which a 

comparison between two optimization methods is performed. More precisely, by considering 

a real case study related to the improvement of a measurement process of a Numerical-

Control machine (N/C machine) to measure dental implants, the optimization is carried out 

with the Pareto front approach and then compared with other analytical methods also used 

to optimize. The final discussion considers the advantages and disadvantages (of application) 

for both methods. 

1. Introduction

Process optimization is a key step for statistical quality control, and its relevance has

increased since the long and fruitful scientific debate related to the Taguchi’s two step 

procedure for robust design (Nair, 1992). Currently, the robust design approach involves an 

approach composed of 3 key-steps: experimental design, modeling, and optimization. The 

key to successful implementation is to incorporate noise factors involved in the experimental 

planning, which are then modeled and chosen based on a suitable analysis in the subsequent 

optimization. Therefore, we extend the concept of process optimization to robust process 

optimization, in which control and noise variables are jointly studied to achieve the best set 

of control factor levels to makes it possible to simultaneously reach the target value and 

minimize the process variability with a robust configuration. In this context, the process 
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optimization step strictly depends on the chosen designed experiment and the class of 

statistical models applied. Specifically, we can use Response Surface Methodology (RSM) 

approaches (Myers et al., 2016), or plan a designed experiment outside the RSM context, 

and then model the experimental data with a more flexible class of statistical models, e.g. 

Generalized Linear Models-GLMs (McCullagh and Nelder, 1989; Nelder and Lee, 1991; 

Lee and Nelder, 2003) or Generalized Linear Mixed Models-GLMMs (Dror and Steinberg, 

2006; Robinson et al., 2006; Berni and Bertocci, 2018). 

Undoubtedly, the choices of designed experiment and modelling are related to the process 

to be studied and optimized, and the same reasoning should be applied when deciding on the 

number and type of response variables to consider. In fact, the multi-response situation 

should arise if, and only if, the real scenario shows that several response variables are 

naturally involved and are important to the whole process under study. If this is not the case, 

then collinearity, which may often arise among responses (Box et al., 1973; Chiao and 

Hamada, 2001), can lead to complications with analysis and optimization. 

A further issue in a multi-response situation appears during the optimization process, 

since it is not feasible in practical terms to reach an ideal optimum simultaneously for all the 

responses. In this context many authors, starting from Derringer and Suich (1980), Khuri 

and Conlon (1981), have proposed methods to achieve an optimal solution as a compromise 

or balance between several response variables, Del Castillo et al. (1996), Copeland and 

Nelson (1996). 

In addition, a further issue concerns the conjunction of a multi-response case and the dual 

response approach. In fact, optimization must take care of a double feature: the simultaneous 

optimization of several variables, jointly with the consideration of two statistical models, 

e.g., location and dispersion. Indeed, we should make a distinction when considering the 

differences between the dual response approach, or, alternatively, when a single response 

model, opportunely weighted for dispersion, is applied in a “true” multi-response case. In 

the latter case, the application of analytical methods for optimizing can give fruitful and 

satisfactory results, particularly by considering recent developments involving noise factors. 

To this end, several optimization measures are suggested in the literature (Lin and Tu, 

1995; Tang and Xu, 2002). The Pareto front approach is a multi-response optimization 

method of the analytical-qualitative type, consisting of two sequential steps: a first step based 

on objective conditions identifies the dominant solutions, and a second step based on 

selecting the best solution subjective conditions that match the experimenters’ priorities (Lu 

et al., 2011; Chapman et al., 2014a). 



In this study, data from a split-plot experiment (Berni, 2010) are optimized through the 

Pareto front approach (Chapman et al., 2014b), and following, the results obtained are 

compared with a proposal of the analytical optimization method. More specifically, both 

methods are compared and discussed through an empirical example in the orthodontic field, 

in order to improve the accuracy in the measurements of a Numerical Control machine (N/C 

machine), which provides some automatic control of machining tools. 

This paper is structured as follows: in Section 2, the basics of split-plot designs are 

reviewed and briefly illustrated. Section 3 provides a short description of both optimization 

methods, and Section 4 presents the case-study including optimization results. The paper 

concludes with discussion and final remarks. 

2. Split-plot designs for statistical quality control: a review

The split-plot design (Cochran and Cox, 1957) has been developed and characterized over

the years, becoming a type of designed experiment that is widely used in industrial, 

technological, and environmental fields. 

In relation to the developments that the fractional factorial designs and the Response 

Surface Methodology-RSM have had since the 1980s, the split-plot design has experienced 

a particular renewal (Box and Jones, 1992), expounding its theoretical features, specific 

usefulness for the statistical quality control and robust design concepts, which were initially 

introduced by Genichi Taguchi, (Nair, 1992). In this context, the two seminal papers of 

Vining and Myers (1990) and Myers et al. (1992) extended the two-step procedure into the 

dual-response approach, and the combined-array is considered as a milestone for recent 

developments and robust process optimization. Within this methodological framework, the 

split-plot design plays a central role, starting from the tutorial by Box and Jones (1992), in 

which the authors proposed the split-plot design as an efficient alternative to Taguchi’s 

product-array for a robust design approach, also in a fractional factorial setting (Bisgaard, 

2000). 

Currently, split-plot designs have great relevance for recent developments in robust 

process optimization, expounding the initial concept of the robust design approach, with a 

focus on the design and modeling steps (Kowalski and Potcner, 2003; Kowalski et al., 2007; 

Jones and Nachtsheim, 2009). 

Furthermore, the split-plot design has been revised and included in the class of crossed 

bi-randomized experimental designs (Myers et al., 2016), given the possibility of including 

environmental/noise factors as Whole-Plot (WP) factors and process factors as Sub-Plot (SP) 



factors. The standard allocation of the environmental/noise factors as WP is certainly a 

solution that allows for the most accurate estimate of the factors of interest, as well as the 

estimate of the 1st order interactions, e.g., the 1st order interaction between a WP factor (for 

example a noise factor) with a SP (process) factor, in order to perform a robust design (Berni 

et al., 2020). This structure is also natural in many applications, given the generally high cost 

of controlling the noise factors in production. 

Nevertheless, planning a split-plot design in a RSM context implies that all the variables 

included in the experimental plan (irrespective of whether WP or SP factors) must be 

quantitative in nature. In fact, the consideration of a qualitative process variable implies the 

carrying out of the optimization step conditioned to the levels of the categorical variable 

involved. To this end, the inclusion of a qualitative variable should be limited (Berni, 2010) 

or restricted to two levels where they can be treated as quantitative in standard models. 

Moreover, the presence of measurable noise factors, involved as random effects, is possible 

when the split-plot design is applied through mixed RS models, or alternatively, through 

GLMMs. 

Additional recent developments in the literature have contributed significantly to the 

inclusion of the split-plot design in the RSM, showing the equivalence of Ordinary Least 

Squares (OLS) with Generalized Least Squares (GLS) for split-plot designs and mixed-

RSM (Vining et al., 2005); and improving inference issues (Vining and Kowalski, 2008). 

2.1. The split-plot design: theory 

When working with a split-plot design, it is essential to proceed with a primary 

classification between Whole-Plot (WP) factors and Sub-Plot (SP) factors. It is therefore 

desirable to carefully evaluate the specific definition of the process (industrial process, 

laboratory experiment) to be analyzed, considering the exact definition of the response 

(quantitative) variables, Y. Also, it is necessary to define the role of each variable in the 

study, in order to plan the split-plot design according to the most efficient arrangement for 

the specific scenario. This step plays a central role, not only in the attribution of factors as 

whole-units or sub-units, but also considering the subsequent model estimation, in which 

each variable, according to its nature (qualitative, discrete quantitative or continuous) has a 

specific role. It is also key to clarify the distinction between fixed and random effects. 

In short, a Whole Unit (WU) is defined by runs where WP factors are manipulated, and 

the run order of all the WUs is randomized. Subsequently, the Sub-Units (SU), defined 



through the combination of levels (runs) of the SP factors, are associated to the WUs and 

randomized separately.  

In this study, we consider a split-plot design in a RSM context. More precisely, we are 

interested in using a second-order polynomial model with random effects. The response 

surface (polynomial) model with random effects for the single experimental observation 𝑦𝑦𝑢𝑢 

(𝑢𝑢 = 1, … ,𝑛𝑛) and J variables �𝒙𝒙1, … ,𝒙𝒙𝑗𝑗 , … ,𝒙𝒙J� has the following structure: 

𝑦𝑦𝑢𝑢 = 𝛽𝛽0 + 𝑓𝑓(𝒙𝒙𝑢𝑢)𝜷𝜷 + 𝒛𝒛𝑢𝑢𝜸𝜸 + 𝑔𝑔(𝒙𝒙𝑢𝑢)𝚫𝚫𝒛𝒛𝑢𝑢′ + 𝜺𝜺𝑢𝑢 (1) 

where 𝛽𝛽0 is the intercept; 𝜷𝜷 is the column vector [𝑝𝑝 × 1] of the unknown parameters for 𝑝𝑝 ≥

J; 𝑓𝑓(𝒙𝒙𝑢𝑢) is a linear and independent function for each 𝒙𝒙𝑢𝑢, that is, 𝑓𝑓(𝒙𝒙𝑢𝑢) = �𝑥𝑥𝑢𝑢1, … , 𝑥𝑥𝑢𝑢𝑢𝑢� in 

relation to the 𝑝𝑝 2nd order effects related to the J variables. Therefore, 𝑭𝑭 is the so-called 

"extended" matrix of dimension [𝑛𝑛 × 𝑝𝑝]; 𝜺𝜺𝑢𝑢 is the column vector of the error component. 

For the random effects, 𝒛𝒛𝑢𝑢 = (𝑧𝑧𝑢𝑢1, … , 𝑧𝑧𝑢𝑢𝑢𝑢) is the row vector of binary values (0,1) to 

describe the presence and structure of the block factors; 𝜸𝜸 = (𝛾𝛾1, … , 𝛾𝛾𝑏𝑏) is the column vector 

of the unknown coefficients relating to the random effects of dimension [𝑏𝑏 × 1]. The matrix 

𝚫𝚫 is the matrix relating to the first order interactions between polynomial effects (fixed) and 

random effects. The maximum dimension of 𝚫𝚫 is [𝑝𝑝 × 𝑏𝑏] if the interactions of all fixed 

effects with random effects are included in model (1). Note that this latter matrix contains 

the coefficients for evaluating the robust design. 

Starting from the model formula (1), we now illustrate the second order polynomial model 

of response surfaces from a split-plot design, where all variables are quantitative. For further 

details, see Myers et al. (2016). 

Let’s consider two sets of factors: i) the set 𝑍𝑍 for the WP factors, and ii) the set 𝑋𝑋 for J 

SP factors. This notation assumes that the noise factors are WP random variables. Let 

𝒁𝒁: (𝒛𝒛1, … , 𝒛𝒛𝑖𝑖, … , 𝒛𝒛𝐼𝐼) be the set of WP random factors/variables and 𝑿𝑿: �𝒙𝒙𝑖𝑖1, … , 𝒙𝒙𝑖𝑖𝑖𝑖, … ,𝒙𝒙𝑖𝑖J� 

the set of SP variables/factors.2 The 2nd order RS mixed model for a split-plot design, defined 

for the 𝑘𝑘-th block (𝑘𝑘 = 1, … ,𝐾𝐾), and 𝑢𝑢-th observation, is as follows: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖(𝑍𝑍,𝑋𝑋) = 𝛽𝛽0 + 𝜸𝜸𝑖𝑖′𝒛𝒛𝑖𝑖 + 𝜷𝜷𝑗𝑗′ 𝒙𝒙𝑖𝑖𝑖𝑖 + 𝒛𝒛𝑖𝑖′𝚪𝚪𝒛𝒛𝑖𝑖 + 𝒙𝒙𝑖𝑖𝑖𝑖′ 𝑩𝑩𝒙𝒙𝑖𝑖𝑖𝑖 + 𝒛𝒛𝑖𝑖′𝚫𝚫𝒙𝒙𝑖𝑖𝑖𝑖 + 𝜓𝜓𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 (2) 

where, from formula (1), we note the inclusion of the 𝚪𝚪 array, related to the coefficients for 

the 1st order interaction and quadratic terms for the WP variables; the 𝑩𝑩 array, containing 2nd 

                                                           
2 Please note that we are referring to a factor/variable considering that the experimental region (χ) is defined 
by the factor ranges; a finite number of experimental points, forming the experimental design, is then selected 
by the experimental region. Following, the model estimation is performed within the whole experimental 
region, by inferring from a discrete set of points, e.g., the experimental points, to a continuous one.  



order coefficients for the fixed effects of SP variables; the matrix 𝚫𝚫, contains coefficients of 

the 1st order interaction effects between the WP and SP factors. These are important in a 

context of robust design evaluation. For the error components, 𝜓𝜓𝑖𝑖𝑖𝑖  is the WP error 

component, where we assume that 𝜓𝜓𝑖𝑖𝑖𝑖~ 𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁�0,𝜎𝜎𝜓𝜓2�, while 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  is the SP error component, 

where 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖~ 𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,𝜎𝜎𝜀𝜀2), and 𝐶𝐶𝐶𝐶𝐶𝐶�𝜓𝜓𝑖𝑖𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖� = 0. 

In the model formula (2), the assumptions about the error variances are analogous to 

assuming that the covariance between two observations belonging to the same WU remains 

constant across all its observations. 

The existence of two error components, with corresponding two error variance 

components, complicates the application of a split-plot within the RSM context. This issue 

substantially influences both the estimation of the variance components and the model 

coefficients. 

In the case-study illustrated in Section 4, the multi-response case is related to the 

optimization involving three split-plot models, one for each response, estimated within a 

RSM context. 

3. Optimization methods 

This Section includes a short description of both optimization methods considered. The 

Pareto front approach (Lu et al., 2011; Chapman et al., 2014a; Chapman et al., 2014b) is 

then detailed within the case-study, with details specific to the application, including a brief 

introduction of the analytical method (Section 4.2). For further details see (Berni and 

Gonnelli, 2006; Berni, 2010; Berni and Burbui, 2014). 

3.1. The Pareto front approach 

The Pareto front approach is a multi-response analytical-qualitative optimization method, 

which allows the search for optimum to consider subjective priorities and constraints, such 

as those due to a company’s requirements (for example, costs or technical/engineering 

specifications). It consists of two sequential steps (Chapman et al., 2014a; Myers et al., 2016; 

Anderson-Cook, 2017), as outlined below. 

Let’s start by indicating with 𝒳𝒳 the entire experimental region; within this region a finite 

set, possibly a grid, of experimental points, is selected and used to define a Pareto-optimal 

set. A possible solution is called non-inferior (or Pareto-optimal), if and only if, there is no 

other combination within the set with the values of all the responses at least as good, and the 

value of at least one response is strictly better; otherwise, it is called inferior or dominated. 



The set of non-inferior (or Pareto-optimal) experimental input combinations is called the 

Pareto-optimal set, and the corresponding set of vectors for the responses under 

consideration is known as the Pareto front or frontier. Since the inferior solutions are not 

rational choices conditional on the choice of responses under consideration, they are not 

considered further and definitively discarded (Zitzler, 1999; Marler and Arora, 2004; Coello 

Coello et al., 2007). 

Therefore, the Pareto front approach can be summarized with the following two steps: 

1. An objective step, where the Pareto-optimal set is identified from the initial set of 

choices, based on the corresponding estimated response values; 

2. A subjective step, in which the experimental points belonging to the Pareto-optimal 

set are examined and then compared. Only experimental points that provides the best 

combination of responses are considered as the compromise among all the estimated 

response values (quantitative considerations). This choice is based on evaluation and 

incorporation of the priorities/preferences of the company. 

It must be noted that several optimal experimental points corresponding to input 

combinations could be selected, by considering the priorities of different teams (decision-

makers) involved in the study. Therefore, the best optimal solution takes the quantitative 

results and the decision-makers’ priorities into account. Moreover, graphical methods are a 

useful tool for discussion and achieving a consensus among all stakeholders (Anderson-

Cook and Lu, 2018). 

3.2. The analytical methods for a robust process optimization 

When dealing with several response variables, it is generally not feasible in practical 

terms to reach a simultaneous ideal optimum for each of them with a single input 

combination. To this end, many authors, starting from the methods suggested by Derringer 

and Suich (1980) and Khuri and Conlon (1981), have proposed methods to synthetize and 

optimize the responses, such as Ames et al. (1997), Del Castillo et al. (1996), Rajagopal et 

al. (2005). 

In addition, a further issue emerges when considering the multi-response case and the 

dual response approach. Here, the simultaneous optimization of several variables jointly with 

the consideration of two statistical models, e.g., location and dispersion models, increases 

the complexity and dimensionality of the problem (as introduced in Section 1). 

In order to solve the latter issue, which could imply a notable computational burden, 

analytical optimization methods are simplified starting from the dual approach theory and 



the concept of a performance measure (Leon et al., 1987). To this end, we consider a 

multiplicative relationship between the expected value (𝐸𝐸(𝑌𝑌) = 𝜇𝜇) and the process variance 

(𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) = 𝜎𝜎2) of the response variable. The risk function, defined as the expected value of 

the corresponding loss function, is expressed as follows: 

𝑅𝑅(𝑥𝑥, 𝑧𝑧) = (𝜇𝜇 − 𝜏𝜏)2 + 𝑓𝑓�𝜇𝜇(𝑥𝑥)�𝜎𝜎2 (3) 

Moreover, formula (3) makes it possible to define specific objective functions (Berni and 

Gonnelli, 2006) to optimize several response variables without separately estimating two 

statistical models for each response. 

More recently, split-plot designs and modelling have been optimized by explicitly 

involving one model only for each response in a robust process optimization context, in 

which random effects (noise factors) are also evaluated (Berni and Bertocci, 2018; Berni and 

Nikiforova, 2021). 

We begin by defining a general response surface model, 𝑌𝑌𝑡𝑡 (𝑡𝑡 = 1, … ,𝑇𝑇), for each of the 

𝑇𝑇 dependent variables or responses. 

The simultaneous optimization may be performed considering the 𝑇𝑇 estimated surfaces, 

where each estimated model is evaluated as a single function to be included in the objective 

function to be optimized. 

Therefore, by considering formula (3) and the concept of a dual response approach, we 

can define the following distance between the estimated surface 𝑌𝑌�𝑡𝑡 and the corresponding 

target value 𝜏𝜏𝑡𝑡: 

𝑆𝑆𝑡𝑡(𝐶𝐶,𝑋𝑋) = �𝑌𝑌�𝑡𝑡(𝐶𝐶,𝑋𝑋) − 𝜏𝜏𝑡𝑡�
2
 

Here we consider optimization for a response with a desired target, but the approach can 

be easily adapted for responses where the goal is to achieve a maximum or minimum value. 

Subsequently, the minimization on the coded experimental region (𝜒𝜒) is performed through 

the following expression: 

 𝑚𝑚𝑚𝑚𝑚𝑚
χ
��𝑆𝑆𝑡𝑡(𝐶𝐶,𝑋𝑋)

𝑡𝑡

� (4) 

The objective function in formula (4) is optimized conditional on the whole experimental 

region (𝜒𝜒) defined by the process variable ranges (and potentially any limiting constraints 

for other problems), as well as involving the estimated confidence interval for each random 

coefficient when random noises are present. 



In the following section, we compare two optimization methods described above, e.g., 

the Pareto front approach (Subsection 3.1), and formula (4), where the goal is to improve the 

accuracy of the measurement process for a Numerical Control machine (N/C machine) used 

in the orthodontic field, the measurements of which are analyzed for a generic dental implant. 

4. The case study: data description and process optimization 

In this Section, a multi-response optimization comparison is made, with a short 

description of the experimental planning and data from which the data were obtained. For 

further details see Berni (2010). 

4.1. Split-plot design and data description 

The aim of the study is to improve the accuracy in measurements for a Numerical Control 

(N/C) machine, jointly with the reduction of the measuring time. The machine uses a feeler 

pin with a movable bridge framework to facilitate the positioning of the measured piece, 

which in our case is a dental implant. The machine needs specific environmental conditions 

to function properly, all ensured previously (see Berni and Gonnelli, 2006). 

In Berni (2010), five response variables 𝑇𝑇 = 5 were optimized simultaneously 

considering formula (4) and related to the different positioning of the feeler pin on the dental 

implant during the process measurement steps. In this paper we focus on the optimization 

comparison by involving three key response variables. 

The responses, considering the dental implant used to set the measurement process, are 

as follows (with targets in brackets): maximum circle diameter-𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝜏𝜏1: 3.000), 

minimum circle diameter-𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝜏𝜏2: 2.790), and eccentricity-𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏5: 0.000). There is 

no problem with correlation among the three dependent variables, since each type of 

measurement is carried out as a distinct step; moreover, each response variable is 

independent from the others during the measurement of the piece. In order to reduce the 

measuring time, it is possible to intervene on the process phase related to the identification 

of the cone frustum, identified by three circles (Figure 1), at three different distances. In 

Figure 1, the frustum of cone is shown by highlighting the three circles used to locate it. 



 

Figure 1: Location of the frustum of cone by three circles and definition of the “circle-point” factor 

In the initial setting, the numbers of points are set at (7,7,7), e.g. the NC machine measures 

7 points on each circle. A categorical input factor "circle-point-𝑐𝑐𝑐𝑐" is then defined at four 

levels with each level corresponding to a different number of points measured on each circle: 

(1) 7,7,7; (2) 7,5,7; (3) 5,7,5; (4) 5,5,5. 

Two other variables are involved in the split-plot design: measurement speed-𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

(mm/sec), and drift speed-𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (mm/sec). Therefore, a split-plot design with three factors 

is planned: two WP process factors, both at two levels (measurement and drift speeds), only 

one SP control factor, and the 𝑐𝑐𝑐𝑐 categorical factor at four levels. The final split-plot has 112 

runs with seven replicates. 

Standardization of the responses was carried out (Berni, 2010) to compensate form 

differences in magnitude among responses, even though both responses and WP factors are 

expressed with the same unit of measurement. 

4.2. The Pareto front approach: objective phase 

In order to identify the Pareto-optimal set, a series of 1764 combinations of factor levels 

were identified (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑐𝑐𝑐𝑐), from which, the predicted response values 

(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�  and 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� ) are estimated using the model form described in formula (2). 

The set of possible input combinations shown in Figure 2, was formed by constructing a grid 

of points based on discrete levels of 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 for each level of the factor 𝑐𝑐𝑐𝑐. 

The fineness of the mesh of each grid is equal to 0.1, since this choice balances between the 

complexity of calculation and valid coverage of the two-dimensional region, identified by 

the ranges of 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 factors. The combinations of the possible solutions are 

labelled from 1 to 1764 as follows (Chapman et al., 2014a): i) from the first grid on the upper 



left to the lower right grid; ii) inside each grid starting from the bottom row and moving from 

left to right, then starting at the end of each row, from the leftmost point of the next row. 

 

Figure 2: Input grid plot 

The obtained Pareto-optimal set consists of 61 combinations, indicated by the solid circles 

in Figure 2. These combinations all involve 𝑐𝑐𝑐𝑐 = 4, which requires the smallest number of 

points. Therefore, irrespective of the choice in the subjective phase, an improvement in the 

measurement time will always be obtained. 



 

Figure 3: Pairwise scatterplots of the points belonging to the Pareto front 

Figure 3 shows the pairwise scatterplots of the points belonging to the Pareto front 

(Chapman et al., 2014a; Anderson-Cook, 2017). The analysis of this set of points shows that 

there is a strong trade-off between the maximum circle diameter and eccentricity. The trade-

offs between the other two pairs of response variables appear smaller. Finally, by observing 

the ranges of the predicted responses, we note how all 61 combinations of the Pareto-optimal 

set lead to values of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�  and 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� , close to the respective targets. 

4.3. The Pareto front approach: subjective phase 

In order to compare the 61 combinations of the Pareto-optimal set, the following 

procedure is carried out (Chapman et al., 2014a; Myers et al., 2016; Anderson-Cook, 2017): 



i) the Pareto front values of each predicted response are transformed into desirability values, 

so that the best value obtained (from the set of solutions comprising the front) for each 

response is scaled to one, while the worst value is scaled to zero; ii) for each combination 

(of the Pareto-optimal set), the respective desirability values are combined in a single global 

desirability function. Since it was considered appropriate to heavily penalize undesirable 

predicted response values in this work, we choose the standard multiplicative desirability 

form, based on the geometric mean expression, as follows: 

𝐷𝐷(𝒙𝒙𝒫𝒫 ,𝒘𝒘) = 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒙𝒙𝒫𝒫)𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒙𝒙𝒫𝒫)𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⋅ 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒙𝒙𝒫𝒫)𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

where 𝒙𝒙𝒫𝒫 is a combination of the Pareto-optimal set; 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒙𝒙𝒫𝒫), 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒙𝒙𝒫𝒫), 𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒙𝒙𝒫𝒫) 

the single desirability values related to the three predicted responses; 𝒘𝒘 =

(𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)′ a weight vector, with 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≥ 0 representing 

the weights assigned to the three response variables and 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1. 

Figure 4 shows the mixture plot, which identifies the best combination (i.e., the optimum 

point for achieving the highest value of the global desirability function) for each possible 

weighting of the response variables. Each point of the mixture plot represents a weight vector 

(e.g., the left bottom vertex represents 𝒘𝒘 = (1,0,0)′, and the bottom edge represents the 

weight vectors with 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 0 and 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0). For further details see Cornell 

(2002). 

 

Figure 4: Mixture plot 



In this case-study, 41 of the 61 combinations belonging to the Pareto-optimal set appear 

in the mixture plot (where each colored area identifies a different combination), that is, they 

are best for at least one weight vector. Assuming that the three response variables are thought 

to be of equal importance, the weights reflecting company priorities/preferences are those 

around the centroid of the triangle, indicated in Figure 4 with a black cross, and 

corresponding to the weight vector 𝒘𝒘 = �1
3

, 1
3

, 1
3
�
′
. The two best points for these weight 

combinations are 1723 and 1744. In particular, 1744 is better for most of these weights, 

including the one directly at the centroid of the triangle as well. Table 1 shows the detailed 

results obtained for these two points, e.g., 1723 and 1744, only differ in the value of 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 

and they provide similar predicted response values. 

Combination 
 Factors  Predicted responses 

 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒄𝒄𝒄𝒄  𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄�  𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄�  𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆�  

1723  -1 0.9 4  3.00392 2.78911 0.00994 

1744  -1 1 4  3.00390 2.78912 0.00998 

Table 1: Factor levels and predicted response values for the combinations 1723 and 1744 

 

Figure 5: Trade-off plot of the 41 best point combinations for at least one weight combination 



Figure 5 contains the trade-off plot which illustrates the desirability values (internal 

vertical axes) and absolute value differences between the predicted response values and the 

respective targets (external vertical axes) considering the 41 solutions that are best for at 

least one weight combination. In Figure 5, the trade-offs between the pairs of responses are 

similar to those highlighted by the pairwise scatterplots in Figure 3. Moreover, as shown by 

the mixture plot (Figure 4), it is evident that the point combinations 1723 and 1744 provide 

an ideal balance among the three responses. 

In order to better analyze and compare these two combinations of interest, Figure 6 

shows the synthesized efficiency plots (Lu and Anderson-Cook, 2012) which allows 

comparison of the relative efficiency of individual solutions with the best available across 

all the possible weight vectors.3 The synthesized efficiency of a point combination 

(belonging to the Pareto-optimal set) 𝒙𝒙𝒫𝒫 , with weight vector 𝒘𝒘, is defined as follows: 

𝐷𝐷(𝒙𝒙𝒫𝒫 ,𝒘𝒘)
𝑚𝑚𝑚𝑚𝑚𝑚𝒙𝒙𝒫𝒫[𝐷𝐷(𝒙𝒙𝒫𝒫 ,𝒘𝒘)] 

The shading, from white to black, represents the transition from high to low values of 

the synthesized efficiency. Each of the 19 shades of grey, starting from the lightest, 

corresponds to a decrease in the synthesized efficiency of 0.05. 

 

Figure 6: Synthesized efficiency plot for the point combinations 1723 and 1744 

                                                           
3 It should be noted that for the construction of the synthesized efficiency plots (Figure 6) and the mixture plot 
(Figure 4), a set of 20301 weight combinations has been defined, where adjacent weights related to a same 
response variable are separated by a distance equal to 0.005. 



The large white region characterizing the two graphs, represents approximately 75% and 

74% of the total area of the triangles, respectively, and indicates that both points have a 

synthesized efficiency of at least 0.95 for a substantial number of weight combinations. In 

particular, the white region around the centroid of the triangle, containing a black cross 

(Figure 6), shows that both point combinations provide excellent performance at the 

weighting region, which reflects the company's priorities/preferences. 

Moreover, we select the optimal solution as represented by combination 1744, since it is 

slightly better for a large number of weight combinations, and in particular, for the weighting 

giving equal importance to the three response variables. However, input combination 1723 

provides a similar performance, thus representing a valid competitive alternative. 

4.4. Comparison between the Pareto front approach and the analytical optimization 

method 

Table 2 shows the results from both multi-response optimization methods: the Pareto 

front approach and the analytical method suggested in Berni (2010). By comparing (Table 

2) the optimum point combination 1744 and the optimal solution identified in Berni (2010), 

we can observe how only one process factor, 𝑐𝑐𝑐𝑐, shows the same optimal level; nevertheless, 

it must be noted that the circle point variable is the main process variable that we are 

interested in optimizing. Although both combinations provide similar predicted response 

values, the optimization method used in Berni (2010) allows for obtaining a better value than 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� . This is an important result in view of the relevance that this response variable has in 

the actual process. The Pareto front constructed does contain similar solutions to those 

identified by the optimal solution, but corresponded to different weight combinations than 

those around the centroid. Hence, with a more thorough exploration of the solution set 

identified with the Pareto front, a similar solution could be selected. 

Method 
 Factors  Predicted responses 

 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒄𝒄𝒄𝒄  𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄�  𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄�  𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆�  

Pareto front  -1 1 4  3.00390 2.78912 0.00998 

Analytical  0.710 0.362 4  3.00300 2.78500 0.00100 

Table 2: Optimization results: the comparison 

It is important to note, however, that although a Pareto front can be constructed for any 

number of responses of interest, the graphical tools considered here only used three response 



variables, unlike the five considered in Berni (2010). For this reason, it was only possible to 

make a partial comparison between the results obtained through the two different methods. 

Nevertheless, it is worth noting that the Pareto front approach offers the possibility of using 

additional graphical tools (Lu et al., 2017), which enable multi-response optimization of 

more than three response variables. 

Moreover, in Berni (2010) the optimization was carried out considering both non-

standardized and standardized data, where the latter gave the best optimization results. 

5. Discussion and final remarks 

By considering the case study, and evaluating the theoretical differences between the 

two optimization methods applied as well, it is possible to highlight the following main 

differences.  

Undoubtedly, the Pareto front approach offers the advantage of using graphical tools in 

a simple and intuitive way, enabling straightforward identification of leading solutions with 

convergence toward the optimal solution among the various company teams involved. The 

elimination of non-competitive choices streamlines where to focus further discussion. 

Moreover, a subjective evaluation can also be performed, with the possible achievement of 

a unanimous decision among different stakeholders. It is possible to compare different 

identified solutions, and see their relative strengths and weaknesses for each of the responses 

of interest. Indeed, it allows for accurate comparison among several input combinations of 

interest. A further advantage is the flexibility in response weighting to handle multiple 

combinations of business priorities and to examine the impact of these choices on the 

identified results. The transparent nature of the Pareto front presents the experimenter with 

different alternatives that can be explored and compared. Nevertheless, this is also possible 

by performing analytical optimization methods (see Lin and Tu, 1995). In addition, response 

weighting and analytical methods assign relative importance to each response according to 

the estimated corresponding weight (Berni, 2010). 

A further advantage of analytical methods with respect to the Pareto front approach is 

the inclusion of random effects, within both the modelling and the optimization steps. 

Therefore, fixed as well as random effects are wholly involved, and as a result a robust 

process optimization can be carried out. It would be straightforward to use the above 

optimization function based on the inclusion of random effects for each of the responses as 

the basis for constructing the Pareto front. 



The aforementioned advantages and disadvantages highlight the significant relevance of 

both methods, as each has specific strengths and weaknesses that would be relevant for a 

wide range of empirical situations (real industrial processes, technological contexts) where 

they can be effectively applied. 
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