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Abstract 

While “classical” demography imputes population ageing to low fertility, a recent “revisionist” line 

of thinking signals the emergence of ageing “from the top” (i.e., due to low mortality), starting slightly 

after World War II. We join this debate proving that, in the long run, mortality affects the population 

age structure, and therefore also ageing, more than customarily believed. With data taken from the 

Human Mortality Database on eight populations located in Europe, North America and Oceania, and 

for as far back as possible (up to 1820 in some cases), and applying cointegration analysis, we show 

that most of the historical change observed in the proportions of young, adult and old people in these 

countries can be derived solely from changes in survival, ignoring fertility and migration. 

1. Introduction 

Classical demography imputes population ageing to low fertility, not to low mortality (Coale 1956; 

Keyfitz 1975). When mortality is very high, its decline may even lead to population rejuvenation: this 

actually happened at the beginning of the demographic transition, characterized by a strong reduction 

in infant and child mortality (Coale 1972; Chesnais 1990, 1992). Extreme cases aside, Coale (1957) 

showed that, had fertility remained constant, the age structure of Sweden would have been practically 

the same in 1860 and 1950, despite strong mortality reduction. Bengtsson and Scott (2005, 2010) 

updated the exercise and confirmed that, with constant fertility, the proportion of people aged 65 and 

over in Sweden would have remained practically unchanged between 1900 and 2000. In both cases, 
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so the argument goes, huge mortality progress proves of very small consequence on the population 

age structure, contrary to intuition. 

After World War II, however, with improvements in survival concentrated at old and very old ages 

(Vaupel 2010) and the emergence of a sort of ageing “at the apex” (Bourgeoit-Pichat 1979), or “from 

the top” (Preston et al. 1989; Caselli and Vallin 1990), some “revisionist” scholars, as Lee and Zhou 

(2017) call them with specific reference to Preston and Stokes (2012), have challenged the idea that 

fertility is always the major driver of population ageing. Murphy (2017), for instance, shows that, in 

the past 65 years or so, it is essentially low mortality that prompted population ageing in 11 European 

countries. However, the idea of ageing from the top remains controversial: Lee and Zhou (2017) 

based on their own counterfactual analysis, maintain that even in “modern” populations, low fertility 

remains the main cause of population ageing.  

While Murphy (2021) warns that the results of counterfactual population projections depend on the 

base year selected for the analysis and on population momentum, the main qualitative conclusions 

remain largely the same: fertility decline is at the root of population ageing, although the role of 

longer survival is no longer negligible nowadays. 

In this paper, we show that mortality is, in the long run, a very good predictor of population ageing 

and, more in general, of the age structure of a population. To do this, we exploit two sets of empirical 

data, for various countries and several years. Our dependent variable is the share of individuals by 

age, or current (population) age structure. Our independent variable is the age structure of the 

stationary population associated with the current, cross-sectional life table, i.e. the Lx series: this we 

will call reference age structure. Several scholars question the validity of period life tables as 

indicators of the “true” evolution of survival, maintaining that cohort life tables should be used instead 

(e.g., Borgan and Keilman 2019). A theoretical discussion about this would be too long: in this paper, 

we indirectly contribute to the debate by showing that an empirical and strong relationship exists 

between these period life tables and the population age structures at (about) the same dates. 
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Our analysis relies on cointegration (section 2). However, readers who are not familiar with it can 

nonetheless follow our line of reasoning, which is trivial: we test whether the reference age structure 

(the proportion of individuals of age x in the stationary population associated with the period life table 

of year t) “attracts” the current age structure of a population, and whether this small, but persistent 

force of attraction eventually prevails, and shapes population age structures. 

To simplify, two opposite outcomes are possible: 

1) Our predicting capacity proves limited. In this case, the effect of mortality (or, at least, of period 

mortality) on the age structure is arguably small and the classical result of demographic analysis 

holds: something else (fertility arguably, but not mortality decline) is at the root of population 

ageing; 

2) a large part of the age structure dynamics can be explained by the evolution of survival (as 

described by a succession of period life tables), and this in all the countries under scrutiny (eight, 

see below) and for the entire period of observation (the last two centuries or so). This outcome 

may lead scholars to reassess the classic interpretation that fertility guides population ageing. 

We will try to convince our readers that our results point in this second direction: period life tables 

do “explain” a large part of observable population age structures. 

The paper is organized as follows. The next section is devoted to the formal description of the test 

that we will use in this paper. The third section presents the data and some descriptive statistics. The 

fourth section contains a preliminary analysis of the relationship between the current and the reference 

age structure: even without great sophistication, the two age structures turn out to be very closely 

connected. The fifth section confirms these results, using a more refined approach: cointegration and 

the test introduced in section 2. The sixth and last section discusses our findings and their 

implications. 
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2. Testing cointegration between the current and the reference age structure 

Let 𝐶 ,  denote the population age structure expressed as the proportion of individuals of age x in year 

t 

 𝐶 ,
, ,  (1) 

where 𝑃 ,  and 𝑃  stand for the population of age x and in total in year t, respectively. 

Similarly, the reference age structure of the population (i.e., the age structure of the current stationary 

population) can be defined as: 

 𝐾 ,
,

∑ ,
 2  

where 𝐿 ,  indicates the person-years lived at age x in the life table of year t. However, we will use 

the log transformations of 𝐾 ,  and 𝐶 , , 𝑘 ,  and 𝑐 ,  respectively, for two main reasons: to circumvent 

one of the limitations of proportions (they are bounded in the 0–1 interval, with the lower limit, 0, 

particularly disturbing), and to better approximate linearity in the relationship between the two series. 

The main goal of this paper is to test whether a long-run linear relationship exists between 𝑐 ,  and 

𝑘 ,  for any given age x, and for varying t:  

 𝑐 , 𝑚 𝛾 𝑘 , 𝜀 , ,  (3) 

where 𝑚  and 𝛾  are the model age-specific coefficients and 𝜀 ,  is the error term. If this relationship 

exists for a given age x, it becomes possible to predict the proportion of individuals of that age at time 

t from the reference proportion 𝑘 , . If this holds for all ages 𝑥 , the entire age structure of year t can 

be derived from the life table of that year.  
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Eq. (3) does not rule out the possibility that also preceding values of kx affect the current value of 𝑐 , . 

Suppose, for instance, that the “true” dynamic of the age structure is given by the following 

Autoregressive Distributed Lag (ADL) model: 

 𝑐 , 𝛽 , 𝛽 , 𝑐 , 𝛽 , 𝑘 , 𝛽 , 𝑘 , 𝜀 ,  (3’) 

It can be proven that this form of dynamics corresponds to a long-run relationship of the type 

represented by eq. (3) where 𝑚 ,

,
 and 𝛾 , ,

,
 (see e.g. Johnston and Dinardo 2007:245. 

See also Pesaran 2015; Box et al 2016, and, for a simplified approach, Giles 2013). 

If a long-run linear relationship between 𝑐 ,  and 𝑘 ,  actually exists, we are also interested in 

assessing whether eq. (3) can be approximated by simpler models such as: 

 𝑐 , 𝛾 𝑘 , 𝜀 , ,  (4) 

 𝑐 , 𝑘 , 𝜀 , ,  (5) 

Model (4) assumes that 𝑚 0, while model (5) introduces the additional assumption that 𝛾 1 

for all x’s. The interest of eq. (5) lies in its simplicity: it says that the current population age structure 

of a population can be approximated by simply looking at its reference age structure, i.e. the life table 

for that year. This makes the estimation of 𝑚  and 𝛾  unnecessary, and saves the need to collect and 

analyse long time series of both sets of data (current and reference age structures). 

Unfortunately, assessing the existence of a long-run relationship between two time series of the type 

described in eq. (3) proves difficult, because spurious correlation must first be ruled out (Granger and 

Newbold 1974). If the “innovations” that affect these series have permanent effects on them (i.e., the 

series have a “unit root” in the econometric jargon), their dynamics are non-stationary (i.e., their 

means, variances and autocovariances depend on time) and the two series may appear to be correlated 

even if they are independent of each other. Arguably, permanent innovations play a fundamental role 

in the long-run dynamics of mortality and fertility. Think of vaccines, penicillin and antibiotics, 
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coronary bypass, the formation of antibiotic-resistant bacteria, the spread of smoking and alcohol 

drinking, etc.: all with permanent effects on the evolution of mortality. Likewise, the reduction of 

infant and child mortality, the increase in the cost of children, the new role of women (higher 

education and greater participation in the labour market), etc., have permanently changed the 

evolution of fertility.  

Two series are said to be cointegrated if 

1. innovations produce permanent effects (unit roots) and 

2. the series are (not spuriously) correlated in the long run, with a functional relation of the type 

described in eq. (3). 

In classical cointegration analysis, therefore, one must first test for the presence of unit roots in the 

series under consideration, and then, if these are present, test for cointegration. The cointegration test 

is based on the residuals of eq. 3, not on its coefficients (Engle and Granger 1987). If the residuals 

turn out to be stationary (their mean, variance and covariance are independent of time), a long-run 

relationship between the two series is likely to exist. This test is usually performed via the Augmented 

Dickey-Fuller (ADF) unit root test, although other solutions are also possible. 

To understand the rationale of this approach, let us define �̂� , 𝑚 𝛾 𝑘 ,  as the log-proportion 

of individuals of age x in year t predicted by eq. 3 based on the reference age structure (better: on the 

reference log-proportion of individuals of age x in year t). If the current and the reference age structure 

are cointegrated, the current log-proportion of individuals aged x, 𝑐 , , will show a tendency to 

“revert” to its long-run equilibrium value �̂� , . In practice, cointegration means that 𝑐 ,  and �̂� ,  cannot 

be too far away from each other, because some “force” pushes 𝑐 ,  towards �̂� , . In this case, the 

residuals �̂� , 𝑐 ,  will show a stationary dynamic (they will never diverge too much from zero), 

and this explains why the classical tests of cointegration focus on residuals. 
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Unfortunately, the standard test used to check whether time series are stationary often proves 

inconclusive. This “low power” of the classical cointegration test derives ultimately from the fact that 

three conditions must be met to prove cointegration: 

1 and 2) the test must not reject the null hypothesis of a unit root for each of the two series under 

scrutiny (this is to confirm that innovations do produce permanent effects in both series); 

3) the test must reject the null hypothesis of a unit root when it is applied to the analysis of residuals 

(this is to prove that one of the series tends to revert on the other).  

These conditions are rarely met in practice: not necessarily because the underlying hypotheses are 

false, but because of “noise”, such as data errors and, possibly, other intervening variables. Therefore, 

other, more powerful approaches have been proposed. Among these, the so-called “bounds test” 

(Pesaran et al. 2001), which, in a way, verifies the three aforementioned conditions with a single test. 

The general idea behind this approach is to test the “reversion towards the long-run equilibrium”, that 

is the “force of attraction” that we mentioned earlier, by estimating an Error Correction Model (ECM). 

The details of the test are briefly presented in Appendix A. What really matters here is that this test 

yields a result (a “statistic”) called F.  

For any given significance level, two critical values are offered: 𝐹  and 𝐹 , upper and lower, 

respectively (Pesaran 2015:526). This, which incidentally justifies the name, “bounds test”, means 

that three possible outcomes are possible: 

1) 𝐹 𝐹  signals the likely existence of a long-run relationship; 

2) 𝐹 𝐹 indicates that the long-run relationship is unlikely to exist; and, in between, 

3) 𝐹 𝐹 𝐹  leads to a “suspension verdict”: the inference is inconclusive. 

The third outcome of the bounds test may have various possible causes: for instance, it emerges when 

the series have “a different order of integration”, which means that only one of them has a unit root, 

with innovations inducing permanent effects. In this case, further analyses are needed to verify the 

possible cointegration between the two series. 
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If 𝑐 ,  and 𝑘 ,  turn out to be cointegrated, one can estimate eq. 3 with OLS and use the 𝑘 ,  series 

and the estimated coefficients to predict the evolution of 𝑐 , . The proportion of the overall variance 

of 𝑐 ,  explained by 𝑘 ,  is given by the simple 𝑅  statistics of the regression model. 

3. The data 

For our analysis, we used data taken from the Human Mortality Database (HMD) on eight populations 

located in Europe, North America and Oceania (Table 1). We selected these populations based on 

two main criteria: 

1. The data start at least in the 1930s so that the series span at least 85 years; 

2. The effects of the two world wars are limited either because the national territory was spared 

(as in the case of Australia, Canada, New Zealand, Sweden, Switzerland and the USA) or 

because the data allow us to focus only on the civilian population (as in the case of France 

and England-Wales). 

We used data on exposures to calculate the current proportions of individuals of age x in year t (𝐶 , ), 

and period life tables to compute their reference counterpart, i.e. the proportions of life-years at age 

x out of the total (𝐾 , ). We focused on the ages between 0 and 99 years, by five-year age classes (0–

4; 5–9; ...; 95–99). 

The countries covered by our analysis have time series of varying lengths. Typically, data for the 

European populations are available since the 19th century, or even before (Swedish data, for instance, 

begin in the 18th century). However, we decided to start in 1820, or as early as possible after that, 

because older data are often scarcely reliable. In non-European countries, the series start typically 

between 1910 and 1930. 

The age structures of our populations changed considerably over time. The mean age, for instance 

increased from about 25–26 years to about 38–39 years, while the mean age of the corresponding 

reference populations (i.e., the stationary populations associated with the current period life tables) 
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passed from 30–33 to 39–40 years (Table 1). The relative weights of the youngest and the oldest age 

groups changed considerably in the last two centuries in both the current and the reference 

populations, while the relative weights of the central age groups barely varied. At these central ages, 

the limited variability of our independent variable 𝑘 ,  reduces the explanatory power of the ECM 

(eq. A.1); in practice, however, this is less problematic than it seems, because also the dependent 

variable 𝑐 ,  barely changes. The case of Sweden, the country that we will systematically use as an 

example in this paper, is shown in the box plots of Figure 1. Other countries, not presented here for 

reasons of space, behave similarly.  

One of the difficulties that our analysis must face is represented by mortality crises: e.g., the cholera 

epidemics of the 19th century and the Spanish flu epidemics of 1918. These discontinuities may 

introduce several forms of distortion. The most problematic are probably those linked to fertility 

swings, which induce baby booms and busts and create “waves” in the age structure 𝐶 ,  (but not in 

the reference age structure 𝐾 , , our independent variable) of the subsequent 100 years or so. This 

reduces the explanatory power of our model, which, however, remains high, as we will see shortly. 

Another factor to keep under control is linearity, which is assumed in our two fundamental equations 

(3 and A.1), but which may not exist in real life. Figure 2 suggests that the linearity assumption 

generally holds, except for a small, but significant slope change in the passage to older ages (above 

60 years). More refined statistical analyses (not shown here) indicate that there is also a slight (but 

statistically significant) convexity after 60 years, and a concavity before this age. All in all, however, 

the diagnostics of our ECM model (eq. A.1) reveal that these modest departures from linearity do not 

affect our results (see Table 3, below). 
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Table 1 Summary statistics 

   Mean age of populations 
  Time range of series (years) Current (Cx) Reference (Kx) 
Country Code Start End Length Start End Start End 
Australia AUS 1921 2016 96 27.8 38.1 35.5 42.1 
Canada CAN 1921 2016 96 26.7 40.3 35.7 41.9 
England&Wales ENW 1841 2016 176 25.5 40.0 31.7 41.3 
France FRA 1820 2016 197 28.3 40.8 31.4 42.0 
New Zealand NZD 1901 2008 108 25.7 38.2 34.8 41.3 
Sweden SWE 1820 2017 198 27.4 40.7 31.3 41.7 
Switzerland CHE 1876 2016 141 28.1 41.5 30.7 42.3 
United States USA 1933 2017 85 29.6 38.7 35.0 40.7 

Note: in the longer country codes of the HMD ENW=GBRCENW; FRA=FRACNP; NZD= NZL_NM. 
Reference=Stationary. 
Source: Human Mortality Database.  

Fig. 1 Median values and variability of kx and cx by five-year age classes in Sweden (1820–2017) 

 
Note: kx=ln(Kx); cx=ln(Cx). Five-year ages are classes indicated with their central age. 

Fig. 2 Relationship between kx and cx for all the countries and years of Table 1  

 
Note: kx=ln(Kx) and cx=ln(Cx). Small values of Kx and Cx, and therefore lower values of kx and cx, (bottom left), 
characterise older ages. 
Source: See Table 1. 
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4. The long-run relationship between the reference and the current age structure: A naïve 

analysis 

Before tackling the cointegration analysis of section 5, let us present our argument (existence of a 

long-run relationship between the current and the reference age structure) in the simplest possible 

way. 

Table 2 refers, once again, to Sweden and it shows, at different ages, the estimates of the parameters 

of eqs. 3 and 4, along with their standard errors and the associated R2. The last three columns of Table 

4 report the mean squared errors (MSE) of three models: the full one (eq. 3), the restricted one 

(intercept set to zero, eq. 4) and the twice-restricted one, with zero intercept and unitary slope (eq. 5). 

The general idea behind this exercise is to assess how close, on average, the current age structure is 

to its reference counterpart, and whether the use of simpler models is statistically justified.  

Table 2 Parameter estimates by age for Sweden (Eqs. 3, 4 and 5) 

 Eq. 3  Eq. 4  Eq. 3 Eq. 4 Eq. 5 

Age Intercept SE Slope SE R2  Slope SE  MSE MSE MSE 

2.5 2.497 0.292 1.909 0.111 0.917  0.937 0.111  0.008 0.033 0.059 

7.5 2.451 0.518 1.887 0.193 0.859  0.946 0.193  0.009 0.023 0.042 

12.5 2.209 0.600 1.796 0.223 0.809  0.952 0.223  0.010 0.018 0.034 

17.5 1.698 0.543 1.603 0.202 0.754  0.958 0.202  0.009 0.013 0.026 

22.5 0.16 0.438 1.030 0.165 0.542  0.969 0.165  0.007 0.007 0.014 

27.5 -0.969 0.281 0.617 0.105 0.248  0.981 0.105  0.007 0.008 0.010 

32.5 -2.007 0.300 0.247 0.110 0.028  0.993 0.110  0.008 0.010 0.010 

37.5 -3.894 0.309 -0.429 0.112 0.037  1.005 0.112  0.009 0.013 0.014 

42.5 -6.25 2.433 -1.259 0.882 0.078  1.016 0.882  0.013 0.016 0.018 

47.5 4.907 4.375 2.793 1.589 0.169  1.030 1.589  0.017 0.018 0.025 

52.5 5.833 0.916 3.103 0.318 0.595  1.045 0.318  0.012 0.020 0.036 

57.5 3.697 0.996 2.334 0.340 0.740  1.060 0.340  0.012 0.021 0.052 

62.5 2.255 0.832 1.824 0.275 0.789  1.072 0.275  0.014 0.022 0.069 

67.5 1.583 0.645 1.590 0.203 0.844  1.087 0.203  0.017 0.026 0.100 

72.5 0.882 0.543 1.359 0.160 0.881  1.098 0.160  0.020 0.025 0.134 

77.5 0.451 0.468 1.227 0.126 0.916  1.107 0.126  0.024 0.026 0.186 

82.5 0.105 0.428 1.130 0.101 0.936  1.106 0.101  0.031 0.031 0.239 

87.5 -0.049 0.431 1.095 0.087 0.955  1.105 0.087  0.038 0.038 0.337 

92.5 -0.327 0.458 1.049 0.075 0.962  1.098 0.075  0.055 0.058 0.478 

97.5 -0.972 0.689 0.975 0.086 0.941  1.087 0.086  0.123 0.149 0.699 
Note: Five-year age classes are indicated with their central point, as in Figure 1. Eq. 3: full model; Eq. 4: restricted 
model (no intercept) and Eq. 5: twice-restricted model (no intercept and unitary slope). 
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Note that because of the non-stationary nature of the 𝑐 ,  and the 𝑘 ,  series, the estimated standard 

errors in Table 2 are likely biased. The 𝑅  values, on the other hand, may reflect a spurious correlation 

between the series, although this seems unlikely, because the estimated slopes are positive in 18 cases 

out of 20 (full model: eq. 3, Table 2). In other words, at almost all ages, the current and the reference 

proportions of individuals tend to move in the same direction, decreasing or increasing together. The 

only exceptions are two central age classes (35–39 and 40–44 years) where, however, variability is 

limited in both cx,t and kx,t (Figure 1), which also leads to very low 𝑅  values.  

The estimates of Table 2 can be used to model, or “predict”, the evolution of the current age structure 

over time. Figure 3 presents three predicted proportions of individuals by age: the blue dotted line 

represents the evolution of 𝐾 ,  (reference age structure and eq. 5); the red, solid line represents the 

evolution of the current proportion of individuals of age x (𝐶 , ), and the orange-dashed line represents 

the prediction of this proportion 𝐶 ,  based on the 𝐾 ,  series and on the estimated age-specific 

parameters of Table 2 (eq. 3, full linear model).  

Our models, based exclusively on the current life table and the associated stationary population, 

capture remarkably well the general evolution of the age structure in the past two hundred years in 

Sweden (and in the other countries of Table 1 – not shown here). Of course, our simplified models 

cannot accurately depict the fluctuations around this trend, i.e. the age-structure effects of a) previous 

mortality-affecting events such as wars and epidemics, and b) fertility and migration, levels and 

variations (totally ignored, here). 

With the model proportions of Figure 3, we can also estimate the entire age structure of the Swedish 

population at different epochs (Figure 4). Both Figures, 3 and 4, show that the close correspondence 

between the current C and the predicted 𝐶 values dates back to very long ago. In other words, the 

correlation between survival (period life tables) and the shape of the age structure (which includes 

population ageing) seems to predate not only the strong improvements in old-age mortality that 
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materialized after the 1950s (Murphy 2017), but also the onset of the demographic transition, which 

started shortly after 1860, in Sweden. 

Figures 3 and 4 also show that the twice-restricted version of eq. 3 (i.e., eq. 5 – no intercept, unitary 

slope) roughly works: the reference proportion of individuals aged x is generally close to its current 

counterpart (Kx,t~ Cx,t). The approximation (as measured with the MSE for instance) is generally only 

slightly worse than in the full model (and it is even better than it, in recent years), and the 

interpretation is much simpler. As a first approximation, the age structure of the reference population 

in year t gives a good idea of the current age structure of that population in the same period, which is 

a way of saying that survival (more precisely: current survival) “explains” most of the current age 

structure of the population. At young ages (<30), the current proportion of individuals tends to be 

slightly higher than the reference, while at older ages (>55) the reverse is true. This is not surprising 

in a population with a four-fold increase in the period (from 2.5 million in 1820 to more than 10 

million in 2018). Indeed, this small distortion disappears altogether in recent times (years 2000–2004; 

last panel of Fig. 4), when the effects of the demographic transition are over. Similar results emerge 

also for the other countries of our dataset (not shown here) 
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Fig. 3 Current (red, solid line), reference (blue, dotted line) and predicted (orange, dashed line) 

proportion of individuals in selected age-groups (Sweden, 1820–2017) 

 

Note: predictions based on the full model (eq. 3). Please mind the different scales on the y-axis. 
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Fig. 4 Current (red, solid line), reference (blue, dotted line) and predicted (orange, dashed line) 

proportion of individuals in selected periods (Sweden) 
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Fig. 5 Median R2 (explained variance) of Eq. 3 by five-year age groups (all the countries and years 

of Table 1) 

 

Note: The points represent the median explained variance of Eq. 3 by age group (all countries). The shaded area 
indicates the 95% band. 

Figure 5 shows the median R2 value associated with the estimate of eq. 3 at different ages in all the 

eight countries included in this analysis. Results are unsatisfactory (low R2) between 25 and 54 years, 

but shortcoming is less serious than it may seem, because also the variability of both 𝑘 ,  and 𝑐 ,  is 

very limited at these ages. Instead, where the changes in the age structure of the population are more 

important, at young and old ages, the part of the variance that our model can “explain” becomes 

substantial, frequently above 75%, especially past age 60 years. All this is obtained totally ignoring 

fertility and migration in the current year, and all that happened to any demographic “behaviour” 

(fertility, migration and mortality) in any previous year. 

5. The cointegration tests 

In this section we present the results of the cointegration tests that we carried out considering 

separately each couple 𝑐 ,  and 𝑘 ,  for a fixed age x and varying t. The purpose of these tests is to 
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exclude spurious correlations between the two series, which their stochastic trends make possible. 

We did this for each of the eight countries of Table 1, and for 20 five-year age groups x (0–4, 5–9, 

…, 95–99). 

Table 3 summarizes the main results. Its first row says that the existence of a long-run relationship 

between the 𝑐 ,  and the 𝑘 ,  series is deemed likely in 107 cases (67% of the total), unlikely in 41 

cases (26%) and uncertain in the remaining 12 cases (8%). If the tests are performed at a 5% 

significance level instead of 10%, a long-run relationship is deemed likely in 60% of the cases. 

To assess the reliability of our tests, we performed three kinds of diagnostic on the residuals: 

1) The Box-Pierce test of autocorrelation (Box and Pierce 1970); 

2) The Shapiro-Wilk test of normality (Royston 1982) and; 

3) The score test for non-constant error variance (heteroscedasticity; Cook and Weisberg 1983). 

Based on these analyses, we identified a few “problematic” cases (with autocorrelation, non-

normality or heteroscedasticity), which are not perfectly fit for this test. Removing them, however, 

which leaves us with 114 “well-behaved” time series, does not affect our results: in 66% of the cases, 

a long-run relationship can be identified (Table 3, second row). Overall, the tests results robustly 

indicate that in about two thirds of the cases, the 𝑐 ,  are likely cointegrated with the 𝑘 ,  series. 

Admittedly, there is still a relatively large proportion of “exceptions”, which we impute to the 

noisiness of our time series (see below), especially in relation with the profound demographic shocks 

of the period. This notwithstanding, our results seem to us supportive of the existence of a true (not 

spurious) long-run relationship between the current and the reference age structure.  

Our tests can be broken down by country, as we did in Figure 6a. In four of them (Australia, Canada, 

Sweden and the US) a long-run relationship emerges very frequently, in more than 75% of the 20 age 

groups considered. The remaining countries (England-Wales, France, New Zealand and Switzerland) 

do not perform as well, but even here a cointegration relationship appears to be likely in more than 

50% of the series (age classes).  
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Table 3 Summary of results on the relationship between ca,t and ka,t (all the countries and years of Table 1) 

  A long-run relationship between the 𝒄𝒂,𝒕 and 𝒌𝒂,𝒕 series... 

Data 
No. of 
tests 

Likely 
exists 

Likely 
does not exist 

Unresolved % Existence 

Whole dataset 160 107 41 12 66.8 
After diagnostics 114 75 29 10 65.7 

Note: at 10% significance level. 

Fig. 6 Bounds test 

a. By country      b. By age group 

 

Note: The 20 (5-year age group) series of each of the eight countries are observed for an unequal number of years (see 
Table 1). 
Source: see Table 1 

Figure 6b breaks down our results by age group, which highlights the complexity of the pattern, but 

confirms that cointegration emerges in the majority – sometimes a large majority – of the cases, 

despite the several disturbing factors that we could not keep under control (e.g. data quality, 

epidemics, and the typically low statistical power of cointegration tests). 

6. Conclusions and interpretation of results 

In this paper, we presented an empirical finding: the evolution of the age structure of the population 

appears to be cointegrated with the evolution of its “reference” counterpart, i.e., the age structure of 

the stationary population associated with the period life table. This relationship holds in most cases 

(meaning, age groups) in the eight countries that we included in our analysis, those with sufficiently 

long time series in the Human Mortality Database. This means that most of the change observed in 
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the proportions of young, adult and old people in these countries can be derived from the change in 

survival, and this for a very long time interval, dating back to as much as possible with the available 

data. The correlation does not seem to be spurious (i.e., due to common stochastic trends) and is rather 

strong, with the exception of the central ages, where, however, variability is very limited. A simplified 

version of this finding (which emerges when the intercept of the regression is forced to zero and the 

slope to one) is that the reference age structure Kx,t represents (and has always represented, on 

average) an acceptable approximation of the current age structure Cx,t. 

Murphy (2017) had already argued that, since mid-20th century, most of the evolution of the age 

structure in 11 European countries depends on the evolution of mortality. He could not go back in 

time for more than a century because of the data requirements of his technique, the PHE 

decomposition (Preston et al 1989). Conversely, we could: our method, less data demanding, allows 

us to use longer series, up to almost two centuries in the case of Sweden and France, for instance. 

Coming to the implications of our findings, let us mention only two. Theoretically, demographers 

may want to reconsider the relative role traditionally attributed to fertility and mortality in shaping 

the population age structure: the latter should probably be re-evaluated. 

Practically, our findings suggest that population forecasting exercises may be simplified, at least when 

they are instrumental to other activities, and notably the design of pension systems. Basing them 

exclusively, or at least prominently, on current and projected survival, without adding the extra 

uncertainty of fertility and migration forecasts, may simplify the task of policy makers, and possibly 

pave the way to better solutions of the pension problem. 
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Appendix A – The bounds test 

The general idea behind this approach is to test the existence of a possible tendency of a series to 

revert towards its long-run equilibrium path by estimating the following error correction model 

(ECM) for a specific and constant age x, and for varying t: 

 ∆𝑐 , 𝛼 ,  𝛿 , 𝑐 , 𝛿 , 𝑘 , ∑ 𝛼 , ∆𝑐 , ∑ 𝛽 , ∆𝑘 , 𝜀 , , A.1  

where 𝛼 , β  and 𝛿  are the model parameters, ∆𝑐 , 𝑐 , 𝑐 , , ∆𝑘 , 𝑘 , 𝑘 , , and p and 

q are lags, to be discussed shortly. 

Eq. A.1 presents several advantages. First, it can be estimated with ordinary least squares (OLS).  

Second, the lags p and q do not need to be predetermined: a statistical procedure, based on the 

Bayesian information criterion (BIC) will suggest the best combination of the two. To determine the 

best p and q (lags) of our ECM, we started from a 3ꞏ4 grid search. In practice, for each country in our 

analysis we estimated the model 12 times, with different combinations of p = 1, …, 3 and q=0, …, 3. 

In this case, and deviating from what we did in the rest of our analyses, we decided to work with 

quinquennial data: therefore, we are considering lags of up to 5ꞏ3=15 years. In most cases, the best 

model (with the lowest BIC value) has p=1 (77% of the cases) and q=0 (74% of the cases). 

Third, the parameters of eq. 3 in the main text can be derived from those of eq. A.1, because: 

 𝑚 ,

,
  and   𝛾 ,

,
. A.2  

Fourth, the existence of a cointegration relationship between 𝑐 ,  and 𝑘 ,  can be tested with the F 

statistics on the null hypothesis 𝐻 : 𝛿 , 𝛿 , 0. The distribution of this statistic is non-standard, 
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but its critical values, calculated with Monte Carlo simulations, are tabulated in Pesaran et al. (2001, 

Table CI(iii)). These critical values are generally greater than those employed in the standard F test, 

which makes the rejection of the null hypothesis (of no cointegration) more difficult.  
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