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Abstract 

In several European countries, life expectancy has progressed little in the past two decades. In this 
paper, focused on Italy, we investigate whether “austerity” and health regionalization may have 
contributed to this outcome. We show that the succession of reforms to the Italian health system 
introduced since the 1990s closely corresponds to discontinuities in the evolution of regional life 
expectancies, halting or reversing their previous trend towards convergence. This holds for both 
sigma and beta convergence and for both genders, albeit earlier for females.  
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1. Introduction  

Since the 2000s, progress in life expectancy has markedly slowed down in several European 
countries. In the UK, for instance, after about 70 years of progress, life expectancy stagnated after the 
Great Recession of 2008 (Murphy et al. 2019) and it even declined in some years (Newton et al. 
2016). Slower survival progress has been noted also in other countries, such as Switzerland, the 
Netherlands, Belgium, France, and Germany (Franklin et al. 2017, Murphy et al. 2019, Raleigh 2019). 
Several possible explanations can be advanced for this slowdown, not all of them fully explored: for 
instance, population ageing, new flu variants, tempo effects,1 cohort effects,2 and migration flows. 
We submit that this list should be lengthened to include “austerity”, i.e. the set of budget-control 
policies put in place after the 2008 economic crisis to limit, and possibly halt and reverse, public 
deficit. Not surprisingly, such policies affect the public resources devoted to health care. This, at least, 
is what happened in Italy, whose austerity policy began well before the onset of the Great Recession, 
following the financial crisis of the early 1990s. In those years, Italy was on the verge of defaulting 
on its large public debt3 and the pressure of national and international investors was huge. In 1992, a 
“technical” government was charged with the responsibility of a series of draconian measures to bring 
national finances back under control. Among other things, the budget of the national healthcare 
system was limited,4 and control was partly decentralized to local authorities, the 20 administrative 
regions in which the national territory is divided.5  
In 2001, a hefty constitutional reform reinforced the tendency towards “regionalization”, and health 
fell under the joint responsibility of the central state (charged of specifying the so-called Minimum 
Levels of Care), and regions, deciding on all practical matters concerning the regulation and 
organisation of health services, including the management of financial resources.6 
These two reforms ended up by making the Italian healthcare system more fragile and fragmented, 
and in this paper we hypothetize that this affected the slower survival progress of subsequent years 
(e.g. Egidi and Demuru 2018). Between 1970 and 2008, life expectancy in Italy had increased along 
a more or less linear trend, with a slope of about 0.27, that is by almost three years of life every ten 

                                                 
1 According to Luy et al. 2020 (p. 98), “Tempo Effects (TE) emerge in death rates as soon as mortality is changing during 
the observation period. For example, when improvements in health and living conditions lead to a reduction in mortality, 
a certain number of deaths – which would have occurred under unchanged mortality conditions – are postponed to a later 
period. Such a postponement consequentially deflates the numerator of death rates by the number of avoided deaths, while 
the denominator is inflated by the same number of saved lives. Albeit these numbers are identical in absolute terms, they 
differ notably in relative terms. The number of deaths decreases by a much larger proportion than the number of the 
population at risk in the denominator increases. In this way, TE magnify the effect of the shifted number of deaths in the 
death rate. The larger the changes in mortality, the larger the magnification effect”. Obviously, the same occurs with 
variations of a positive sign. 
2 This holds especially for the UK. Compared to earlier and later generations, the UK birth cohorts of the 1930s 
(sometimes called “golden cohort”) have had markedly high levels of survival, so much as to affect overall mortality 
metrics. With the progressive reduction of the survivors of this cohort, this effect has gradually diminished, and has 
virtually vanished nowadays. 
3 In September 2002, the Italian Lira, together with the British Pound, was forced out of the Exchange Rate Mechanism 
- ERM. 
4 The Italian National Health Service was created in 1978 and became fully operative in the 1980s. It was intended to 
provide universal and free health to the entire population, but costs mounted rapidly so that various forms of co-payment 
have been progressively introduced over time. 
5 Italian regions constitute the first level of territorial partition of the Italian state as well as public entities endowed with 
political and administrative autonomy, as stated by the Constitution of the Italian Republic. 
6 For an overview of the Italian health care system and its reforms, see Ferrè et al. (2014) and de Belvis et al. (2022) 



calendar years. In the post-crisis period (2008-2019), the gain declined substantially, to only two years 
every ten years (Salinari et al. 2023). 
In this paper, we analyse a specific part of this complex story: the evolution of Italian regional life 
expectancies between 1974 and 2019. We set out to show that the pre-existing tendency towards 
convergence of these regional life expectancies halted, and in some cases reversed, in the reform 
years, or shortly after. The decision to use administrative regions as statistical units stems directly 
from the nature of these reforms, which conferred regions more and more autonomy and decision-
making power in the health field. 
The topic is not entirely new. In 2011, Casacchia and Natale, in their analysis of the evolution of 
regional life expectancies in Italy over the period 1974-2008, had already noted convergence, 
especially among males. However, they did not try to relate this to policies and reforms. Cavalieri 
and Ferrante (2020) did, and concluded that decentralization had probably favoured homogenization, 
i.e., convergence of regional life expectancies at birth. As we will show shortly, these conclusions run 
counter our own findings, and those of Montero-Granados et al. (2007) for Spain, possibly because 
of their shorter period of investigation (1996 to 2016), or of their different methodology, or both.  
We investigate more or less the same variables as Casacchia and Natale (2011), with two innovations. 
First, we cover a longer period, 1974 to 2019, which permits us to compare the pre-reform phase 
(before the 1990s) to subsequent years. Although data for even more recent years are also available, 
we excluded them from the analysis, because the outbreak of the Covid-19 pandemic affected the 
level and geographical distribution of mortality in Italy so profoundly as to obscure all other possible 
underlying causes. 
Secondly, we apply not only beta and sigma convergence analysis, but also a more refined 
econometric technique, proposed by Bai and Perron (2003), to identify significant changes (or 
“structural breaks”) in time trends. In our case, the time trend of interest is that of regional 
convergence in survival, as measured by life expectancy at birth (e0). 

2. Data and methods 

Our data come from the Italian regional life tables of 1974-2019, produced by ISTAT, the Italian 

National Institute of Statistics. Of these tables, we consider e0 separately by gender. The territorial 

units of our analysis are administrative regions (or NUTS 2). There are 20 of them, but as Valle 
d’Aosta and Molise are very small, we merged them with the neighbouring regions with which they 
were originally united: Piedmont and Abruzzo, respectively. This leaves us with 18 regions, the 
convergence of whose life expectancies we study in two ways, beta-convergence and sigma-
convergence, borrowing a methodology that was first developed in economics (Barro and Sala-i-
Martin 1990 and 1992; Barro et al. 1991) and later exported to demography (Hrzic et al. 2021).  
The most intuitive approach to the study of convergence is to examine how a dispersion index changes 
over time: if dispersion decreases, sigma convergence occurs. As an index of dispersion for regional 
life expectancies at birth which we will generically denote by er, we opted for variance, formally:  
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for each region r (of which we have R=18), and each year t, ranging from 0 (first year of observation, 

1974) to 𝑇=45 (2019). 

As the population of Italian regions differs widely (from some 1.5 million in Abruzzo and Molise to 
some 10 million in Lombardia), following Hrzic et al. (2021), we weighted the dispersion index using 
regional populations, as follows: 
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where 𝑃௧,௥ is the population of region r at time t, 𝑊′௧ ൌ ∑ 𝑃௧,௥
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computed confidence intervals with non-parametric bootstrapping (Mills and Zandvakili 1997).7 
Sigma convergence gives an idea of the evolution of survival variability across regions, but it misses 
some potentially important elements. For instance, in the extreme case of ranking reversal, with top 
regions becoming last and vice versa, dispersion could remain (almost) the same, falsely signalling 
that (almost) nothing has changed. To overcome this potential limitation, following Barro et al. 
(1991), we also analyze the so-called beta convergence, checking whether regions with low initial 
values experience comparatively faster progress, thus catching up with the rest. The two analyses are 
complementary and should be carried out jointly (Janssen et al. 2016), keeping in mind that “beta-

convergence is a necessary condition for the existence of sigma-convergence, while sigma-
convergence might not accompany beta convergence” (Gächter and Theurl 2011). 

Let us define the following two quantities for a generic time series 𝑦଴, … , 𝑦்: 

Δ𝑦௧ ൌ 𝑦௧ െ 𝑦௧ିଵ 

and 

Δ௞𝑦௧ ൌ 𝑦௧ െ 𝑦௧ି௞ 

with k denoting a generic time lag. 

The existence of beta convergence can be assessed by looking at the 𝛽 parameter in the following 

model: 
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where 
ଵ

்ାଵ
Δ்𝑒்,௥ is the average annual increase in life expectancy between 0 and T for region r and 

𝜀௥ is the error term. A statistically significant value of 𝛽 indicates the presence of a process of 

convergence (if 𝛽 is negative) or divergence (if it is positive) between 0 and T. We can use the value 

of life expectancy directly, and not its logarithm as economists frequently do because, unlike 
economic variables (such as the GDP), life expectancy tends to follow a linear rather than an 
exponential trend (Oeppen and Vaupel 2002, White 2002, Lee 2019). More precisely, given the 
heterogeneity of Italian regions in terms of population size, we apply an extension of Model 1 and 

                                                 
7 To check the robustness of our analyses, we repeated the same calculations with Theil's index instead of the variance. 
Results, available upon request, are almost identical and are not reported here. Note that e0 is a regional average: our 
analysis ignores internal (i.e. intra-regional) variability. 



estimate a population-weighted regression (WLS), where, as earlier, the weights 𝑤௧,௥ represent the 

population size of each region r in year t. 
We also created a second time series of beta coefficients, applying the weighted version of Model 1 
to shorter (five-year) time intervals, to assess what happened within each sub period: 

ଵ

௞ାଵ
Δ௞𝑒௜,௥ ൌ 𝛼 ൅ 𝛽௜𝑒௜ି௞,௥ ൅ 𝜀௥,        𝑟 ൌ 1, … , 𝑅;   𝑖 ൌ 𝑘, … , 𝑇   ሺ2ሻ 

where k+1 identifies the length of the (fixed) time interval of analysis. In our case, for instance, where 
k=4 and we go back four years in time (e.g., from 2000 back to 1996), we work with (4+1=) 5-year 

intervals. The i subscript to 𝛽 denotes the final year of the five-year period on which it was calculated. 

This leaves us with a time series consisting of (T-k+1) partially overlapping components: 𝜷 ൌ
ሺ𝛽௞, … , 𝛽Tሻ.  

We want to test whether our 𝜷 parameters behave like a shift model, initially oscillating around a 

certain mean 𝑐′ and then, after a jump (or slump), around a different mean 𝑐′′. Graphically, a generic 

shift model behaves as in Figure 1, and can be conceived as the juxtaposition of two different 
stationary series around their (different) means. 

Figure 1 - Hypothetical trend of a shift model on simulated data 

 
Source: authors’ simulation 

In our case, the shift signals a change in the intensity of the convergence process. If the sign of the 
average also changes, this indicates a passage from convergence to divergence (from negative to 
positive) or vice versa. 
In the simplest case, when there is only one break, our shift model can be described as follows: 
 

                                                        𝛽௝ ൌ 𝑐′ ൅ 𝜀௝   ; 𝑗 ൌ 𝑘, … , 𝚥̂ 
(3) 

                                                        𝛽௝ ൌ 𝑐′′ ൅ 𝜂௝ ; 𝑗 ൌ 𝚥̂ ൅ 1, … , 𝑇. 

 

The former equation represents the dynamics of the process up to 𝚥̂, and the latter the dynamics after 

it, where 𝚥̂ is a generic (possible) breakpoint. Note that 𝜀௝ and 𝜂௝ need not be white-noise processes, 



as it is usually assumed in standard OLS models: for instance, they could follow an ARMA process, 
with Auto Regressive and Moving Average properties. 
Bai and Perron's technique identifies structural breaks by systematically analysing all possibilities. 

After choosing a first potential breakpoint 𝚥̂, we estimate the following model: 

𝛽௝ ൌ 𝛾଴ ൅  𝛾ଵ𝐵௝ ൅ 𝜔௝  ,   𝑗 ൌ 𝑘, … , 𝑇      ሺ4ሻ 

where 

𝐵௝ ൌ  ൜
1, 𝑖𝑓 𝑗 ൑  𝚥̂
0, 𝑖𝑓 𝑗 ൐  𝚥̂ , 

𝛾଴ and 𝛾ଵ are coefficients, and 𝜔௝ the error terms. The sum of squared residuals measures the goodness 

fit of the model based on 𝚥̂. 
Next, we choose another potential breakpoint, say 𝚥̂′, then a third, 𝚥̂", etc. and we proceed until 

exhaustion of all possible breakpoints, repeating all the passages at each step. The breakpoints 
identifying a possible structural change in the series are those with the lowest sum of squared 
residuals. 

Having identified a breakpoint, we can now verify whether the estimated ’s behave like a shift model 

(Model 3) by running a unit-root test on the residuals of Model 4. If the test rejects the null hypothesis 
of non-stationarity, our assumption holds: before and after the breakpoint (i.e., at different levels), the 
series seems to be stationary. To assess non-stationarity, we used the PP test (Phillips and Perron 
1988), which incorporates heteroskedasticity. 
With a recursive method, it is also possible to identify the presence of multiple structural breaks, say 

m, for any possible combination of sub-periods between 𝑘 and 𝑇. While this is extremely time 

consuming, the underlying intuition remains the same. This dynamic problem can be solved in steps, 
by first identifying the ideal one-break partition, then the ideal two-break partitions, etc. (Bai and 
Perron 2003). We performed this procedure, using the R library strucchange (Zeileis et al. 2002, 2003, 
Zeileis 2006). We also performed a sensitivity analysis to make sure that the choice of different values 

for 𝑘 would not bias our results (see Table 2). 

3. Results 

In 1979 the average (weighted) life expectancy at birth in Italy was 75.9 and 69.7 years for females 
and males, respectively, and in 2019 it went up to 85.3 and 81, an increase of 12.4% and 16.7%, 
respectively.  
Currently, life expectancy is lower in southern Italy, mainly because of a greater incidence of 
cardiovascular diseases (Petrelli et al. 2019) and higher smoking prevalence (Gallus et al. 2011).  In 
Italy, as elsewhere, low social economic status goes along with higher death risks (Frova et al. 2021), 
but social disparities in mortality are more pronounced in the south (Petrelli et al. 2019). 
In 1974, however, the situation was somewhat different, with some southern regions enjoying higher 
survival than some northern ones. Figure 2 shows the spatial distribution of e0 across Italian regions, 

separately by gender, for three years, 1974, 2019, the first and last year of our series, and 1990, when 
reforms in the Italian health system started to be introduced.  



Figure 2 - Spatial distribution of e0 by gender (F=females; M=males), in selected years. 

  
Note: Classes defined using natural breaks method. 
Source: Authors’ calculations on ISTAT data (dati.istat.it) 

The ranking of regional life expectancies changed between 1974 and 2019, and especially around 
1990. Before then, that is before the start of the reforms, convergence prevailed; but this process 
stopped or even reversed thereafter. 
Figure 3 shows the evolution of life expectancy in the three traditional macro-territorial areas of Italy 
(North, Centre, South) between 1974 and 2019, along with the weighted variance or regional values, 
as a measure of sigma convergence, and a special focus on 1990, our pivotal year. Between-region 
variability (right hand scale) strongly declined between 1974 and 1990, but barely changed 
afterwards. In the same period, life expectancy (left-hand scale) lagged behind in the South, and the 
distance from the rest of Italy increased for males. 



Figure 3 - Weighted averages of e0 by macro-area (left-hand vertical scale), and sigma convergence 
of e0 (right-hand vertical scale) 

 
Source: authors’ calculations on ISTAT data (dati.istat.it) 

To sum up, net of some differences by gender, the general message conveyed by Figures 2 and 3 is 
that sigma convergence has slowed down since the 1990s, with a change in the ranking of regions, to 
the advantage of the northern ones. 
This conclusion is reinforced by the analysis of beta convergence, where we also note that 
convergence has been stronger for males than for females. 

Figure 4 - Beta convergence for e0, by gender 

 
Note: Abr-Mol = Abruzzo-Molise; Bas = Basilicata; Cal = Calabria; Cam = Campania; Emi = Emilia-Romagna; FVG = 
Friuli-Venezia Giulia; Laz = Lazio; Lig = Liguria; Lom = Lombardia; Mar = Marche; Pie-VdA = Piemonte-Valle d'Aosta; 
Pug = Puglia; Sard = Sardegna; Sic = Sicilia; Tos = Toscana; TAA = Trentino Alto Adige / Südtirol; Umb = Umbria; Ven 
= Veneto 
Source: authors’ calculations on ISTAT data (dati.istat.it). 

Figure 5 displays the evolution of the beta-convergence series estimated over five-year time intervals 
(Model 2), with their corresponding breakpoints (Models 3 and 4, with k=4). We estimate a break for 
females in 1993 (1990–2001 95% CI), and a later break for males, in 2001 (1999–2003 95% CI). 
These two breakpoints coincide with the two major health reforms mentioned earlier, although the 
reasons for the earlier occurrence of the break for females are still unclear. 



Figure 5 - Time series of the five-year beta convergence for e0, by gender. Vertical lines represent our 

estimates of the structural breaks (continuous lines: point estimates; broken lines: 95% confidence 
intervals) 

  
Source: authors’ calculations on ISTAT data (dati.istat.it). 

Figure 6 displays the sigma series together with the estimated breakpoints of Figure 5.8 Consistently 
with expectations, these breakpoints separate an earlier phase of convergence (negative values of the 
beta coefficients) from a subsequent phase of relative stability. 

Figure 6 - Time series for sigma convergence of 𝑒଴, differentiated by gender. The vertical lines 
represent the structural breaks identified in the beta convergence time series 

  
Source: authors’ calculations on ISTAT data (dati.istat.it). 

Finally, we conducted the PP-test on the residuals of Model 4 for the beta series and in both cases the 
tests rejected the null hypothesis of non-stationarity. The assumptions we made in the quest for break 
points (Model 3) seem consistent with our data, and the beta series do behave like a shift model 
(Figure 1). Table 1 shows the results of the PP-tests for each variable explored. 

  

                                                 
8 We cannot apply here the same breakpoint-identification technique that we used for the beta series, because the sigma 
series do not show any clear trend. 



Table 1 - Results of PP-tests launched on the residuals of model 4 

Females Males 

test-
statistics 

truncation lag 
parameter ‡ 

p-value 
test-

statistics 
truncation lag 
parameter ‡ 

p-value 

-32.118 3 <0.01 -41.109 3 <0.01 
‡ The truncation lag parameter is the number of past observations considered in the stationarity-test for each current 
period. 
Source: authors’ calculations on ISTAT data (dati.istat.it). 

As a sensitivity analysis of the results obtained, we repeated Models 2, 3 and 4 for different lags (k=2, 
3, 5, 6). Our results, reported in Table 2, are consistent with those presented in Figure 5, net of some 
variability inherent to this type of analysis. Most importantly, the slight differences that occasionally 
emerge do not affect the general picture of a significant change in the convergence process in 
conjunction with one of the two major health reforms of the Italian system discussed earlier (1992 
and 2001). 

Table 2 - Structural breaks estimated in beta convergence for different values of k, with the 
corresponding confidence intervals (sensitivity analysis). 

k  Females Males 

(Lag parameter)  Breakpoint 95% CI breakpoint 95% CI 

2  -  1999 1996-2004 

3  1985 1979-1992 2001 1999-2004 

4  1993 1990-2001 2001 1999-2003 

5  1995 1992-2001 2002 2001-2003 

6  1995 1993-2002 2003 2002-2004 
Note: “-“ indicates that no significant break was found. We remind our readers that k+1 (in years) is the length of the 
interval under study in that analysis. The case with k=4 (k+1=5) has been analysed above, in Figure 5. 

Source: authors’ calculations on ISTAT data (dati.istat.it) 

4. Conclusion and discussion 

In Italy, the process of convergence of regional life expectancies halted in the final decade of last 
century. Shortly later, in 2008, in correspondence with the onset of the economic crisis, the progress 
of survival slowed down markedly (Salinari et al. 2023). 
Policy reforms and economic crises are not the sole potential causes of these evolutions. For instance, 
it could be argued that as Italy is one of the world countries where life expectancy is highest (currently, 
more than 80 years for men and slightly less than 85 years for women), this deceleration may be the 
inescapable consequence of approaching the limits of survival. However, whether these limits exist 
is still a matter of debate and in all cases they have not been identified yet (Linh et al 2023). Besides, 
there are countries where life expectancy is even higher than it is in Italy, Japan for example, and 
where no marked slowdown in the progress of life expectancy has been detected. 
Our hypothesis is that the reforms of the Italian health system that took place starting in the 1990s 
played a role in this process. The purpose of these reforms was to limit the waste of public resources, 
to make regional governments more accountable, and to improve the efficiency of the public health 
system. In their practical application, however, these reforms created 20 different regional health 



systems in Italy, which, we believe, had non-trivial health consequences. To test this hypothesis, we 
investigated the evolution of convergence in regional life expectancies. The (relatively simple) 
econometric techniques that we used led us to identify the existence of significant discontinuities (or 
“structural breaks”) in the convergence process, and these discontinuities emerged precisely in this 
period of reforms. In short, our hypothesis is not rejected by empirical data. 
On the other hand, our hypothesis is not, and cannot possibly be, proved by our analysis, which is not 
intended to reveal the existence of causal links, in this case between systemic reforms and the 
evolution of regional survival (convergence or divergence, and at what speed). While this crucial link 
awaits more in-depth studies, our results merit consideration, we believe, for at least two reasons. 
First, they reveal, and temporally locate, a change of pace in regional survival that had gone unnoticed 
until now. Incidentally, as Felice et al. (2016) show, the dynamic of convergence (or divergence) in 
life expectancy seems to anticipate economic fluctuations. 
Secondly, we offer a key to interpretation (“regionalizing” a national health system may jeopardize 
the health homogeneity of a country) that policy-makers may want to take into consideration when 
deciding on the future of national health systems. 
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