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Abstract

In the literature on stochastic frontier models until the early 2000s, the joint consideration

of spatial and temporal dimensions was often inadequately addressed, if not completely ne-

glected. However, from an evolutionary economics perspective, the production process of

the decision-making units constantly changes over both dimensions: it is not stable over time

due to managerial enhancements and/or internal or external shocks, and is influenced by the

nearest territorial neighbours. This paper proposes an extension of the Fusco and Vidoli

(2013) SEM-like approach, which globally accounts for spatial and temporal effects in the

term of inefficiency. In particular, coherently with the stochastic panel frontier literature, two

different versions of the model are proposed: the time-invariant and the time-varying spatial

stochastic frontier models. In order to evaluate the inferential properties of the proposed es-

timators, we first run Monte Carlo experiments and then present the results of an application

to a set of commonly referenced data, demonstrating robustness and stability of estimates

across all scenarios.
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1. Introduction

Understanding and analysing the efficiency of decision-making units has long been a cor-

nerstone of different disciplines, including economics (Färe et al., 1994), agriculture (Kumb-

hakar and Heshmati, 1995), and health studies (Hollingsworth, 2008). Traditionally, stochas-

tic frontier analysis (SFA, Aigner et al., 1977; Battese and Coelli, 1995a) has served as a

valuable tool for this purpose, providing information on both the level of production achieved

and the potential for improvement. However, a crucial limitation of standard SFA lies in its

neglect of the spatial context in which these units operate. Spatial dependence and spillover

effects are increasingly recognised as significant factors that may influence production effi-

ciency, which calls for analytical frameworks that incorporate these spatial dimensions.

This paper delves into the spatial stochastic frontier analysis (SSFA, Fusco and Vidoli,

2013) framework, an extension of SFA that explicitly accounts for spatial relationships and

interactions. By acknowledging the spatial interconnections among decision-making units,

SSFA provides a deeper and more detailed insight into efficiency differences. This enhanced

framework allows us to disentangle the spatial aspects of inefficiency from pure unit-specific

inefficiencies, revealing crucial insights into how location, proximity, and spatial interaction

patterns influence production outcomes.

The rationale behind the use of SSFA is multifaceted. First, spatial dependence can arise from

knowledge spillovers, shared infrastructure, or environmental features, leading to higher or

lower efficiencies for neighbouring units depending on the nature of these interactions. An-

other point is that spatial autocorrelation in the error term could indicate the presence of

unobserved spatial influences affecting production within the research region. Ignoring these

factors might result in skewed assessments of technical efficiency and erroneous findings

regarding the actual drivers of performance. The SSFA method has been applied to esti-

mate efficiency in various domains such as agriculture (Vidoli et al., 2016; Zulkarnain, 2020;

Mittag and Hess, 2023), local governments (Fusco and Allegrini, 2020), hospitals (Cavalieri

et al., 2020), food industry (Cardamone, 2020) or airports competition (Bergantino et al.,

2021).
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The extension of the SSFA to panel data is not simply an econometric and statistical ex-

ercise, but rather a response to a dynamic and evolutionary interpretation of economic firms,

which operate in both time and space and undergo a continuous transition between equilibria.

In fact, evolutionary approaches, which originated with Darwin (1859, 2016) and emphasised

the mechanism of natural selection and the dynamic struggle for survival, found some early

contributions to economics in Schumpeter (1934, 2021) before being systematised by Nelson

(1985) and Boschma and Lambooy (1999); Boschma and Frenken (2006).

For evolutionists, three key processes take place in the marketplace: selection, variation, and

reproduction, where essentially, in the struggle for survival, the species with the greatest

ability to adapt to new conditions will survive with the greatest ability to adapt to the envi-

ronment. Similarly, in the market, firms compete dynamically to attract consumers, and the

market is therefore a selection mechanism for firms. It shapes the opportunities and con-

straints on the growth, profitability, and likelihood of survival of firms, promotes "localized

collective learning in a regional context" and "the spatial formation of newly emerging in-

dustries as an evolutionary process" (Boschma and Lambooy, 1999).

In this sense, dynamic efficiency (i.e. the ability to innovate) is much more important than

static (or allocative) efficiency, which makes it necessary to study economic processes over

time. But the selection principle just seen does not imply that "selection" necessarily goes

"from worst to best". The "best" and "worst" are concepts that depend on the specific selec-

tion mechanisms, their history, but also by the space in which they live, and the distribution of

the characteristics actually present in a given ecology or market at a given time. And so it is

also the ecological niche - read as a territorial or neighbour constraint - that conditions, in the

long run, the mode of production, the efficiency, and hence the survival of firms. Therefore,

it is because of these premises that the study of the economic efficiency of firms in both time

and space is crucial, because the former shows the evolution of the system, while the latter

ignores this dynamic, depending on whether or not they belong to an ecological niche1 in the

1Clearly understood as neighbourhoods, both physically, but also as part of production chains, networks,
districts.
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market.

This paper aims to contribute to the growing body of knowledge on spatial stochastic fron-

tier methods by presenting a new methodology for estimating production and cost frontiers

for time-varying spatial data focussing on the composite error part. We achieve this by pro-

viding comprehensive evidence through simulations, analysis of real-world datasets, and the

development of specific software code designed to implement our approach. Incorporating

time-varying elements into spatial frontier models allows for a more nuanced understanding

of how efficiency and productivity evolve in response to changing conditions and external

factors.

We contribute to the existing literature in two distinct ways. First, we address a significant

methodological gap by focussing on the most crucial aspect of the specification of stochas-

tic frontiers: the composite error term, which encompasses both the random error and in-

efficiency components. By refining the modelling of the composite error, we improve the

precision and interpretability of frontier estimates, enabling a more accurate assessment of

inefficiency levels. Second, we extend this estimation framework to accommodate both time-

varying and time-invariant cases, providing a comprehensive analysis that accounts for dif-

ferent types of temporal dynamics in spatial data and offering a versatile framework that can

be adapted to a wide range of applications.

The remainder of the paper is organised as follows. Section 2 introduces the spatial

stochastic frontier models with a particular focus on dynamic models. Section 3 introduces

the proposed methodology for estimation in space and time, while Sections 4 and 5 present,

respectively, an application on simulated and real data. Section 6 discusses the main findings

and concludes.

2. A brief review on spatial stochastic frontier models for panel data

Research on frontier efficiency methods that simultaneously account for spatial and tem-

poral effects with panel data is limited and started in the 2000s (for a detailed overview, see

Ayouba, 2023).

The main problem, in fact, as mentioned by Kumbhakar and Lovell (2004) was that "in clas-
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sical time invariant SFA the fixed effects (the ui) are intended to capture the variation between

producers in time-invariant technical efficiency. Unfortunately, they also capture the effects

of all phenomena (such as the regulatory environment, for example) that vary across produc-

ers but that are time invariant for each producer".

The primary methods suggested in the literature over the past two decades to address this

consideration can be categorized based on three issues: (i) whether to consider efficiency

as varying or constant over time; (ii) the method for estimating efficiency, thus regression-

based with a two-stage approach or maximum likelihood; (iii) whether spatial dependence

and spillover effects are only on the dependent variable, i.e. the output (spatial lag specifi-

cation - SAR), on the regressors (spatially lagged X specification - SLX), on the error term

(spatial Error model specification - SEM), on the first two (spatial Durbin specification -

SDM), or on all terms (General nesting spatial specification - GNS).

A first stream of literature proposes the SAR frontier model assuming a time-variant, as

in Glass et al. (2013, 2014) and Kutlu and Nair-Reichert (2019) or time-invariant, as in Han

et al. (2016), inefficiency term using a regression-based approach with a distribution-free ap-

proach to compute inefficiency in a second step.

Although distribution-free approaches have the advantage of not assuming a specific distri-

bution for the inefficiency term, they are not robust to outliers. Therefore, Glass et al. (2016)

proposed a SAR model for panel data integrating SAR and a half-normal stochastic frontier

model proposed by Aigner et al. (1977) using a ML approach. Similarly, Kutlu et al. (2020)

also employed the SAR approach in their spatial stochastic frontier analysis. Tsukamoto

(2019) extended the SAR stochastic frontier specification considering also the determinants

of technical inefficiency, as proposed by Battese and Coelli (1995b) using a ML approach.

A second group of scholars proposed a spatial Durbin specification as Adetutu et al.

(2015), Glass et al. (2016), Gude et al. (2018) and Ramajo and Hewings (2017) that integrates

SLX and a half-normal stochastic frontier model; Galli (2023) proposed a spatial Durbin

stochastic frontier model for panel data introducing spillover effects in the determinants of

technical efficiency (SDF-STE) using the ML approach.

Finally, a third stream of panel data literature has been proposed including spatial depen-
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dence only in the error term or in the inefficiency term (see e.g. Druska and Horrace, 2004;

Areal et al., 2012; Tsionas and Michaelides, 2016). In particular, Druska and Horrace (2004)

accounts for time-invariant fixed effects and uses a distribution-free approach, and Areal et al.

(2012), Tsionas and Michaelides (2016) uses a Bayesian approach.

In our opinion, grasping spatial lag in this manner is essential, despite the fact that the

term "spatial" is frequently employed in this specific literature without a clear definition:

within an evolutionary reading of economic processes introduced earlier, in fact, it is neces-

sary to separate the effects of the firm from those of the neighbourhood in terms of productive

efficiency in order to take into account different evolutionary paths, neighbourhood, and/or

spillover effects; in other words, in stochastic efficiency models, it is more important to de-

velop spatial error models within composite error (error + inefficiency part) (thus generically

borrowing spatial error (SEM) approaches) than to only try to describe more precisely the

frontier (as the spatial lag models, SAR), assuming that it is homogeneous in space. In fact,

there is no practical value in incorporating a generic W on the frontier and then comparing

all heterogeneous units with each other on a single frontier, but rather in showing how much

space affects the lower or higher efficiency of each individual production unit. Therefore, the

composite error term lies at the heart of frontier models, and here the impact of the territory

on the dynamic evolution of firms needs to be studied.

3. Space-time Stochastic Frontier Analysis (STSFA)

As introduced previously, this paper proposes an extension of the Fusco and Vidoli (2013);

Fusco (2020) approach, which globally accounts for spatial and temporal effects in the term

of inefficiency. In particular, coherently with the stochastic frontier literature (and specifi-

cally with Battese and Coelli, 1992), this paper proposes two different versions of the model,

namely: (i) a time-invariant model and (ii) a time-varying model. Notice that in both cases,

the initial values for the maximum-likelihood estimation are derived from the algorithm. The

two models will be discussed in detail in the next two sections.
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3.1. The time-invariant STSFA

In the proposed setting, we examine a production unit i = 1, ...,N that, in a period t =

1, ...,T , uses P inputs xit = (x1it , ...,xPit), xit ∈ RP
+ to produce Q outputs yit = (y1it , ...,yQit),

yit ∈RQ
+. In this setting - and in the case of time-invariant - the generalisation of Fusco (2020)

for panel data, i.e. the Spatio-Temporal Stochastic Frontier Analysis (STSFA), can be written

as:2

yit = xitβ + vit − s ·ui

= xitβ + vit − s · (I−ρW)−1ũi

(1)

where:

• vit ∼ iid N(0,σ2
v I);

• ui ∼ N+(0,(I−ρW)−1(I−ρWT )−1σ2
ũi

I) is constant over the time;

• ui and vit are independently distributed of each other, and of the regressors;

• ũi ∼ N(0,σ2
ũ I);

• s = 1 for production functions and s =−1 for cost functions.

It is important to mention that in the proposed model, for the sake of simplicity, it has

been assumed that the neighbourhood structure remains constant over time; in other terms,

the spatial weight matrix W and the parameter ρ have been set constant for all t = 1, ...,T .

The starting point for obtaining the general STSFA log-likelihood function, is to modify

the density functions of u and v defined in Fusco (2020)3 accordingly with Battese and Coelli

(1992):

f ([δ (ρ)]−1ũi) =
2√

2π[δ (ρ)]−1σũ
· exp

{
− [δ (ρ)]−2ũ2

i

2[δ (ρ)]−2σ2
ũ

}
(2a)

2Note that as in Fusco and Vidoli (2013); Fusco (2020) we consider the homoskedastic case and a Normal-
Half-Normal distribution for the error term. Generalisations on these aspects can be developed in future re-
search.

3In order to simplify formulas (1−ρ ∑i wi.) is replaced by δ (ρ) as in Fusco (2020).

7



f (vi) =
1

(2π)T/2σT
v
· exp

{
− v′ivi

2σ2
v

}
(2b)

where f ([δ (ρ)]−1ũi) is the same of SSFA as [δ (ρ)]−1ũi is independent of time and f (vi) now

is time dependent so vi = (v1, ...,vT ) .

Given the independence assumption, the joint density function of [δ (ρ)]−1ũi and vi can

be written as:

f ([δ (ρ)]−1ũi,vi) =
2

(2π)(T+1)/2[δ (ρ)]−1σũσT
v
· exp

{
− v′ivi

2σ2
v
− [δ (ρ)]−2ũ2

i

2[δ (ρ)]−2σ2
ũ

}
(3)

Since in the general form εit = vit −s · [δ (ρ)]−1ũi; therefore the new joint density function

for [δ (ρ)]−1ũi and εi = (v1 − s · [δ (ρ)]−1ũi, ...,vT − s · [δ (ρ)]−1ũi) becomes:

f ([δ (ρ)]−1ũi,εi) =
2

(2π)(T+1)/2[δ (ρ)]−1σũiσ
T
v
·

exp
{
−(s · [δ (ρ)]−1ũi −µ∗i)

2

2σ2
∗

− ε ′i εi

2σ2
v
+

µ2
∗i

2σ2
∗

}

where :

µ∗i =−
T ε i[δ (ρ)]

−2σ2
ũ

σ2
v +T [δ (ρ)]−2σ2

ũ
, ε i =

1
T

T

∑
t=1

εit

σ
2
∗ =

[δ (ρ)]−2σ2
ũ σ2

v

σ2
v +T [δ (ρ)]−2σ2

ũ

(4)

and the marginal density function of εi is:4

f (εi) =
∫

∞

0
f ([δ (ρ)]−1ũi,εi) du

=
2[1−Φ(−µ∗i/σ∗)]

(2π)T/2σ
T−1
v (σ2

v +T [δ (ρ)]−2σ2
ũ )

1/2
· exp

{
− ε ′i εi

2σ2
v
+

µ2
∗i

2σ2
∗

} (5)

4φ(·) e Φ(·) are the standard Normal density and distribution functions.
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Whereupon, the sought general "time-invariant" log-likelihood function for the sample of N

producers and T periods is given by:

L =costant − N(T −1)
2

ln(σ2
v )−

N
2

ln(σ2
v +T [δ (ρ)]−2

σ
2
ũ )+

+
N

∑
i=1

ln
[
1−Φ

(
−µ∗i

σ∗

)]
− 1

2

N

∑
i=1

ε2
i

σ2
v
+

1
2

N

∑
i=1

(
µ∗i

σ∗

)2 (6)

Finally, the "time-invariant" technical efficiency of the firm i at the time period t is given

by:

T Eit =

{
1−Φ [σ∗− (µ∗i/σ∗)]

1−Φ(−µ∗i/σ∗)

}
exp

[
−µ∗i +

1
2

σ
2
∗

]
(7)

where µ∗
i and σ∗ are the same in Eq.(4).

3.2. The time varying STSFA

In the case of time-varying assumption, the generalisation of Fusco (2020) for panel data,

using the standard Battese and Coelli (1992) decay-model formulation, can be written as:

yit = xitβ + vit − s ·ηit ·ui

= xitβ + vit − s · exp{−η(t −T )} · [(I−ρW)−1ũi]
(8)

where ηit = exp{−η(t −T )} is a multiplicative factor, equal for all producers, that cap-

tures the dynamics of the degree of inefficiency. In particular, ηit ≥ 0 decreases at an increas-

ing rate if η > 0, increases at an increasing rate if η < 0, or remains constant if η = 0.

Note that u is once again independent of time, since the dynamics is given by ηit , so

the density functions of u and v and the conjoint one are identical to Eqs. (2a), (2b) and (3).

Instead, what is changing in time-varying formulation is εit = vit −s ·ηit · [δ (ρ)]−1ũi, therefore

the new joint density function for [δ (ρ)]−1ũi and εi = (v1−s ·ηi1 · [δ (ρ)]−1ũi, ...,vT −s ·ηiT ·
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[δ (ρ)]−1ũi) is:

f ([δ (ρ)]−1ũi,εi) =
2

(2π)(T+1)/2[δ (ρ)]−1σũiσ
T
v
·

exp

{
−
(s ·ηi[δ (ρ)]

−1ũi −µη i∗)
2

2σ2
η∗

− ε ′i εi

2σ2
v
+

µ2
η∗i

2σ2
η∗

}

where :

µη i∗ =−
η ′

i εi[δ (ρ)]
−2σ2

ũ

σ2
v +η ′

i ηi[δ (ρ)]−2σ2
ũ

σ
2
η∗ =

[δ (ρ)]−2σ2
ũ σ2

v

σ2
v +η ′

i ηi[δ (ρ)]−2σ2
ũ

(9)

and ηi represents the T × 1 vector of ηit’s associated with the time periods observed for the

i-th firm.

The marginal density function of εi becomes:

f (εi) =
∫

∞

0
f ([δ (ρ)]−1ũi,εi) du

=
2[1−Φ(−µη i∗/ση∗)]

(2π)T/2σ
T−1
v (σ2

v +η ′
i ηi[δ (ρ)]−2σ2

ũ )
· exp

{
− ε ′i εi

2σ2
v
+

µ2
η i∗

2σ2
η∗

} (10)

The sought general "time-varying" log-likelihood function for the sample of N producers

and T periods is:

L =costant − N(T −1)
2

ln(σ2
v )−

N
2

N

∑
i=1

ln(σ2
v +η

′
i ηi[δ (ρ)]

−2
σ

2
ũ )

+
N

∑
i=1

ln
[

1−Φ

(
−

µη i∗
ση∗

)]
− 1

2

N

∑
i=1

ε2
i

σ2
v
+

1
2

N

∑
i=1

(
µη i∗
ση∗

)2 (11)

Finally, the "time-varying" technical efficiency of the firm i at the time period t can be
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derived from the formula:

T Eη it =

{
1−Φ [ση∗− (µη i∗/ση∗)]

1−Φ(−µη i∗/ση∗)

}
exp

[
−µη i∗+

1
2

σ
2
η∗

]
(12)

where µη i∗ and ση∗ are the same in Eq.(9).

Note that if η = 0, ηi is equal to 1 and η ′
i ηi is equal to T , therefore, all equations collapse

to their time-invariant versions.

4. A Monte Carlo evaluation of the STSFA model properties

In order to evaluate the small sample inferential properties of the estimators proposed in

the previous section, we will first conduct a thorough analysis by presenting the results of a

series of Monte Carlo experiments. These experiments are designed to rigorously test the per-

formance and robustness of the estimators under various conditions. The simulation process

ensures that each generated sample reflects the specified characteristics and distributional as-

sumptions, providing a robust framework to analyse the performance and estimation accuracy

of various econometric models applied to stochastic frontier analysis. More specifically, the

common DGP used to simulate 1,000 samples consisting of 100, 200, and 400 observations

for T = 5 years is a single-input-single-output stochastic production frontier for panel data.

This model is structured as follows:

yit = 5+5 · xi + vi −uit (13)

where:

• xi ∼Uni f (0,1)

• vi ∼ N(0.75 · (pi−2)/pi),1)

• uit = exp{−η(t −T )} · [(I−ρW)−1ũi]

• ũi ∼ N+(0,1).
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It is important to highlight that for the purpose of emphasising the efficiency term in the sim-

ulation results, the regressor and the random term are kept constant throughout all 5 years.

Specifically, the frontier is estimated by the time-varying model for all combinations of

ρ = (0.05,0.2,0.4,0.6,0.8) and η = (−0.10,−0.05,0,0.05,0.10).5

Finally, the spatial weight matrix is a sparse matrix, as suggested by LeSage and Pace (2009),

due to its low computational costs, where the average number of neighbours for each obser-

vation, identified by the nearest-neighbour method, is equal to 10% of the number of obser-

vations N.

The parameters β , ρ and η are estimated according to the data generated by the rules and

the selected DGP. The goodness of fit is assessed as usual by calculating the mean squared

error (MSE) of the parameters and displaying the bias and standard deviation. The main

findings are summarized as follows.6 The estimation of the parameters demonstrates very low

bias, standard deviation and MSE, consistently across all parameters (Table 1). This precision

improves as the sample size grows (see Tables B.2 and B.3 for 100 and 200 sample size

results). Furthermore, the kernel densities in Figures 1 to 3, illustrating that the distributions

are closely aligned with the true values.

5This sequence of values is chosen in order to increase or decrease the inefficiency by a maximum of 50%
and the value 0 is included to test the time-invariant specific case.

6The elaborations have been carried out using the new functions of the SSFA R package (Fusco and Vidoli,
2023). The robustness check of the software is provided in Appendix A.
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Figure 1: Monte Carlo experiments results, ρ parameter
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Figure 2: Monte Carlo experiments results, η parameter
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Figure 3: Monte Carlo experiments results, β parameter
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Table 1: Monte Carlo experiments results (400 units)

Parameter η
ρ

0.05 0.2 0.4 0.6 0.8

β

-0.1
bias 0.0291 0.0218 0.0131 0.0098 0.0061

sd 0.0597 0.0578 0.0581 0.0578 0.0558
MSE 0.0044 0.0038 0.0035 0.0034 0.0031

-0.05
bias 0.0183 0.0302 0.0277 0.0132 0.0038

sd 0.0719 0.0665 0.0652 0.0638 0.0595
MSE 0.0055 0.0053 0.0050 0.0042 0.0035

0
bias 0.0219 0.0199 0.0279 0.0295 0.0164

sd 0.0700 0.0719 0.0718 0.0718 0.0720
MSE 0.0054 0.0056 0.0059 0.0060 0.0054

0.05
bias 0.0215 0.0249 0.0236 0.0165 0.0094

sd 0.0690 0.0684 0.0635 0.0619 0.0566
MSE 0.0052 0.0053 0.0046 0.0041 0.0033

0.10
bias 0.0260 0.0183 0.0131 0.0060 0.0028

sd 0.0611 0.0561 0.0563 0.0593 0.0544
MSE 0.0044 0.0035 0.0033 0.0036 0.0030

ρ

-0.10
bias -0.0385 -0.0404 -0.0393 -0.0137 -0.0131

sd 0.0426 0.0475 0.0513 0.0266 0.0370
MSE 0.0033 0.0039 0.0042 0.0009 0.0015

-0.05
bias -0.0301 -0.0069 -0.0257 -0.0126 0.0226

sd 0.0441 0.0582 0.0597 0.0276 0.0594
MSE 0.0028 0.0034 0.0042 0.0009 0.0040

0
bias -0.0266 0.0071 0.0030 -0.0066 0.0050

sd 0.0417 0.0576 0.0546 0.0284 0.0386
MSE 0.0024 0.0033 0.0030 0.0008 0.0015

0.05
bias -0.0296 -0.0155 -0.0241 -0.0156 0.0249

sd 0.0431 0.0582 0.0534 0.0281 0.0561
MSE 0.0027 0.0036 0.0034 0.0010 0.0038

0.10
bias -0.0423 -0.0274 -0.0422 -0.0071 -0.0144

sd 0.0394 0.0521 0.0522 0.0287 0.0415
MSE 0.0033 0.0035 0.0045 0.0009 0.0019

η

-0.1
bias 0.0148 0.0165 0.0195 0.0196 0.0149

sd 0.0091 0.0095 0.0078 0.0078 0.0106
MSE 0.0003 0.0004 0.0004 0.0004 0.0003

-0.05
bias -0.0019 0.0007 -0.0040 -0.0035 -0.0001

sd 0.0154 0.0103 0.0094 0.0113 0.0106
MSE 0.0002 0.0001 0.0001 0.0001 0.0001

0
bias 0.0013 0.0012 0.0008 0.0005 0.0003

sd 0.0009 0.0009 0.0012 0.0014 0.0014
MSE 0.0000 0.0000 0.0000 0.0000 0.0000

0.05
bias -0.0013 -0.0027 0.0019 0.0018 0.0026

sd 0.0122 0.0074 0.0072 0.0084 0.0093
MSE 0.0002 0.0001 0.0001 0.0001 0.0001

0.10
bias -0.0110 -0.0124 -0.0100 -0.0086 -0.0109

sd 0.0060 0.0050 0.0054 0.0068 0.0069
MSE 0.0002 0.0002 0.0001 0.0001 0.0002
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5. A re-examination of the popular Indonesian rice farm dataset (Feng and Horrace,

2012)

A well-known dataset used in the stochastic frontier literature to test our model is the In-

donesian rice farm dataset published by Feng and Horrace (2012). This dataset is particularly

valuable due to its comprehensive nature, capturing a wide range of variables that influence

rice production in Indonesia. It includes panel data with N = 171 spatial observations across

T = 6 waves, allowing an in-depth analysis of temporal and spatial variations in farm effi-

ciency. Detailed information on inputs such as labour, land, and capital, as well as outputs,

provides a rich foundation for evaluating the performance and efficiency of rice farms, mak-

ing it an excellent resource for modelling and testing theories in the context of agricultural

productivity and efficiency. More specifically, the inputs to rice production included in the

data set are seed (kg), urea (kg), trisodium phosphate (TSP) (kg), labour (hours of work)

and land (hectares). The output is measured in kilogrammes of rice. The data also include

dummy variables. DP equals 1 if pesticides were used and 0 otherwise. DV1 equals 1 if

high-yield rice varieties were planted and DV2 equals 1 if mixed varieties were planted. The

DSS equals 1 if it was a wet season, 0 otherwise. The spatial weights matrix W is constructed

as in Druska and Horrace (2004): "Farms in the same village (out of six) are considered

contiguous.".

Results of STSFA time-invariant and time-varying models and a comparison with Druska

and Horrace (2004)7 are reported in Table 2. It is important to note that from a methodological

point of view, there are some main differences between our method and that of Druska and

Horrace (2004). In particular: (i) in D&H the model is time-invariant with fixed effects and

the efficiency is estimated with a free-efficiency approach, instead in STSFA the model is

time-invariant or time-varying and the efficiency is estimated with a ML approach; (ii) in

D&H all the error term is spatially lagged, instead in STSFA only the inefficiency term is

spatially lagged; (iii) in D&H the ρ parameter is estimated for each t and then the average is

7Results in "Table 3. Rice Regressions, Weighting Scheme M2 - Common Villages", on page 193 (Druska
and Horrace, 2004).

16



kept instead in STSFA ρ is global.

Main findings are that β coefficients are close to Druska and Horrace (2004)8 but the use

of fixed effects to account for inefficiency in the error term in the first step leads to some

bias in H&D’s β coefficients; our global ρ is equal to 0.7103 (in a time-invariant model) and

0.7305 (in time-varying model) greater than D&H due to the fact that all the error is lagged

and perhaps the parameter can be lowered by the absence of spatial autocorrelation in the

random term; very interesting the η is positive in SFA and negative in time-varying STSFA.

This might imply that disregarding the spatial dependence in the inefficiency term can lead

to a biased η . Consequently, while the overall efficiency of farms increases over time as a

result of positive externalities, individual farm efficiencies tend to decline over time.

Table 2: Indonesian rice farm estimation results by method

Time-invariant Time-varying
TSFA STSFA D&H TSFA STSFA

Intercept 5.1087∗∗∗ 5.5680∗∗∗ - 5.3182∗∗∗ 5.5869∗∗∗

Seed 0.1430∗∗∗ 0.1469∗∗∗ 0.1035∗ 0.1368∗∗∗ 0.1421∗∗∗

Urea 0.1112∗∗∗ 0.0852∗∗∗ 0.0909∗ 0.1053∗∗∗ 0.0896∗∗∗

TSP 0.0781∗∗∗ 0.0813∗∗∗ 0.0356∗ 0.0782∗∗∗ 0.0797∗∗∗

Labor 0.2286∗∗∗ 0.2110∗∗∗ 0.2385∗ 0.2054∗∗∗ 0.2117∗∗∗

Land 0.4692∗∗∗ 0.4947∗∗∗ 0.4855∗ 0.4995∗∗∗ 0.4948∗∗∗

DP 0.0156 0.0098∗∗∗ −0.0189 0.0157 0.0124
DV1 0.1615∗∗∗ 0.1796 0.1116∗ 0.1578∗∗∗ 0.1822∗∗∗

DV2 0.1349∗∗ 0.1304∗∗∗ 0.1080∗ 0.1289∗ 0.1359∗∗

DSS 0.0473∗ 0.0507∗ 0.0789 0.0509∗ 0.0505∗

σ2
udmu

- 0.0001 - - 0.001
σ2

usar
- 0.0186 - - 0.0184

σ2
u 0.0209∗ - - 0.0183∗ -

σ2
v 0.1099∗∗∗ 0.1081∗∗∗ - 0.1095∗∗∗ 0.1086∗∗∗

ρ - 0.7103 0.6604 - 0.7305
η - - - 0.0376 -0.0110
AIC -921.6 -948.48 - -919.33 -945.50

8Note that the robustness check of the time-invariant TSFA’s intercept, σ2
u and σ2

v has been done by com-
parison with that of Horrace and Schmidt (1996) (TSFA has been included in the Table 2 as baseline model).
The only difference is the absence of some dummies.

17



6. Final remarks

Economic processes are increasingly viewed as dynamic and constantly evolving and

adapting, often influenced by spatial interactions and externalities, such as technology spillovers,

local innovation, and resource sharing among neighbouring regions.

The introduction of the STSFA family of estimators marks a significant advancement in

evolutionary economics by incorporating both spatial and temporal dependencies into the

stochastic frontier model and focussing on the composite error term. Traditional models, in

fact, often fail to account for these factors, leading to biased efficiency estimates. In par-

ticular, neglecting temporal dynamics can cause inefficiencies to be underestimated or over-

estimated. By integrating spatial and temporal dynamics, the STSFA model offers a more

nuanced and accurate analysis of efficiency, which is crucial to understanding complex pro-

duction processes. The STSFA model complements other methods proposed in the literature,

but differs from them in that it focusses on modelling the error and inefficiency part, which

we believe is precisely the core of frontier models; according to our perspective, in fact, it

is more beneficial to understand the reasons and locations of systematic deviations from effi-

cient behaviour by firms rather than focussing on the frontier itself.

This deeper insight is especially useful for policymakers who aim to create strategies that

boost productivity. The STSFA model provides a sophisticated framework for identifying

regions where policy interventions can have the greatest impact. By capturing the interaction

between spatial and temporal factors, the model enables the identification of areas that would

benefit the most from targeted policy measures. This information is vital for designing poli-

cies that not only improve efficiency, but also promote sustainable development.

To support the estimation of the STSFA model, the SSFA R package has been updated, offer-

ing a robust tool for researchers and facilitating a deeper exploration of efficiency in different

sectors and geographic areas.

Finally, further applications of the model across various sectors and geographical areas would

be valuable in generalising the findings, also exploring non-linear spatial dependencies and

other forms of interactions between units.
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Appendix A. SSFA R package - robustness check

The proposed STSFA time-invariant and time-varying models have been implemented in two new

functions of the SSFA R package by Fusco and Vidoli (2023). SSFA package allows to estimate six

different model specifications: SFA and SSFA cross-section, TSFA and STSFA time-invariant and

TSFA and STSFA time-varying.

With the aim of testing the robustness of the new functions, a comparison of the time-invariant

and time-varying TSFA models (subsequently modified to account for spatial autocorrelation) with

the Fortran source code of Frontier 4.1 (frontier R package by Coelli and Henningsen, 2020) has

been carried out, obtaining almost identical results as shown in Table A.1.9

Table A.1: SSFA package robustness check on classical SFA for panel data

Time-invariant Time-varying
SSFA frontier SSFA frontier

Intercept 5.1087 5.1027 5.3182 5.1193
Seed 0.1430 0.1425 0.1368 0.1428
Urea 0.1112 0.1114 0.1053 0.1106
TSP 0.0781 0.0778 0.0782 0.0762
Labor 0.2286 0.2297 0.2054 0.2285
Land 0.4692 0.4687 0.4995 0.4716
DP 0.0156 0.0157 0.0157 0.0177
DV1 0.1615 0.1617 0.1578 0.1584
DV2 0.1349 0.1327 0.1289 0.1294
DSS 0.0473 0.0467 0.0509 0.0511

σ2 0.1308 0.1307 0.1278 0.1273
η - - 0.0376 0.0367

9Coelli, T. (1996) A Guide to FRONTIER Version 4.1: A Computer Program for Stochastic Frontier Pro-
duction and Cost Function Estimation, CEPA Working Paper 96/08, http://www.uq.edu.au/economics/
cepa/frontier.php, University of New England.
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Appendix B. RMSE results by different simulation setting

Table B.2: Monte Carlo experiments results (100 units)

Parameter η
ρ

0.05 0.2 0.4 0.6 0.8

β

-0.1
bias 0.0238 0.0164 0.0110 0.0092 0.0115

sd 0.0680 0.0692 0.0674 0.0683 0.0691
MSE 0.0052 0.0051 0.0046 0.0047 0.0049

-0.05
bias 0.0145 0.0137 0.0195 0.0143 0.0095

sd 0.0755 0.0723 0.0708 0.0680 0.0657
MSE 0.0059 0.0054 0.0054 0.0048 0.0044

0
bias 0.0109 0.0225 0.0135 0.0196 0.0190

sd 0.0751 0.0748 0.0723 0.0734 0.0760
MSE 0.0058 0.0061 0.0054 0.0058 0.0061

0.05
bias 0.0211 0.0254 0.0197 0.0178 0.0091

sd 0.0700 0.0711 0.0701 0.0690 0.0669
MSE 0.0053 0.0057 0.0053 0.0051 0.0045

0.10
bias 0.0154 0.0161 0.0136 0.0116 0.0103

sd 0.0681 0.0686 0.0676 0.0678 0.0665
MSE 0.0049 0.0050 0.0048 0.0047 0.0045

ρ

-0.10
bias -0.0287 -0.0134 -0.0111 -0.0133 0.0039

sd 0.0446 0.0542 0.0527 0.0258 0.0425
MSE 0.0028 0.0031 0.0029 0.0008 0.0018

-0.05
bias -0.0255 -0.0055 -0.0119 -0.0141 0.0027

sd 0.0461 0.0551 0.0574 0.0264 0.0499
MSE 0.0028 0.0031 0.0034 0.0009 0.0025

0
bias -0.0228 -0.0061 0.0051 -0.0061 0.0030

sd 0.0460 0.0567 0.0571 0.0283 0.0384
MSE 0.0026 0.0032 0.0033 0.0008 0.0015

0.05
bias -0.0250 -0.0010 -0.0044 -0.0103 0.0016

sd 0.0437 0.0578 0.0575 0.0289 0.0435
MSE 0.0025 0.0033 0.0033 0.0009 0.0019

0.10
bias -0.0296 -0.0102 -0.0108 -0.0102 -0.0058

sd 0.0412 0.0546 0.0542 0.0266 0.0397
MSE 0.0026 0.0031 0.0031 0.0008 0.0016

η

-0.1
bias 0.0157 0.0180 0.0199 0.0203 0.0181

sd 0.0116 0.0101 0.0093 0.0084 0.0117
MSE 0.0004 0.0004 0.0005 0.0005 0.0005

-0.05
bias -0.0028 -0.0021 -0.0030 -0.0033 -0.0005

sd 0.0146 0.0116 0.0104 0.0112 0.0104
MSE 0.0002 0.0001 0.0001 0.0001 0.0001

0
bias 0.0013 0.0011 0.0008 0.0004 0.0002

sd 0.0011 0.0015 0.0019 0.0022 0.0028
MSE 0.0000 0.0000 0.0000 0.0000 0.0000

0.05
bias -0.0003 -0.0000 0.0026 0.0031 0.0028

sd 0.0122 0.0096 0.0082 0.0080 0.0088
MSE 0.0001 0.0001 0.0001 0.0001 0.0001

0.10
bias -0.0097 -0.0102 -0.0105 -0.0097 -0.0101

sd 0.0066 0.0064 0.0057 0.0068 0.0073
MSE 0.0001 0.0001 0.0001 0.0001 0.0002
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Table B.3: Monte Carlo experiments results (200 units)

Parameter η
ρ

0.05 0.2 0.4 0.6 0.8

β

-0.1
bias 0.0247 0.0196 0.0147 0.0093 0.0075

sd 0.0653 0.0627 0.0626 0.0643 0.0596
MSE 0.0049 0.0043 0.0041 0.0042 0.0036

-0.05
bias 0.0237 0.0253 0.0312 0.0156 0.0084

sd 0.0709 0.0708 0.0661 0.0671 0.0620
MSE 0.0056 0.0056 0.0053 0.0047 0.0039

0
bias 0.0229 0.0175 0.0193 0.0159 0.0186

sd 0.0732 0.0705 0.0726 0.0720 0.0746
MSE 0.0059 0.0053 0.0056 0.0054 0.0059

0.05
bias 0.0185 0.0257 0.0255 0.0204 0.0116

sd 0.0712 0.0705 0.0664 0.0645 0.0629
MSE 0.0054 0.0056 0.0051 0.0046 0.0041

0.10
bias 0.0224 0.0198 0.0158 0.0126 0.0057

sd 0.0641 0.0612 0.0619 0.0617 0.0618
MSE 0.0046 0.0041 0.0041 0.0040 0.0038

ρ

-0.10
bias -0.0363 -0.0250 -0.0309 -0.0136 -0.0043

sd 0.0422 0.0541 0.0500 0.0265 0.0373
MSE 0.0031 0.0035 0.0035 0.0009 0.0014

-0.05
bias -0.0287 -0.0065 -0.0184 -0.0121 0.0101

sd 0.0433 0.0589 0.0550 0.0283 0.0524
MSE 0.0027 0.0035 0.0034 0.0009 0.0028

0
bias -0.0306 0.0056 0.0096 -0.0034 0.0100

sd 0.0417 0.0604 0.0575 0.0283 0.0403
MSE 0.0027 0.0037 0.0034 0.0008 0.0017

0.05
bias -0.0272 -0.0136 -0.0103 -0.0110 0.0106

sd 0.0433 0.0592 0.0585 0.0257 0.0503
MSE 0.0026 0.0037 0.0035 0.0008 0.0026

0.10
bias -0.0323 -0.0228 -0.0297 -0.0110 -0.0113

sd 0.0417 0.0544 0.0522 0.0275 0.0402
MSE 0.0028 0.0035 0.0036 0.0009 0.0017

η

-0.1
bias 0.0144 0.0168 0.0196 0.0202 0.0160

sd 0.0115 0.0102 0.0088 0.0077 0.0112
MSE 0.0003 0.0004 0.0005 0.0005 0.0004

-0.05
bias -0.0032 -0.0021 -0.0041 -0.0040 -0.0010

sd 0.0149 0.0126 0.0105 0.0112 0.0110
MSE 0.0002 0.0002 0.0001 0.0001 0.0001

0
bias 0.0013 0.0012 0.0009 0.0006 0.0004

sd 0.0010 0.0012 0.0015 0.0015 0.0018
MSE 0.0000 0.0000 0.0000 0.0000 0.0000

0.05
bias -0.0013 -0.0006 0.0030 0.0033 0.0034

sd 0.0118 0.0081 0.0082 0.0083 0.0089
MSE 0.0001 0.0001 0.0001 0.0001 0.0001

0.10
bias -0.0099 -0.0112 -0.0100 -0.0090 -0.0097

sd 0.0065 0.0054 0.0058 0.0072 0.0073
MSE 0.0001 0.0002 0.0001 0.0001 0.0001
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