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Abstract 

The presence of temporalities in conceptions, births, and birth outcomes such as preterm 
birth are well-known. However, the link between these phenomena has received 
surprisingly little attention. Drawing on birth certificates data from the United States 
(2010–2019), we demonstrate how temporal changes in conceptions are linked with birth 
outcomes. First, we formalize the relationship between temporal variation in conceptions 
and birth outcomes and model how changes in conception rates affect birth outcomes. 
Second, we demonstrate the temporal relationship between changes in conception rates 
and birth outcomes. Third, we illustrate the impact of temporal variation in conceptions 
on the variation in birth outcomes across different U.S. population groups. Our results 
show a link between the number of conceptions and the distribution of preterm births, 
such that a decline in conceptions will lead to a decrease in preterm births eight months 
after, whereas an increase will lead to the opposite pattern. This link is stronger among 
groups with higher incidences of preterm birth, such as Black Americans relative to non-
Hispanic White Americans. Temporal variation in conceptions accounts for about one-
tenth of the temporal variation in birth outcomes, and this proportion increases among 
groups with higher incidence rates of preterm birth. This study offers new insights into 
the demographic determinants of health at birth at the population level. 
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Introduction 

Rates of conceptions and births vary across time, exhibiting strong temporal patterns. The 

same holds true for rates of adverse birth outcomes, such as preterm birth (PTB). 

Temporal patterns and seasonality in fertility among human populations have received 

much attention, with explanations highlighting behavioral patterns, climate, 

fecundability, and preferences as possible determinants (Barreca, Deschenes, & Guldi, 

2018; Becker, 1991; Bodnar & Simhan, 2008; Clarke, Oreffice, & Quintana-Domeque, 

2019; Lam & Miron, 1996; Rizzi & Dalla-Zuanna, 2007; Seiver, 1985; Strand, Barnett, & 

Tong, 2011). For birth outcomes, research has considered maternal selection into season 

of conception, flu seasonality, and climate (Conte Keivabu & Cozzani, 2022; Currie & 

Schwandt, 2013; Deschênes, Greenstone, & Guryan, 2009; Torche & Corvalan, 2010). 

Despite the fact that both phenomena exhibit these temporal patterns, the link between 

them has received little attention (Cozzani, Fallesen, Passaretta, Härkönen, & Bernardi, 

2023; Currie & Schwandt, 2013; Darrow et al., 2009; de Klerk et al., 2025; Nobles & 

Hamoudi, 2019).  

 Temporal variation in conceptions carried to term (from here, simply called 

conceptions) refers to the changes in the population rate of conceptions over time, which 

causes corresponding fluctuations in births five to ten months later depending on length 

of gestation. This variation can be understood as a temporal sequela of 

conception/fertility shocks of different intensities. Throughout the text, we use the term 

shock as a synonym of this variability. The variation in conceptions leading to live birth 

has two main components. The first is purely mechanical: the more conceptions there are, 

the more births will occur in the following five to nine months. The second component 

involves environmental and behavioral determinants, which influence who conceives and 

which fetuses survive to birth.  

 The relationship between variation in quantity of conceptions and distribution of 

birth outcomes arises primarily because pre-term and full-term children born in the same 

month are conceived at different times, with the distribution of births reflecting variations 

in conception rates from earlier months. As the conception rate fluctuates, so does the 

distribution of pre-term births over time. For example, if, across two months, there is a 
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uniform increase in conceptions, we will observe a mechanical change in the proportion 

of pre-term births 5 to 8 months later. This happens as children born pre-term are 

conceived in the month with more conceptions, whereas their at-term counterparts (which 

are born in the same month) are conceived in the month(s) prior before conceptions 

increased. As a result, at birth time there will be more pre-term children, compared to the 

previous month, due to an increase in conceptions eight months earlier relative to nine 

months earlier. 

This study addresses the relationship between conception quantities and 

distribution of birth outcomes in three ways. First, we formalize the link between 

temporal variation in conceptions and pre-term births. Second, we demonstrate how 

changes in conceptions directly reshape pre-term birth rates downstream. Third, we 

illustrate how temporal variation in conceptions affect birth outcomes across different 

racial groups in the US to a different degree. We draw from US birth registers for the 

period 2010-19 and show results for births to non-Hispanic White mothers and Black 

mother. In total, the study contributes new understandings of the relation between how 

many children are conceived and how many children are born preterm. Furthermore, we 

contribute to the understanding of the demographic determinants of the population-level 

distribution of health at birth. 

 

Data and methods 

We use administrative microdata from the CDC’s National Vital Statistics System 

(NVSS), covering all U.S. birth certificates between 2010 and 2019. These data include 

detailed anthropometric information on the newborn, medical and delivery-related 

characteristics, and sociodemographic data on the mother and her partner. We restrict the 

analysis to births occurring through the end of 2019 to avoid capturing fertility shocks 

induced by the COVID-19 pandemic. 

 Because we are interested in identifying temporality in conception and its 

relationship to birth outcomes, we reconstruct the timing of conception using information 

on the month of birth and gestational age. The public NVSS data do not contain the exact 

date of birth but do include the day of the week and month. To estimate conception dates, 
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we impute the birth date by randomly assigning a day within the reported month that 

matches the day of the week. We then count backward using reported gestational age to 

obtain the date and month of conception. Our analyses include only conceptions resulting 

in live births. 

 Our primary outcome is the preterm birth rate, defined as the proportion of births 

occurring before 37 completed weeks of gestation. In parts of the analysis, we stratify 

results by maternal race, distinguishing between non-Hispanic White and non-Hispanic 

Black mothers. 

 We conduct three sets of analyses. First, we use birth data from 2018 and 2019 to 

demonstrate how conception shocks affect birth outcomes. We model the expected 

preterm birth rate under different assumptions about the size of a conception shock and 

the extent of selection into or out of conception. We calculate the average preterm birth 

rate for each racial group over the 2018–2019 period and use this as the baseline rate in 

our model.  

Second, we simulate how a conception shock is temporally related to birth 

outcomes. We remove a fraction of conceptions leading to live births in early 2018—

uniformly across all births—in order to simulate the effects of a short-term decline in 

conceptions. Specifically, we eliminate conceptions occurring in January (one month), 

January–February (two months), and permanently, rerunning the simulation 1,000 times 

to obtain prediction intervals. In another simulation, also using 2019 birth data, we 

exclude births attributed to medically assisted reproduction (MAR) to approximate the 

impact of partial MAR clinic closures. Because MAR births are underreported in the 

NVSS (Tierney & Cai, 2019), this exercise provides a lower-bound estimate. 

Third, we use different strategies to assess the degree to which temporal changes 

in conceptions are associated to temporal variation in birth outcomes, and how much 

variation they explain. In a time-series analysis using the full 2010–2019 NVSS data, we 

estimate the relationship between conceptions and preterm birth outcomes by computing 

the ratio 𝑅𝑅𝑡𝑡0, defined as the number of conceptions occurring eight months prior to a birth 

relative to those nine months prior. We regress the preterm birth rate in month 𝑡𝑡 on this 

ratio, including controls for month and year fixed effects to estimate the gradient. Further, 
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to also estimate the elasticity, we log-transform both the dependent variable (preterm 

birth rate) and independent variable (𝑅𝑅𝑡𝑡0). 

To assess the extent to which variation in conceptions accounts for variation in 

birth outcomes, we estimate a vector autoregressive (VAR) model with forecast error 

variance decomposition. We align conceptions at time 𝑡𝑡 − 6 with births at time 𝑡𝑡, as 

motivated by findings from our earlier simulation. We select lag length using the 

Bayesian Information Criterion (BIC) and evaluate model fit across specifications. We 

estimate separate models by race.  

For Blacks, our estimation equation is: 

 

𝑝𝑝𝑡𝑡𝑏𝑏𝑡𝑡  =  𝑐𝑐1 + 𝑡𝑡1 + �𝛿𝛿𝑗𝑗1𝑆𝑆ⱼₜ
12

𝑗𝑗=1

 +  𝜑𝜑11𝑝𝑝𝑡𝑡𝑏𝑏𝑡𝑡−1  +  𝜑𝜑12𝑝𝑝𝑡𝑡𝑏𝑏𝑡𝑡−2  + 𝜑𝜑13𝑝𝑝𝑡𝑡𝑏𝑏𝑡𝑡−3 +  𝛽𝛽11𝑅𝑅𝑡𝑡−7  

+  𝛽𝛽12𝑅𝑅𝑡𝑡−8  + 𝛽𝛽13𝑥𝑥𝑅𝑅𝑡𝑡−9  + 𝜀𝜀𝑡𝑡1 

𝑅𝑅𝑡𝑡−6  =  𝑐𝑐2 + 𝑡𝑡2 + �𝛿𝛿𝑗𝑗2𝑆𝑆ⱼₜ
12

𝑗𝑗=1

 +  𝜑𝜑21𝑝𝑝𝑡𝑡𝑏𝑏𝑡𝑡−1  +  𝜑𝜑22𝑝𝑝𝑡𝑡𝑏𝑏𝑡𝑡−2  +  𝜑𝜑23𝑝𝑝𝑡𝑡𝑏𝑏𝑡𝑡−3 +  𝛽𝛽21𝑅𝑅𝑡𝑡−7  

+  𝛽𝛽22𝑅𝑅𝑡𝑡−8  +  𝛽𝛽23𝑅𝑅𝑡𝑡−9  + 𝜀𝜀𝑡𝑡2 

 

and for Whites it is:  

𝑝𝑝𝑡𝑡𝑏𝑏𝑡𝑡  =  𝑐𝑐1 + �𝛿𝛿𝑗𝑗1𝑆𝑆ⱼₜ
12

𝑗𝑗=1

 +  𝜑𝜑11𝑝𝑝𝑡𝑡𝑏𝑏𝑡𝑡−1  + 𝜑𝜑12𝑝𝑝𝑡𝑡𝑏𝑏𝑡𝑡−2  +  𝛽𝛽11𝑅𝑅𝑡𝑡−7  + 𝛽𝛽12𝑅𝑅𝑡𝑡−8   +  𝜀𝜀𝑡𝑡1 

𝑅𝑅𝑡𝑡−6  =  𝑐𝑐2 + �𝛿𝛿𝑗𝑗2𝑆𝑆ⱼₜ
12

𝑗𝑗=1

 +  𝜑𝜑21𝑝𝑝𝑡𝑡𝑏𝑏𝑡𝑡−1  +  𝜑𝜑22𝑝𝑝𝑡𝑡𝑏𝑏𝑡𝑡−2  +  𝛽𝛽21𝑅𝑅𝑡𝑡−7  +  𝛽𝛽22𝑅𝑅𝑡𝑡−8  +  𝜀𝜀𝑡𝑡2 

 

where c is the constant, t is a time trend (only for blacks), 𝛿𝛿𝑗𝑗 are monthly parameters, 𝜑𝜑 

are parameters for lagged values of ptb, 𝛽𝛽 are parameters for lagged values of R, and 𝜀𝜀 is 

error terms. 

Although the time series for preterm births among White mothers is nonstationary 

(p = 0.25), we are primarily interested in the proportion of variance in preterm births 
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explained by conceptions and thus not overly concerned with lag of stationarity; model 

diagnostics suggest a good overall fit. 

Finally, to isolate the explanatory power of conception variation alone, we create 

a counterfactual distribution of births by fixing the gestational age distribution at each 

month of conception to its period average. We then vary only the number of conceptions 

and regress the observed birth outcomes on this counterfactual. The resulting 𝑅𝑅2 statistic 

indicates the share of temporal variation in birth outcomes attributable to changes in 

conception volume alone, following the approach of Currie and Schwandt (2013). 

 

The functional relationship 

First, we formalize the functional relationship between changes in the quantity of 

conceptions (ending up in live births) and birth outcomes at the time of birth. For 

simplicity’s sake, we assume all pre-term births occur 8 months after conception and 

focus on a one-month-long change to conceptions. We focus on eight months as it is the 

modal category for the gestational length of pre-term born children (about 78% of all pre-

term children according to the NVSS data). We define the size of the shock to 

conceptions as 𝑆𝑆𝑡𝑡0   (where -1 means a 100% decline in conceptions and 1 means a 100% 

increase), the baseline share of preterm births assuming no shock and no seasonality as p, 

a selection term 𝛿𝛿 that captures the relative risk of preterm birth among those who 

contribute to the change in the quantity of conception compared to the full population 

(ranging from 0 to infinity, with 1 indicating no selection), and the preterm birth rate 

eight months later as PTBt8. The selection term allows the model to describe not only 

uniform conception shocks but also shocks driven by part of the population with distinct 

preterm birth risk. The relationship between conception shocks and the preterm birth rate 

can be expressed as: 

𝑓𝑓(𝑆𝑆𝑡𝑡0) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡8 =
𝑝𝑝�1+𝑆𝑆𝑡𝑡0�

𝛿𝛿

1−𝑝𝑝+𝑝𝑝�1+𝑆𝑆𝑡𝑡0�
𝛿𝛿 + 𝜖𝜖𝑡𝑡8    (1) 

where 𝜖𝜖𝑡𝑡8is an error-term assumed orthogonal to 𝑆𝑆𝑡𝑡0, p, and 𝛿𝛿. The partial derivative with 

respect to the baseline preterm birth risk p is then: 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝑝𝑝

= (1+𝑆𝑆𝑡𝑡0)𝛿𝛿(1+𝑝𝑝)−𝑝𝑝(1+𝑠𝑠𝑡𝑡0)2𝛿𝛿

�1−𝑝𝑝+𝑝𝑝(1+𝑆𝑆𝑡𝑡0)𝛿𝛿�2
     (2) 

and the selection term 𝛿𝛿 is defined as: 

𝛿𝛿 =  
log�(𝑝𝑝−1)𝑃𝑃𝑃𝑃𝐵𝐵8

(𝑃𝑃𝑃𝑃𝐵𝐵8−1)𝑝𝑝�

log(𝑆𝑆𝑡𝑡0+1)  𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑡𝑡0 > −1, 𝑆𝑆𝑡𝑡0 ≠ 0,𝑝𝑝 > 0  (3) 

 

 Following from eq. 3, the size of selection term depends on the initial level of pre-

term birth, p, and thus is not scale-independent. Further, xt0
 may change for two reasons—

either conceptions at t0 changes which affects the number of preterm, or conceptions 

changes at t-1, which affects the number of at-terms.  

 From equations 1 and 2 it follows that changes in PTB rates due to a shock to 

conceptions depend on several factors: the size of the shock, the share of children who 

would be expected to be born preterm absent any shock to conception eight months prior 

to the observed birth month, and the selection effects on conception due to the shock.  

Figure 1 demonstrates the impact of various shocks, ranging from -100% (no 

conceptions at all) to +100% (double the monthly conceptions), on the preterm birth rate 

in the U.S. This is done for births to non-Hispanic White mothers and Black mothers. The 

baseline risks in the figure are based on the average incidence of PTB for each racial 

group in 2018-2019 according to the NVSS data. Overall, a reduction in conceptions 

leads to a lower share of preterm births eight months later, while an increase in 

conceptions results in a higher share of preterm births. Further, as can be seen from 

Figure 1 (and follows from eq. 2), any shock to conceptions has a higher impact on PTB 

risk for Black mothers than for White mothers given the difference in underlying baseline 

risk. Relative shocks at higher baselines have a higher impact both in absolute and 

relative terms. 

[FIGURE 1 ABOUT HERE] 

 

The temporal relationship 

Next, we demonstrate the temporal relationship between changes in the quantity of 

conceptions and birth outcomes. We simulate a scenario, which introduces a random 

decrease (assuming no selection, 𝛿𝛿 = 1) in the number of conceptions (between 5%-20% 
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decrease) lasting a) one month; b) two months, or c) sustained over at least a 5-month 

window (permanent within the time frame). We then obtain birth outcomes changes in 

the following months under each scenario. For the sake of brevity, we only simulate a 

decline, but an increase in conceptions would play out identically but with opposite sign. 

  Figure 2 below shows the simulation: a one-month temporary (left panels) 

uniform conception shock produces first an improvement in birth outcomes at t+8 which 

is followed by a rebound with a worsening of birth outcomes at t+9. A two-month 

uniform conception shock (middle panel) produces an improvement in months t+8 and 

t+9, a return to normal rates in t+10, and a rebound in t+11 and t+12. When the shock 

persists (right panel), we observe an improvement in birth outcomes which is followed by 

a normalization. In total, Figure 2 demonstrates a demographic artifact: uniform changes 

in conceptions translate into a wave-shaped disturbance of birth outcome in the months 

that follows. Children born at month 8 months after a conception shock are both 

conceived before and after the fertility shock, with the pre-term conceived right after and 

the at term conceived right before. Thus, the shock manifests only among the PTB, as 

there was a reduction in the numerator (premature births) of the PTB rate 𝑃𝑃𝑓𝑓𝑃𝑃−𝑡𝑡𝑃𝑃𝑓𝑓𝑡𝑡 

𝑏𝑏𝑏𝑏𝑓𝑓𝑡𝑡ℎ𝑠𝑠/𝐴𝐴𝐴𝐴𝐴𝐴 𝑏𝑏𝑏𝑏𝑓𝑓𝑡𝑡ℎ𝑠𝑠. The opposite scenario happens for the rebound.  

[FIGURE 2 ABOUT HERE] 

 The simulations shown in Figure 2 assume no selective element to the conception 

shock. To simulate a scenario where only the part of the population who substantially 

have higher than average risk of PTB changes their conception risk, we remove all births 

indicated in the NVSS as being due to MAR, as such conceptions are known to have 

substantially higher risk of PTB (Goisis, Remes, Martikainen, Klemetti, & Myrskylä, 

2019), which is equivalent to setting 𝛿𝛿 ≫ 1 in Eq. 1. This demonstrates a scenario where 

all fertility clinics close for a period, as was seen in several countries during the COVID-

19 pandemic (Requena et al., 2020). We simulate three different closure scenarios: a 1-

month closure of all clinics, a 2-month closure of all clinics, and a permanent closure of 

all clinics assuming no increase in natural conceptions following the closure. Figure 3 

shows the impact on PTB rates under these scenarios. The simulated shocks all start at 

month 1. A similar decline as seen in Figure 2 occurs at 8 and 9 months, but we do not 
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observe the same symmetric wave-function 9 month after the shock ends, because of the 

group’s higher risk of experiencing preterm births. 

[FIGURE 3 ABOUT HERE] 

 

General and seasonal variation in conceptions and birth outcomes 

The final aim of this article is to illustrate the size of the association between changes in 

conceptions and birth outcomes, as well as how much of the temporal variation in birth 

outcomes is explained by temporal variation in conceptions. To achieve this, we utilize 

three analytical strategies that, together, aim to provide a robust description of the 

relationship between these two phenomena. We build on our model defined in Equation 

1, and we operationalize temporal variation as the change in conceptions in month 𝑡𝑡0 

relative to the month prior 𝑡𝑡1. That is, instead of considering the impact of a short-time 

conception shock, we can extend Equation 1 to account for any change in conceptions 

between two months as represent by a ratio 𝑅𝑅𝑡𝑡0 = 𝑁𝑁𝑁𝑁.  𝑁𝑁𝜕𝜕 𝑐𝑐𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑡𝑡𝑐𝑐𝑁𝑁𝑐𝑐𝑠𝑠 𝑎𝑎𝑡𝑡 𝑡𝑡0
𝑁𝑁𝑁𝑁.  𝑁𝑁𝜕𝜕 𝑐𝑐𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑡𝑡𝑐𝑐𝑁𝑁𝑐𝑐𝑠𝑠 𝑎𝑎𝑡𝑡 𝑡𝑡−1

, such that: 

𝑓𝑓�𝑅𝑅𝑡𝑡0� = 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡8 =
𝑝𝑝�𝑅𝑅𝑡𝑡0�

𝛿𝛿

1−𝑝𝑝+𝑝𝑝�𝑅𝑅𝑡𝑡0�
𝛿𝛿 + 𝜖𝜖𝑡𝑡8    (4) 

with the same assumptions as for Eq. 1. 

 First, using the 𝑅𝑅𝑡𝑡0 ratio as the independent variable, we regress it on the rate of 

pre-term births 8 months later using OLS models, including month and year fixed effects 

on NVSS data covering US births for the period 2010-2019. Figure 4 illustrates the 

relationship between 𝑅𝑅𝑡𝑡0  and the pre-term birth rates by racial groups. It also presents 

parameters derived from OLS regressions: the gradient (β) of preterm birth rates on 𝑅𝑅𝑡𝑡0, 

as well as the elasticity obtained by log-transforming both variables. Both parameters 

indicate that changes in conceptions are more consequential for population-level preterm 

birth share of Blacks than Whites. However, while the estimates are adjusted for year and 

month dummies to account for seasonality and annual trends and to prevent confounding, 

this adjustment introduces over-control bias. This occurs because the seasonality and 

trend in 𝑅𝑅𝑡𝑡0 inherently influence the seasonality and trend in pre-term births. controlling 
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for it will lead to over-control bias. Therefore, evaluating the full temporal role of 𝑅𝑅𝑡𝑡0 in 

pre-term births requires alternative empirical strategies.  

[FIGURE 4 ABOUT HERE] 

 Therefore, second, we approach temporal variation in conceptions (𝑅𝑅𝑡𝑡0) and 

preterm birth rates from a time-series perspective and model it as a Vector 

Autoregressive Model with the conception timeseries lagged with 7 months. Results are 

shown in Table 1. Tests for Granger-causality, both for Black and White, show 

significant Granger-causal relationships from 𝑅𝑅𝑡𝑡0 to pre-term births, but not the reverse. 

Forecast error variance decomposition shows that variation in 𝑅𝑅𝑡𝑡0explains 7-8% of 

variation in pre-term births for Whites and 13-15% for Black.  

Finally, in Table 1 we also provide an alternative estimation of the impact of 

seasonality in conceptions by drawing from a strategy outlined in Currie and Schwandt 

(2013). We construct a counterfactual temporality in birth outcomes as if there was only 

temporality in conceptions, but not in birth outcomes, using births between 2010 and 

2019. Overall, using this strategy we find that temporal variation in conceptions explains 

12% of temporal variation in birth outcomes for Blacks, and 8% for Whites. Overall, all 

strategies yield similar results—changes in conceptions matters substantively for changes 

in birth outcomes, and more so for populations with higher baseline risk of preterm birth. 

  [TABLE 1 ABOUT HERE] 

 

Discussion  

A substantial body of research spanning several decades has demonstrated that many 

human phenomena exhibit temporal patterns often aligned with seasons. Among those, 

conceptions and birth outcomes have been shown to vary due to several factors. 

However, they have rarely been linked. In this study, we have formalized and 

demonstrated how the temporal variation in conceptions is connected to temporal 

variation in birth outcomes. We described a partly mechanical link, framing temporality 

as a series of consecutive conception shocks. These conception shocks influence birth 

outcomes by distributing both at-term and pre-term births throughout the year with 

different intensities. For example, a decline in conceptions from one month to another 
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will lead to a decrease in preterm birth eight months later as they are born at the same 

time with a larger share of at-term children conceived before the conceptions decline. A 

mirrored pattern happens when an increase in the number of conceptions is observed. 

Further, differential selection based on risk for adverse birth outcomes into whom within 

a given groups conceives may further increase or decrease the influence of temporal 

variation in conceptions. 

 We presented two further important findings. First, when conceptions shocks are 

short-lived and uniformly occurring across the full population, they cause a waveform 

change in risk of adverse birth outcomes with the nodal point located 8.5 months 

following the end of the shock. Second, the higher the baseline risk for adverse birth 

outcomes is, the larger are the changes in those risks as a function of changes in 

conception rates. Groups with a higher incidence of PTB, such as those with shorter 

educations as well as ethnic minorities (Cozzani, 2023; Kelly et al., 2008), are more 

sensitive to changes in the quantity of conceptions when it comes to their variation in 

birth outcomes. Overall, these findings demonstrate that changes in conceptions carried 

to term may arise from different reasons, spanning from fertility decisions to increases in 

fetal losses, and the intensity of these changes influences the number of children born 

pre-term throughout the year. While we have not focused on the specific causes of 

conception changes, our model is applicable to a wide range of factors driving these 

variations.  

 We can draw at least two implications from these findings. First, for public health 

purposes understanding the reasons behind temporal patterns in conceptions is crucial. 

Consider the following two scenarios. In the first, environmental factors—such as 

climatic events, pollutants, or stressful occurrences—influence conception rates. This 

implies that harmful exposures might impact conception rates (Hajdu, 2023; Nobles & 

Hamoudi, 2019), and their impact is ultimately observed by abnormal PTB rates 

fluctuations throughout the year. In the second scenario, the temporal variation in 

conception is related to compositional changes. For example, the use MAR is influenced 

by the scheduling of medical procedures, and therefore it contributes to conception rates 

unequally across the year. Moreover, children conceived through MAR are associated 
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with worse birth outcomes on average (Goisis et al., 2019). As a result, the concentration 

of these procedures is even more likely to reinforce the connection between conception 

rates and birth outcomes. Similarly, if specific socio-economic groups, such as those with 

socio-economic advantages, concentrate their fertility efforts during certain periods 

(Clarke et al., 2019), this could also affect the distribution of birth outcomes due to their 

group-specific PTB rates. The first scenario suggests that abnormal PTB rates 

fluctuations may be linked to external factors that directly influence newborn health, 

warranting attention to potential exposures around the time of conception. In contrast, the 

second scenario reflects a more mechanical relationship, where changes in poor birth 

outcomes across the year are driven by variations in the composition of conceptions 

rather than health-related factors. Finally, this mechanical relationship may help explain, 

at least in part, the improvements in birth outcomes observed, for example, following the 

onset COVID-19 pandemic (Cozzani et al., 2023; Gemmill et al., 2022).  Failing to 

account for such changes in who conceives and carries to term may cause researcher to 

overinterpret changes in birth outcomes observed five to nine months later, because these 

changes may primarily be driven by changes in the number of conceptions induced by the 

pandemic (Aassve, Cavalli, Mencarini, Plach, & Sanders, 2021; Bailey, Currie, & 

Schwandt, 2023; Fallesen & Cozzani, 2023) rather than by substantive health-related 

interventions. 

 Second, this study highlights the importance of accounting for selective changes 

in who conceives when examining how exogenous stressors affect birth outcomes. This is 

particularly relevant for the growing body of research in the social and economic sciences 

inspired by the fetal origin hypothesis (Almond & Currie, 2011; Almond, Currie, & 

Duque, 2018; Torche & Nobles, 2024), and especially the extensions on the stratified 

responses to early exposures (Aquino, Brand, & Torche, 2022; Torche & Nobles, 2024), 

as the groups that are studied are those with the higher prevalence of poor birth outcomes. 

Although there is a consensus that the effect of environmental exposures should be 

assessed at the time of conception rather than at birth (Currie & Rossin-Slater, 2013; 

Currie & Schwandt, 2013), this is not always feasible. Reconstructing the precise date of 

conception is challenging, as it is typically estimated by counting backward from the date 
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of birth using information on gestational length. This approach is subject to several 

limitations due to the inherent inaccuracies in how gestational length is calculated or 

recalled. We thus advise that, when assessing the impact of environmental events—such 

as pandemics, natural disasters or human-made violence—on birth outcomes in 

subsequent months, it is essential to account for potential conception shocks (i.e. 

selective fertility responses and fetal losses) triggered by these events. If an event causes 

simultaneous changes in conception rates, it could mechanically influence birth 

outcomes, independent of the event’s direct effects. Overlooking these dynamics may 

lead to misinterpretation of the true impact of such events on birth outcomes. Our model 

can help to estimate the potential bias introduced by changes in the number of 

conceptions following an external stressor. Equation (1) can be adjusted by incorporating 

a known parameter as the prevalence of preterm births (PTB) in the population, and by 

providing an upper and lower bound of a possible change in the number of conceptions. 

The resulting calculation can offer a measure of how large the conception shock would 

need to be to fully account for the observed effect. 

 This study highlights the importance of considering not only etiological 

determinants of perinatal health but also stresses the importance of considering 

demographic determinants of birth outcomes. The model we outlined can be extended to 

not only the quantity of conceptions, but also to their compositions. Further studies 

should develop on how changes in population compositions may alter the health of the 

newborns due to, for example, changes in MAR usage, migration inflows, and changes in 

fertility behaviors across socio-economic groups.  
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Figures and Tables 
 

Figure 1. Demonstration of preterm birth levels at t+8 with different intensity of 
conception shocks at time t with different levels of selection. 

 

Source: US birth certificate data for 2018-19. 
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Figure 2. The temporal shape of the relationship of how a uniformly distributed conception 
shock reverberates between time 0 and time 12, simulating different intensities of conception 
shocks and the consequences for the share of pre-term births 

  

 

Note: Grey-shaded area delimits period at which conception shock occurs. Lines show pre-term 
birth risk based of birth month. Results from 1,000 simulations assigning date of birth based on 
day of week and month born and with a uniform assigned risk of not conceiving at varying 
intensity. 95% uncertainty intervals. 
Source: US birth certificate data for 2018-19. 
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Figure 3. The temporal shape of the relationship of how a conception shock due to closure of 
MAR clinics between time 0 and time 12, simulating different lengths of closure and the 
consequences for the share of pre-term births 

  
Note: Source: US birth certificate data for 2018-19. Results from 1,000 simulations assigning 
date of birth based on day of week and month born. 
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Figure 4. The relationship between 𝑅𝑅𝑡𝑡0 and pre-term birth rate across racial categories, 
2010-19 

 

Source: US birth certificate data for 2010-19. 
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 Table 1: Share of pre-term births explained by changes in conceptions 
separately for White and Black. 

  White Black 
Currie and Schwandt (2013) counterfactual approach 
 Share of PTB variance explained by 

conceptions R2 = .08 R2 =.12 

VAR model 
 FEVD at 3-month time horizon .07 .13 
 FEVD at 6-month time horizon .08 .15 
 Granger-causality:  

   H0: R0 does not Granger-cause PTB p < .01 p < .01 

 Granger-causality:  
   H0: PTB does not Granger-cause R0 

p = .93 p = .92 

Notes: PTB: Pre-term birth rates. FEVD: Forecast error variance decomposition. R0: 6-
month lagged conception ratio relative to PTB. VAR: Variance Autoregressive Model. 
VAR models estimated with three lags for black sample and two lags for white sample. 
Source: NVSS birth records 2010-2019. 
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